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Abstract: This paper is devoted to the study of the arithmetic graph of a composite number m, denoted
by Am. It has been observed that there exist different composite numbers for which the arithmetic
graphs are isomorphic. It is proved that the maximum distance between any two vertices of Am is
two or three. Conditions under which the vertices have the same degrees and neighborhoods have
also been identified. Symmetric behavior of the vertices lead to the study of the metric dimension of
Am which gives minimum cardinality of vertices to distinguish all vertices in the graph. We give exact
formulae for the metric dimension of Am, when m has exactly two distinct prime divisors. Moreover,
we give bounds on the metric dimension of Am, when m has at least three distinct prime divisors.
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1. Introduction

All graphs considered in this paper are simple, undirected, connected and finite. A graph G
consists of two sets, V(G) and E(G), known as the vertex set and the edge set of G, respectively.
The elements of V(G) and E(G) are called the vertices and edges of G, respectively. An element e
of E(G) is an unordered pair of two elements say x, y of V(G) and the two vertices x and y forming
edge e are called adjacent vertices and written as x ∼ y. The set {x ∈ V(G)|x ∼ y} is called the open
neighborhood of y in G, denoted as NG(y). The set NG(y)∪ {y} is called the closed neighborhood of y in G,
denoted as NG[y]. NG(y) and NG[y] will be denoted by N(y) and N[y] respectively if G is clear from
the context. Please note that the distance between the two vertices u and v of a graph G, denoted by
dG(u, v) and d(u, v) if G is clear from the context, is the minimum number of edges traversed from u
to v in G. For basic concepts of graph theory, please see [1].

The concept of resolving set and the metric dimension of a graph was introduced by Slater [2] as
well as by Harary and Melter [3] independently. Slater used this concept for uniquely identifying the
location of a vertex in the graph. Applications of this concept exists in coin-weighing problems [4,5],
Master mind game [6], digital images [7], chemistry [8], isomorphism problem [9], network discovery
and verification [10]. Moreover, Bailey and Cameron used this concept and obtained bounds on the
possible orders of primitive permutation groups [11] (see also [12]).

A subset R of the vertices of a graph G satisfying the property that for every two distinct vertices
x, y ∈ V(G) there exist r ∈ R such that d(x, r) 6= d(y, r) is called a resolving set for G and dim(G)

denotes the minimum cardinality of a resolving set for G which we called the metric dimension
of G. Due to the fact that finding the metric dimension of a graph is NP-complete [13,14] and it
has applications in different fields, many researchers put their attention towards computing this
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parameter for known classes of graphs. For example, this parameter is studied in Cayley digraphs [15],
wheels [16], unicyclic graphs [17], Cartesian products [18] and trees [2,3]. Moreover, Imran et al. studied
the metric dimension of gear graphs [19] and symmetric graphs obtained by rooted product [20],
Hussain et al. [21] studied the metric dimension of 2D lattice of alpha-boron nanotubes, Bailey et al. [11]
studied the metric dimension of Johnson and Kneser graphs, Ahmad et al. [22] studied the metric
dimension of generalized Petersen graphs, Min Feng et al. [23] studied the metric dimension of the
power graph of a finite group. Recently, Gerold and Frank [24] studied the metric dimension of
Zn × Zn × Zn and proved that dim(Zn × Zn × Zn) = b 3n

2 c where Zn is the set of modulo classes of
a natural number n ≥ 2. Here in this article, we study the metric dimension of an arithmetic graph
associated with a composite number.

Connections between number theory and graph theory have been studied by many authors,
for examples see [25–28]. We observe that different numbers exhibit similar characteristics in connection
with graphs. The graph associated with a given composite number form equivalence classes,
for example, vertices can be partitioned based on twin classes. Distinguishing vertices of graphs
using distances has been an interesting problem and gives useful insights about the structure of the
graphs. Hence metric dimension of an arithmetic graph is being studied to grasp properties of the
arithmetic graph. Throughout this paper, m is a composite number with the prime decomposition
m = pγ1

