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Abstract: This work uses the “fractional order bio-heat model” (Fob) model of heat conduction to offer
a new interpretation to study the thermal damages in a skin tissue caused by laser irradiation. The
influences of fractional order and the thermal relaxation time parameters on the temperature of skin
tissue and the resulting thermal damage are studied. In the Laplace domain, the analytical solutions
of temperature are obtained. Using the equation of Arrhenius, the resulting thermal injury to the
tissues is assessed by the denatured protein ranges. The numerical results of the thermal damages
and temperature are presented graphically. A parametric analysis is dedicated to the identifications
of suitable procedures for the selection of significant design variables to achieve an effective thermal
in the therapy of hyperthermia.
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1. Introduction

Recently, the development of studies shows that the problem of heat transfer in living tissues
introduces many complications. However, there are various discussions and findings in this field.
Approaches of heating operations have been used in modernistic medicine, such as hyperthermia [1],
laser tissue soldering [2], and laser surgery [3]. Some applications of bioheat models in clinical
hyperthermia were discussed, especially regarding large, thermally unequilibrated blood vessels that
have a worthy impact on the temperature distribution and cause serious temperature inhomogeneities.
Through this clinical procedure, the applications of moving heat source on the skin tissue considering
the perfusions rate is seen in some plastic surgery processes, such as in the use of laser radiation
for spots or tattoos or in the heat actions of the cornea, using the laser for correcting hyperopia and
removing moles.

In 1948, Pennes [4] presented the temperature distribution in the forearm skin temperature. The
formulation can be analyzed by various approaches to get the solution of the heat transfer model
for infinite thermal wave propagations, which is based on classical Fourier thermal conductions. In
point of fact, it is still found that heat spreads at a finite rate in the biological tissue because they have
highly nonhomogeneous inner structures. To dissolve the paradox that occurred in Penne’s bio-heat
formulation, thermal wave theory of bio-heat transfer is presented, which is based on heat waves
constitutive relations, as given in [5,6]. Abbas and Hobiny [7] investigated the analysis of thermal
damage in skin tissue subject to moving heat sources. The homotopy perturbation method [8] and the
finite-decomposition method have also been applied [9]. Esneault and Dillenseger [10] investigated
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the temperature increment over times in hypothermia by the finite difference approach. Zhu et al. [11]
estimated the depositions of light energy in tissues and the rate operation model for the thermal
damage resulting from the use of the theorem of diffusions.

Many current models of physical processes have been successfully modified using fractional
computation. We can say that the totality of integral theories and fractional derivatives was created in
the last half of the last century. Definitions and different methods of fractional derivatives have become
the main focus of numerous investigations. Using the fractional time derivative, many physical models’
processes have been successfully modified. Ezzat et al. [12,13] introduced a new fractional bio-heat
model using the fractional heat conduction equation. Ghanmi and Abbas [14] studied the fractional
transient heating within the skin tissue owing to a moving heat source. Mondal et al. [15] investigated
the transient heating within skin tissue owing to time-dependent thermal therapy in the context of
memory-dependent heat transport law.

The analytical solutions are very interesting owing to their lower expense and accurate estimation
compared with experimental and numerical calculations. Using the finite element approach,
Diaz et al. [16] introduced the solutions of thermo-diffusions model in the tissue to study the resulting
thermal damage. When a real phenomenon regarding heat transfer in a bounded media is studied,
the nonlinear models and linear models of thermal transfer were developed and their numerical
or analytical solutions are presented. Abbas and Zenkour [17] used the Green–Naghdi model
to study the effect of rotation and initial stress on thermal shock problem for a fiber-reinforced
anisotropic half-space. Abbas et al. [18] studied the effect of thermal dispersion on free convection in a
fluid-saturated porous medium. Abbas [19] investigated the effects of relaxation times and a moving
heat source on a two-temperature generalized thermoelastic thin slim strip. El-Naggar et al. [20]
studied the effects of the initial stress, magnetic field, voids, and rotation on plane waves in generalized
thermoelasticity. Marin and Marin et al. [21–23] used various models to study the dipolar bodies.
Abbas [24] studied the nonlinear transient thermal stress analysis of a thick-walled FGM cylinder with
temperature-dependent material properties. Zenkour and Abbas [25] used the finite element method
to study the magneto-thermoelastic response of an infinite functionally graded cylinder.

This paper explores the effect of fractional order derivative on the thermal damage of living tissue
using a bioheat model. The numerical results can be used as a substantiations division for living
tissue interaction such as continual scanning laser interaction. The comparisons are made with the
calculations obtained in the cases of the absence of the fractional time derivative and the thermal
relaxation time parameters.