1 pγ2
2 pγ3

3 . . . pγt
t , where t ≥ 2, p′is are distinct primes and γi ≥ 1 for each 1 ≤ i ≤ t. Every positive

divisor x 6= 1 of m has the form x = pα1
1 pα2

2 pα3
3 . . . pαt

t , where 0 ≤ αi ≤ γi for each i and at least one
αi 6= 0 for some i. If αi 6= 0 for some i, then pi is called a primary f actor of x and the factor pαi

i is
called a secondary f actor of x if αi ≥ 2. Two distinct divisors x, y of m are said to have same parity
if they have same primary factors (i.e., x = p1 p2 and y = p2

1 p3
2 have same parity). An arithmetic

graph Am of a composite number m has the vertex set Vm which contains all possible divisors x 6= 1
of m. Further two distinct vertices x, y ∈ Vm are adjacent if and only if they have different parity and
gcd(x, y) = pi (greatest common divisor) for some i ∈ {1, 2, . . . , t}. In [29,30], the authors studied the
domination parameters of an arithmetic graphs. In [31], Suryanarayana and Sreenivansan studied the
split domination in arithmetic graphs. Moreover, Vasumathi and Vangipuram [32] studied annihilator
domination in arithmetic graphs.

In the next section, we study the diameter of Am and prove that it is either 2 or 3, for any
choice of composite number m. We study the properties of false twin vertices in arithmetic graphs.
We study the metric dimension ofAm and give formulae for dim(Am) when m has exactly two primary
factors. Moreover, we give bounds on the metric dimension of Am when m has at least three primary
factors. We also prove that there exist different composite numbers for which the arithmetic graphs
are isomorphic.

2. Results

Please note that for every m = pγ1
1 pγ2

2 pγ3
3 . . . pγt

t , where t ≥ 2, p′is are distinct primes and γi ≥ 1
for each 1 ≤ i ≤ t, the arithmetic graph Am is connected. In the next proposition, we give formula for
the order of Am.

Proposition 1. For every composite number m, we have |Vm| =
t

∏
i=1

(γi + 1)− 1.

The degree of a vertex p in a graph G is the cardinality of its open neighborhood, denoted as
degG(p) (simply deg(p)). The next proposition follows directly from the definition of Am.

Proposition 2. For every primary factor pi of m, the degree of the vertex pi is given as deg(pi) = γi|Vm′ |,
where m′ = γ1γ2 . . . γi−1γi+1 . . . γt.

Please note that for every composite number m, the arithmetic graph Am is connected. Let Pi
denote the set of all vertices of Am with exactly i primary factors then the collection P1, P2, . . . , Pt gives
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a partition of Vm. The diameter of a graph G, denoted by diam(G), is the maximum distance between
any pair of vertices of G. In the next theorem, we characterize the arithmetic graphs Am with respect
to diameter.

Theorem 1. For every composite number m = pγ1
1 pγ2

2 . . . pγt
t , the following assertions hold:

(i) diam(Am) = 2 if and only if
t

∑
i=1

γi = t.

(ii) diam(Am) = 3 if and only if
t

∑
i=1

γi ≥ t + 1.

Proof. (i) For
t

∑
i=1

γi = t, no two distinct vertices of Am have same parity. For any two non-adjacent

vertices x, y ∈ Vm, we have the following cases:
Case 1. Suppose x and y have no common primary factor, then for any primary factor pi of x and

pj of y, pi pj ∈ N(x) ∩ N(y) so d(x, y) = 2.
Case 2. Suppose pi be a common primary factor of x and y, then pi ∈ N(x) ∩ N(y). Hence,

diam(Am) = 2.

Conversely, suppose d(Am) = 2, we are to show that
t

∑
i=1

γi = t. Assume contrary that

t
∑

i=1
γi > t, then there exist at least one primary factor pi such that γi ≥ 2 and d(x, y) = 3 when

x = p1 p2 . . . p2
i pi+1 . . . pt and y = p2

i , a contradiction. Hence,
t

∑
i=1

γi = t.

(ii) Suppose diam(Am) = 3, then by part (i),
t

∑
i=1

γi > t.

Conversely, suppose
t

∑
i=1

γi > t, we are to show that diam(Am) = 3. For any two non-adjacent

distinct vertices x, y ∈ Vm, we have the following cases:
Case 1. Suppose x, y ∈ P1 and x, y have distinct parity then pi pj ∈ N(x) ∩ N(y), where pi is a

primary factor of x and pj is a primary factor of y. Also, if x, y have same parity then for any pj, j 6= i,
pi pj ∈ N(x) ∩ N(y). Hence, d(x, y) = 2.

Case 2. Suppose x ∈ P1, y ∈ Pt be two non-adjacent vertices. Since no two vertices of P1

are adjacent, further suppose no two vertices of Pt are adjacent and y is not adjacent to any z ∈
Vm \ (P1 ∪ Pt). Hence, d(x, y) = 3.

Case 3. For x ∈ P1 and y ∈ Pj; 2 ≤ j ≤ t− 1, we have d(x, y) = 2.
Case 4. Suppose x ∈ Pi and y ∈ Pj; 2 ≤ i, j ≤ t be two distinct vertices. Suppose x and y have a

primary common factor say pi, then d(x, y) = 2 because pi ∈ N(x) ∩ N(y). If x, y have no common
primary factor then pi pj ∈ N(x)∩N(y), where pi is a primary factor of x and pj is a primary factor of y.

By concluding the above four cases, we have diam(Am) = 3.

In the next proposition, we describe the conditions on the exponents of the primary factors of m
under which they have same degrees.

Proposition 3. For any two distinct primary factors pi and pj of a composite number m, deg(pi) = deg(pj)

in Am if and only if γi = γj.

Proof. Suppose deg(pi) = deg(pj), we are to show that γi = γj. Assume contrary that γi 6= γj and
γi < γj, then |N(pi) ∩ Pk| < |N(pj) ∩ Pk| for 2 ≤ k ≤ t − 1. Since, N(pi) ∩ P1 = N(pj) ∩ P1 = ∅
and N(pi) ∩ Pt = N(pj) ∩ Pt = Pt so deg(pi) < deg(pj) because P1, P2, . . . , Pt gives a partition of Vm,
a contradiction. Hence, γi = γj.
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Conversely, suppose that γi = γj for any two distinct primary factors pi, pj of m, then |N(pi) ∩
Pk| = |N(pj) ∩ Pk| for 1 ≤ k ≤ t. Hence, deg(pi) = deg(pj).

Two distinct vertices u and v are called true twins ( f alse twins) if N[u] = N[v] (N(u) = N(v)).
Two vertices are called twins if they are either true twins or false twins. For any composite number
m = pγ1

1 pγ2
2 . . . pγt

t such that γi ≤ 2 for each i and t ≥ 3, Am has no twins. Furthermore, no two
adjacent vertices of Am are twins. In next lemma, we prove that any two twin vertices in Am have
same parity which gives that both belong to Pi for some i.

Lemma 1. Any two distinct vertices x, y in an arithmetic graphAm of a composite number m = pγ1
1 pγ2

2 . . . pγt
t ;

t ≥ 3 are twins if and only if they have same parity and for any prime factor pi of x and y such that α is exponent
of pi in x and β is exponent of pi in y, if γi = 2, then α = β and if γi ≥ 3 with α 6= β, then α, β ≥ 2.

Proof. Suppose x, y are twins in Am and have distinct parity. If pi is a factor of x and pi is not a factor
of y, then N(x) 6= N(y) which directly follows from the definition of the arithmetic graph. Hence, x, y
have same parity. Now suppose pi is a factor of x and y such that γi = 2 and α = 1, we are to show
that β = 1. Assume contrary that β ≥ 2, then N(x) 6= N(y). Next suppose that γi ≥ 3 and α 6= β,
we are to show that α, β ≥ 2. Assume contrary that α = 1, then by the definition of the arithmetic
graph x, y are not twins, a contradiction. Hence, α, β ≥ 2.

The converse follows directly from the definition of the arithmetic graph, when x and y have
same parity and for any prime factor pi of x and y such that α is exponent of pi in x and β is exponent
of pi in y, if γi = 2, then α = β and if γi ≥ 3 with α 6= β, then α, β ≥ 2.

Metric Dimension of Arithmetic Graphs

The following result helps in finding resolving sets and the metric dimension of a graph
containing twins.