2. Mathematical Model

A semi-infinite biological tissue under thermal isolation is considered. On the basis of Cattaneo [5]
and Ezzat et al. [12], the fractional bio-heat formulation in skin tissue can be expressed by

k∇2T =

(
1 +

ταo
Γ(α+ 1)

∂α

∂tα

)(
ρc
∂T
∂t

+ωbρbcb(T − Tb) −Qm −Qext

)
, 0 < α ≤ 1, (1)

Taking into consideration the above definition, it is possible to write the following:

∂αh(r, t)
∂tα

=


h(r, t) − h(r, 0), α→ 0,

Iα−1 ∂h(r,t)
∂t , 0 < α < 1,

∂h(r,t)
∂t , α = 1,

(2)

Iνh(r, t) =
∫ t

0

(t− s)ν

Γ(ν)
h(r, s)ds, ν > 0, (3)

lim
ν→1

∂νh(r, t)
∂tν

=
∂h(r, t)
∂t

. (4)
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The full spectrum of the local thermal condition can be described through the standard thermal
condition using the definition of the fractional derivative given in Equation (2). The different values
of fractional parameter 0 < α ≤ 1 cover two types of conductivity: 0 < α < 1 for low conductivity
and α = 1 for normal conductivity. Here, k is the thermal conductivity of tissue, ωb is the rate of
blood perfusion, t is the time, ρb is the blood mass density, ρ is the tissue mass density, Tb is the blood
temperature, T is the tissue temperature, τo is the thermal relaxation time, c is the specific heat of
tissues, cb is the specific heat of blood, Qm is the metabolic heat generations in living tissue, and Qext

refers to the heat generated per unit volume of tissues. Gardner et al. [26] suggested the laser thermal
source form by the following:

Qext(x, t) = Ioµa
[
U(t) −U(t− τp)

][
C1e−

k1
δ x
−C2e−

k2
δ x

]
, (5)

where U(t) is the unit step function, µa is the coefficient of absorption, Io is the intensity of the laser, τp

is the exposure time of the laser, and δ is the penetration depth. C1, C2, k1, and k2 are the functions of
diffuse reflectance Rd and are mentioned in [26]. The penetration depth is defined by the following [26]:

δ =
1√

3µa(µa + µs(1− g))
(6)

where µs is the scattering coefficient and g is the factor of anisotropy. Now, both the lower and
upper surfaces are supposed to be thermally isolated as the boundary conditions and the reference
temperature are equal to its normal temperature. So, the initial conditions and the boundary conditions
are presented as

− k
∂T(L, t)
∂x

= 0, −k
∂T(0, t)
∂x

= 0 (7)

T(x, 0) = Tb,
∂T(x, 0)
∂t

= 0.0 (8)

For appropriateness, the non-dimensional forms can be given by

T′ = T−To
To

, T′b =
Tb−To

To
, t′ = k

ρcL2 t, τ′o =
k

ρcL2 τo, τ′p = k
ρcL2 τp, x′ = x

L ,

k′1 = L
δ k1, k′2 = L

δ k2, Rb =
ρbωbocbL2

k , Rm = L2Qm
kTo

, Rr =
L2Ioµa

kTo
.

(9)

In terms of these non-dimensional form of physical quantities in (9), the governing Equation (1)
initial and boundary conditions can be expressed as (for appropriateness, the dashes have been ignored)

∂2T
∂x2 =

(
1 +

ταo
Γ(α+ 1)

∂α

∂tα

)(
∂T
∂t
−Rb(Tb − T) −Rm −Rr f (x, t)

)
(10)

∂T(0, t)
∂x

= 0,
∂T(L, t)
∂x

= 0 (11)

T(x, 0) = 0,
∂T(x, 0)
∂t

= 0 (12)

where f (x, t) =
[
U(t) −U(t− τp)

][
C1e−k1x

−C2e−k2x
]
.

The transforms of Laplace for any function M(x, t) can be expressed by

M(x, s) = L[M(x, t)] =

∞∫
0

M(x, t)e−stdt, s > 0, (13)

where s is the parameter of Laplace transform. Thus, the governing equations are expressed as
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d2T
dx2 − f1T = − f2 − f3e−k1x

− f4e−k2x (14)

∂T(0, t)
∂x

= 0,
∂T(L, t)
∂x

= 0 (15)

where 
f1 =

(
1 + sαταo

Γ(α+1) ) (s + Rb)

f2 = 1
s (RbTb + Rm)

f3 = RrC1
s (1− e−sτp)

f4 = −RrC2
s (1− e−sτp)

 (16)

The exact solution of Equation (14) is written as

T(x, s) =
f2
f1
+ A1e

√
f1x + A2e−

√
f1x +

f3
f1 − k2

1

e−k1x +
f4

f1 − k2
1

e−k2x (17)

To obtain the complete solution of (14), boundary conditions represented by Equation (11) are
used to get the constants A1 and A2, which are written as

A1 =
e−L(k1+k2)(eLk2 (eLk1−eL

√
β1 )k1(k2

2−β1)β3+eLk1 (eLk2−eL
√
β1 )k2

1k2β4−eLk1 (eLk2−eL
√
β1 )k2β1β4)

(e2L
√
β1−1)

√
β1(β1−k2

1)(β1−k2
2),

A2 = eL
√
β1

(e2L
√
β1−1)

√
β1

(
e−Lk1 (eL(k1+

√
β1)−1)k1β3

k2
1−β1

+
e−Lk2 (eL(k2+

√
β1)−1)k2β4

k2
2−β1

)
.