Corollary 1 ([33]). Suppose R is a resolving set for a connected graph G and a, b ∈ V(G) are twins. Then a or
b is in R. Moreover, if a ∈ R and b /∈ R, then (R \ {a}) ∪ {b} is also a resolving set for G.

For a composite number m with the canonical form m = p1 p2, the arithmetic graph Am is
isomorphic to a path graph on three vertices and has metric dimension 1. In the next result, we find
the metric dimension of Am when m has exactly two distinct primary factors.

Theorem 2. For every composite number m with the canonical form m = pγ1
1 pγ2

2 , where 1 ≤ γ1, γ2 and
γ1 + γ2 ≥ 3, we have

(i) For γ1 = 1 and γ2 = 2, dim(Am) = 2.

(ii) For γ1 = 1 and γ2 ≥ 3, dim(Am) = 2γ2 − 3.

(iii) For γ1 = 2 and γ2 = 2, dim(Am) = 3.

(iv) For γ1 = 2 and γ2 ≥ 3, dim(Am) = 2 + 3(γ2 − 2).

(v) For γ1, γ2 ≥ 3, dim(Am) = 1 + 2(γ1 − 2) + 2(γ2 − 2) + ((γ1 − 1)(γ2 − 1)− 1).

Proof. Using the definition of the arithmetic graph, we have N(p1) = N(p2). As, Am for m = pγ1
1 pγ2

2
with γ1 + γ2 ≥ 3 is not a path graph so dim(Am) ≥ 2.

(i) For γ1 = 1 and γ2 = 2, the set W = {p1, p2
2} is a resolving set for Am. Hence, dim(Am) = 2.

(ii) For γ1 = 1 and γ2 ≥ 3, the classes {p1, p2}, {p2
2, . . . , pγ2

2 } and {p1 p2
2, . . . , p1 pγ2

2 } are
equivalence classes of false twins in Am and by using Corollary 1, we have dim(Am ≥ 1 + 2(γ2 − 2) =
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2γ2 − 3. Consider W = {p1, p2
2, . . ., pγ2−1

2 , p1 p2
2, . . . , p1 pγ2−1

2 }, we prove that W is a resolving set for
Am. Let x 6= y ∈ Vm \W then we have following cases:

Case 1. Suppose x, y ∈ P1 yields that x = p2 and y = pγ2
2 and p1 p2

2 ∈ W such that d(x, p1 p2
2) 6=

d(y, p1 p2
2).

Case 2. Suppose x, y ∈ P2 yields that x = p1 p2 and y = p1 pγ2
2 and there exist w = p2

2 ∈ W such
that d(x, w) 6= d(y, w).

Case 3. Suppose x ∈ P1 and y ∈ P2 yields that x ∈ {p2, pγ2
2 } and y ∈ {p1 p2, p1 pγ2

2 } and there exist
w = p1 ∈W such that d(x, w) 6= d(y, w).

Concluding all above cases, W is a resolving set for Am. Hence, dim(Am) = 1 + 2(γ2 − 2) =

2γ2 − 3.
(iii) For γ1 = 2 and γ2 = 2, suppose that dim(Am) = 2, then any resolving set W will have the

form W = {p1, x}. Let x ∈ P1 then W is not a resolving set for Am because p2
1 does not resolves p1 p2

and p1 p2
2 and p2

2 does not resolves the pair p1 p2 and p2
1 p2

2. Furthermore, for any x ∈ P2, W is not a
resolving set for Am, hence dim(Am) ≥ 3. Now, the set W = {p1, p2

1, p2
2} is a resolving set for Am so

dim(Am) = 3.
(iv) For γ1 = 2 and γ2 ≥ 3, the classes {p1, p2}, {p2

2, . . . , pγ2
2 }, {p1 p2

2, . . . , p1 pγ2
2 } and

{p2
1 p2

2, . . . , p2
1 pγ2

2 } are equivalence classes of false twins in Am. Corollary 1 gives that dim(Am) ≥
1 + 3(γ2 − 2). Consider W = {p1, p2

2, . . . , pγ2−1
2 , p1 p2

2, . . . , p1 pγ2−1
2 p2

1 p2
2, . . . , p2

1 pγ2−1
2 } satisfying the

conditions of Corollary 1 and note that for x = p1 p2, y = p2
1 p2 ∈ Vm \W then d(x, w) = d(y, w)

for each w ∈ W which gives that W is not a resolving set for Am. Hence, dim(Am) ≥ 2 + 3(γ2 − 2).
Now to prove that dim(Am) ≤ 2 + 3(γ2 − 2), we only need to prove that W1 = {p1, p2

1, p2
2, . . . ,

pγ2−1
2 , p1 p2

2, . . . , p1 pγ2−1
2 p2

1 p2
2, . . . , p2

1 pγ2−1
2 } is a resolving set for Am. Let x 6= y ∈ Vm \W1, we study

the following cases:
Case 1. Suppose x, y ∈ P1 implies that x = p2 and y = pγ2

2 and w = p1 p2 ∈ W1 such that
d(x, w) 6= d(y, w).

Case 2. Suppose x, y ∈ P2 then x, y ∈ {p1 p2, p2
1 p2, p1 pγ2

2 , p2
1 pγ2

2 }. For x = p1 p2 and y ∈
{p2

1 p2, p2
1 pγ2

2 } there exist w = p2
1 ∈ W1 such that d(x, w) 6= d(y, w). For x = p1 p2 and y = p1 pγ2

2
there exist w = p2

2 ∈ W1 such that d(x, w) 6= d(y, w). For x = p2
1 p2 and y = p1 pγ2

2 there exist
w = p2

1 ∈ W1 such that d(x, w) 6= d(y, w). For x = p2
1 p2 and y = p2

1 pγ2
2 there exist w = p2

2 ∈ W1

such that d(x, w) 6= d(y, w). Now for x = p1 pγ2
2 and y = p2

1 pγ2
2 there exist w = p2

1 ∈ W1 such that
d(x, w) 6= d(y, w).

Case 3. Suppose x ∈ P1 and y ∈ P2 implies that x ∈ {p2, pγ2
2 } and y ∈ {p1p2, p2

1p2, p1pγ2
2 , p2

1pγ2
2 }.

For x = p2 and y ∈ {p1p2, p2
1p2, p1pγ2

2 , p2
1pγ2

2 } there exist w = p1p2
2 ∈ W1 such that d(x, w) 6= d(y, w).

Now for x = pγ2
2 and y ∈ {p1p2, p2

1p2, p1pγ2
2 , p2

1pγ2
2 } there exist w = p1 ∈W1 such that d(x, w) 6= d(y, w).

Concluding all above cases W1 is a resolving set for Am.
(v) For γ1, γ2 ≥ 3, the sets {p1, p2}, {p2

1, . . . , pγ1
1 }, {p2

1 p2, . . . , pγ1
1 p2}, {p2

2, . . . , pγ2
2 }, {p1 p2

2, . . . ,
p1 pγ2

2 } and {p2
1, . . . , pγ1

1 } × {p2
2, . . . , pγ2

2 } are equivalence classes of false twins. Corollary 1
gives that dim(Am) ≤ 1 + 2(γ1 − 2) + 2(γ2 − 2) + ((γ1 − 1)(γ2 − 1) − 1). Now to prove that
dim(Am) ≥ 1 + 2(γ1 − 2) + 2(γ2 − 2) + ((γ1 − 1)(γ2 − 1) − 1) we only need to prove that
W = {p1, p2

1, . . . , pγ1−1
1 , p2

2, . . . , pγ2−1
2 , p2

1 p2, . . . , pγ1−1
1 p2, p1 p2

2, . . . , p1 pγ2−1
2 , p2

1 p2
2, . . . , pγ1

1 pγ2−1
2 } is a

resolving set for Am. Let x 6= y ∈ Vm \W, we study the following cases:
Case 1. Suppose x, y ∈ P1 implies that x, y ∈ {p2, pγ1

1 , pγ2
2 }. For x = p2 and y ∈ {pγ1

1 , pγ2
2 } there

exist w = p2
1 p2

2 such that d(x, w) 6= d(y, w). For x = pγ1
1 and y = pγ2

2 there exist w = p1 p2
2 ∈ W such

that d(x, w) 6= d(y, w).
Case 2. Suppose x, y ∈ P2 yields that x, y ∈ {p1 p2, p1 pγ2