(18)

Finally, for the solutions of the temperature increment, a numerically reversal approach was
adopted depending on Stehfest [27]. In this approach, the inverse M(x, t) of the Laplace transforms
M(x, s) can be approximated as

M(x, t) =
ln2

t

M∑
j=1

V jM(x, j
ln2

t
), (19)

where V j is given by the following equation:

V j = (−1)
n
2 +1

min(i, n
2 )∑

k= i+1
2

k
n
2 +1(2k)!

( n
2 − k)!k!(i− k)!(2k− 1)!

(20)

The evaluations of burns are one of the most remarkable attributes in the bio-engineering science in
a living tissue. To quantify thermal damage, the technique expanded by Henriques and Moritz [28,29]
can be used.

Ω =

∫ t

0
Be−

Ea
RT dt (21)

where R = 8.313 J/mol·K is the universal gas constant, B = 3.1 × 1098 s−1 is the factor of frequency,
and Ea = 6.28× 105 J/mol is the activation energy.

3. Results and Discussions

Several simulations were conducted to test the performance of the proposed linear thermal model
based on the bio-heat transfer model. For numerical computations, the values of thermal properties for
living tissue were written [30].

ρb = 1060(kg)(m−3), cb = 3860 (J)(kg−1)(k−1), ωb = 1.87× 10−3(s−1), Tb = 37 ◦C,
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c = 4187 (J)(kg−1)(k−1),ρ = 1000(kg)(m−3), k = 0.628 (W)(m−1)(k−1), τo = 5(s),

τp = 10(s), Qm = 1.19× 103(W)(m−3), L = 0.03(m), Io = 122× 103(W)(m−2), g = 0.9,

µs = 12000 (m−1),µa = 40(m−1), To = 37 ◦C.

Using MATLAB (R2017a) software, the computations are done and the results are presented
graphically. The outer thermal source impact on the surface of the skin was integrated. These
mathematical models, which are based on hyperbolic bio-heat transfer, were found with the interface
and appropriate boundary conditions. The perfusions, metabolic, and conducting heat source terms
were utilized in the formulations. A slab of tissue is 3 cm thick and the reference temperature is equal
to its normal temperature, that is, Tb = To = 37 ◦C. In order to study the effect of fractional parameter
α, the laser exposure time τp and the thermal relaxation time τo on the temperature and the thermal
damages, the numerical results were presented using the graphs as in Figures 1–9. Figure 1 displays the
temperature variation along the distance x at t = 80 s when the laser exposure and thermal relaxation
times remine to constants τp = 10s, τo = 5s. It is observed that the temperature begins from the utmost
values, and then decreases constantly to Tb = 37 ◦C. The time history of surface temperature through
four values of the fractional order parameter α is exhibited in Figure 2. It notices that the temperature
begins from Tb and increases with the time till most values, after which decreases again to Tb. Figure 3
show the resulting thermal damage through time t. Clearly, the time history of the thermal damages
obtained from the different values of the fractional order parameter α is very different. As expect, the
fractional order parameter α has major effects on the distributions of the variables. Figures 4–6 display
the influences of the laser exposure time τp with the fractional bioheat model (α = 0.5) on the resulting
thermal damage and the temperature distributions. As expected, the laser exposure time τp has a great
effect on the resulting thermal damages and the distribution of temperature. As expected, the increase
of laser exposure times increases the temperature, exceptionally at the peak temperature where the
difference between the diagrams. On the basis of the fractional order bioheat model (α = 0.5), the
comparison of temperature response among four types of thermal relaxation time τo along x is shown
in Figure 7. In these cases, it was observed that the thermal relaxation time decreases the temperature
of the skin surface. Gradually, the temperature decreases continuously to the normal temperature.
The time history of surface temperature through four values of the thermal relaxation time is shown
in Figure 8. Moreover, Figure 9 displays the variations of thermal damages with time for various
values of thermal relaxation time τo. Figures 3, 6 and 9 show the variations of thermal damage at the
point x = 0 under various values of the fractional parameter, the laser exposure time, and the thermal
relaxation time, respectively. As observed in the figures, the thermal damages are reduced with the
fractional model and hyperbolic bioheat model.
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