2 , pγ1
1 p2, pγ1

1 pγ2
2 }. For x ∈ {p1 p2, p1 pγ2

2 }
and y ∈ {pγ1

1 p2, pγ1
1 pγ2

2 } there exist w = p2
1 ∈ W such that d(x, w) 6= d(y, w). For x = p1 p2 and

y = p1 pγ2
2 there exist w = p2

2 ∈W such that d(x, w) 6= d(y, w).
Case 3. Suppose x ∈ P1 and y ∈ P2 yields that x ∈ {pγ1

1 , p2, pγ2
2 } and y ∈

{p1 p2, p1 pγ2
2 , pγ1

1 p2, pγ1
1 pγ2

2 }. Now for x = pγ1
1 and y ∈ {pγ1

1 p2, p1 pγ2
2 , pγ1

1 pγ2
2 } there exist w = p2

2 ∈W
such that d(x, w) 6= d(y, w). For x = pγ1

1 and y = p1 p2 there exist w = p1 such that d(x, w) 6= d(y, w).
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For x = p2 and y ∈ {p1 p2, p1 pγ2
2 , pγ1

1 p2, pγ1
1 pγ2

2 } there exist w = p1 such that d(x, w) 6= d(y, w).
Now for x = pγ2

2 and y ∈ {p1 p2, p1 pγ2
2 , pγ1

1 p2, pγ1
1 pγ2

2 } there exist w = p2
2 such that d(x, w) 6= d(y, w).

Concluding all above cases, W is a resolving set for Am. Hence, dim(Am) = 1 + 2(γ1 − 2) +
2(γ2 − 2) + ((γ1 − 1)(γ2 − 1)− 1).

The set of bold vertices represented by p1, p2, p2
3 in Figure 1 forms a minimum resolving set for the

arithmetic graph of m = p1p2p2
3 shown in the figure and the set of bold vertices represented by p1, p2, p2

2, p2
3

in Figure 2 forms a minimum resolving set for the arithmetic graph of m = p1p2
2p2

3 shown in the figure.
Also, the set of bold vertices represented by p1, p2

1, p2, p2
2, p2

3 in Figure 3 forms a minimum resolving set for
the arithmetic graph of m = p2

1p2
2p2

3 shown in the figure. Hence, we have the following lemma.
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Lemma 2. For every composite number m with the canonical form m = pγ1
1 pγ2

2 pγ3
3 such that 1 ≤ γi ≤ 2 and

at least one γi = 2, we have dim(Am) =
t

∑
i=1

γi − 1.

In the next theorem, we give the formula for the metric dimension of Am when m has at least four
distinct primary factors.

Lemma 3. For every positive integer m with the canonical form m = pγ1
1 pγ2

2 . . . pγt
t such that 1 ≤ γi ≤ 2 and

t ≥ 4, we have dim(Am) =
t

∑
i=1

γi.

Proof. Consider W = P1 ⊂ Vm such that |W| =
t

∑
i=1

γi. To show that W is a resolving set for

Am, consider two distinct vertices x, y ∈ Vm \W then x and y have at least two primary factors.
First suppose that x and y have same parity then there exists at least one i ∈ {1, 2, . . . , t} such that
pi is a factor of x and p2

i is a factor of y then x, y are resolved by p2
i ∈ W. Now suppose that x and y

have different parity then there exists at least one pi for some i such that pi is a primary factor of x
and pi is not a primary factor of y. Since, pi ∈W so x, y are resolved by W. Hence, W is a resolving set
for Am which gives that dim(Am) ≤ ∑ γi. Now to prove that dim(Am) ≥ ∑ γi assume contrary that
dim(Am) < ∑ γi. Let Ẃ be a minimum resolving set for Am. Without loss of generality suppose that
|Ẃ| = ∑ γi − 1. We discuss the following two cases:

Case 1. Suppose Ẃ ⊂ P1 then there exists some pi or p2
j such that pi /∈ Ẃ or p2

j /∈ Ẃ.

First suppose that pi /∈ Ẃ and γi = 1 then the vertices u = pα1
1 pα2

2 . . . pαi−1
i−1 pi p

αi+1
i+1 . . . pαt

t and
v = pα1

1 pα2
2 . . . pαi−1

i−1 pαi+1
i+1 . . . pαt

t are not resolved by Ẃ. Suppose pi /∈ Ẃ and γi = 2 then the
vertices u = pα1

1 pα2
2 . . . pαi−1

i−1 p2
i pαi+1

i+1 . . . pαt
t and v = pα1

1 pα2
2 . . . pαi−1

i−1 pαi+1
i+1 . . . pαt

t are not resolved by
Ẃ. Hence, any proper subset of P1 is not a resolving set for Am.

Case 2. Suppose Ẃ is not a subset of P1 and |Ẃ ∩ P1| = ∑ γi − 2. Let ẃ ∈ Ẃ \ P1 then there
exists two distinct vertices x, y ∈ P1 \ Ẃ. Since, x, y are not resolved by any vertex in Ẃ ∩ P1 so x, y are
resolved by ẃ. We have the following subcases:

Subcase 1. Suppose x = pi and y = pj for some i 6= j. Since, ẃ resolves x and y so exactly one
pi or pj is a primary factor of ẃ. Let pi is a factor of ẃ and pj is not a primary factor of ẃ. Suppose
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γj = 1 then the vertices u = pi and v = pi pj are not resolved by Ẃ. Now suppose that γj = 2 then the
vertices u = pi and v = pi p2

j are not resolved by Ẃ. Hence, Ẃ is not a resolving set for Am.

Subcase 2. Suppose x = pi and y = p2
i for some i. Since, x, y are resolved by ẃ so

p2
i must be a secondary factor of ẃ. The vertices u = pα1

1 pα2
2 . . . pαi−1

i−1 p2
i pαi+1

i+1 . . . pαt
t and v =

pα1
1 pα2

2 . . . pαi−1
i−1 p2

i pαi+1
i+1 . . . pαt

t are not resolved by Ẃ for at least one αk 6= 0. Hence, Ẃ is not a resolving
set for Am.

Subcase 3. Suppose x = pi and y = p2
j for some i 6= j. Let ẃ ∈ Pt, then the vertices u = pk pj and

pk p2
j are not resolved by Ẃ. Now suppose ẃ /∈ Pt then the vertices u = pα1

1 pα2
2 . . . p

αj−1
j−1 pj p

αj+1
j+1 . . . pαt

t

and v = pα1
1 pα2

2 . . . p
αj−1
i−1 p2

j p
αj+1
j+1 . . . pαt

t are not resolved by Ẃ for at least one αk 6= 0. Hence, Ẃ is not a
resolving set for Am.

By all above cases, we conclude that Ẃ is not a resolving set for Am. Hence, dim(Am) ≥ ∑ γi.

Lemma 1 gives that if pγi
i with γi ≥ 3 is a divisor of m, then the set {p2

i , p3
i , . . . , pγi

i } is an equivalence
class of false twins in Am. In the next theorem, we give bounds on the metric dimension of Am when m
has at least three distinct primary factors by using the cardinalities of false twins classes of Am.

Theorem 3. Let m be a composite number with the canonical form m = pγ1
1 pγ2

2 pγ3
3 . . . pγt

t with t ≥ 3.
Let 0 ≤ s < t be an integer such that γi ≤ 2 for each i ≤ s and γi ≥ 3 for each i > s. Then,

H ≤ dim(Am) ≤
s

∑
i=0

γi + t− s + H,

where γ0 = 0, H =
t−s
∑

j=1
(|Vmj | + 1)

t−s−(j−1)
∑

i1=1

t−s−(j−2)
∑

i2=1+i1
. . .

t−s
∑

ij=1+ij−1

{
j

∏
k=1

(γs+ik − 1) − 1} and mj =

pγ1
1 pγ2

2 . . . pγs
s ps+α1 ps+α2 . . . ps+αk︸ ︷︷ ︸

t-s-j terms

with αi ∈ {1, 2, . . . , t− s}.

Proof. Let W ⊂ Vm be defined as W = P ∪ Ẃ where P = P1 \ (
t−s⋃
i=1
{p2

s+i, p3
s+i, . . . , pγs+i

s+i }) and Ẃ

satisfies the property |W ∩C| = |C| − 1 for each equivalence class C of false twins inAm. Clearly, |P| =
s
∑

i=1
γi + t− s and |Ẃ| = H. Since, P ∩ Ẃ = ∅ so |W| =

s
∑

i=1
γi + t− s + H. To prove the upper bound,

we only need to show that W is a resolving set for Am. Consider two distinct vertices x, y ∈ Vm \W
then we have the following cases:

Case 1. Suppose x, y have different parity then there exists at least one primary factor say pj which
is a primary factor of x and not a primary factor of y which gives that d(x, pj) 6= d(y, pj). Hence, x, y are
resolved by W.

Case 2. Suppose x, y have same parity then there exists at least one primary factor pi such that pα
i

is a factor of x and pβ
i is a factor of y, where α 6= β. We discuss the following cases:

Subcase 1. Suppose i ≤ s, α = 1 and β = 2 or α = 2 and β = 1. Since p2
i ∈ W and d(x, p2

i ) 6=
d(y, p2

i ) so W resolves x, y.
Subcase 2. Suppose i > s, then we have α = 1 and β ≥ 2 or α ≥ 2 and β = 1. Suppose α ≥ 2 and

β = 1 then pγ
i ∈ W such that α 6= γ and d(x, pγ

i ) 6= d(y, pγ
i ). Similar arguments hold for α = 1 and

β ≥ 2. Hence, W resolves x, y.
By combining all above cases, W is a resolving set for Am so dim(Am) ≤ ∑ γi + t− s + H.
The lower bound directly follows from Corollary 1 and Lemma 1. Hence, dim(Am) ≥ H.

The lower bound given above is sharp as dim(Am) = 14 = H for m = p1 p3
2 p3

3. For any two

distinct composite numbers m = pα1
1 pα2

2 . . . pαt
t and n = qβ1

1 qβ2
2 . . . qβs

s , the number of possible divisors
of m and n are equal if and only if the number of factors with exponent i in m and n are equal. In the
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next theorem, we proved that there exist different composite numbers for which the arithmetic graphs
are isomorphic.

Theorem 4. For any two different composite numbers m and n with the canonical forms m = pγ1
1 pγ2

2 . . . pγt
t

and n = qβ1
1 qβ2

2 . . . qβs
s , Am ∼= An if and only if the number of primary factors with exponent i in m and n are

equal. In particular, if Am ∼= An, then t = s and
t

∑
i=1

γi =
s
∑

i=1
βi.

Proof. For Am ∼= An, |Am| = |An| so result is true.
Conversely, suppose number of factors with exponent i in m, n are equal. Define a map

λ : Vm → Vn, as λ(pi) = qj such that αi = β j and λ(pα
i ) = qα

j . In general, λ(pα1
1 pα2

2 . . . pαt
r ) =

(λ(p1))
α1(λ(p2))

α2 . . . (λ(pt))αt then this map is isomorphism between Am and An.

For the integers m = 12 and n = 18, note that number of divisors of m and n are equal and above
theorem gives that A12

∼= A18.

3. Conclusions

We have studied properties of arithmetic graphs associated with composite numbers. We gave
conditions on which vertices have same degrees and neighborhoods. The metric dimension of Am

when m has exactly two distinct prime factors has been found out. We also found a formula to find out
the metric dimension of Am when m has canonical form m = pγ1

1 pγ2
2 . . . pγt

t with 1 ≤ γi ≤ 2 and t ≥ 4.
Furthermore, we gave bounds on dim(Am) when m has at least three distinct prime divisors. We also
proved that there exist distinct composite numbers for which arithmetic graphs are isomorphic graphs.
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Abbreviations

The following abbreviations are used in this manuscript:

Am Arithmetic graph of a composite number m with at least two distinct primary divisors
diam(G) The diameter of a graph G
dim(G) The metric dimension of a graph G
deg(v) The degree of a vertex v
N(v) The open neighborhood of a vertex v
d(x, y) The distance between the vertices x and y
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