symmetry MBPY

Article

SCFH: A Student Analysis Model to Identify
Students’” Programming Levels in Online
Judge Systems

Bin Xu f, Sheng Yan *¥, Xin Jiang and Shaoge Feng

College of Computer Science and Engineering, Northeastern University, Shenyang 110819, China;
xubin@mail.neu.edu.cn (B.X.); 1801779@stu.neu.edu.cn (X.J.); 1801733@stu.neu.edu.cn (S.F)

* Correspondence: yanshengl117@foxmail.com or 1871590@stu.neu.edu.cn

1t These authors contributed equally to this work.

check for
Received: 7 March 2020; Accepted: 25 March 2020; Published: 10 April 2020 updates

Abstract: Computer basic teaching is an essential basic learning content in higher education teaching.
In order to encourage students and enable them to practice and improve their programming ability,
the online judge system has been introduced into the programming course for compiling, executing
and evaluating the algorithm source code submitted by students. The asymmetry of students’
programming level is an important issue when teachers guide the programming of online judge
system. We used the exploratory factor analysis method to identify the potential variable structure
from the log data submitted by the students of the online judge system, and evaluate the programming
level of the students to predict the “at risk” learners. We proposed a student participation model,
SCFH, based on this variable structure. Using the log data of the students in the C language course
and their final exam results, we trained a deep neural network based on SCFH to divide the students
into three different grades, namely “risky”, “intermediate” and “advanced”. To verify the validity of
the model, we used the prediction model to classify students in another C++ language programming
course. The results show that the submission log data model SCFH can be used to predict the
programming ability of students, and the validity of these results can be tested by examination results.

Keywords: online judge system; programming course; student analysis; early prediction; submission
log

1. Introduction

With the rapid development of Internet technology, information technologies such as big data
and artificial intelligence have developed rapidly. Modern education is also transforming from
informatization to intelligence. Computer-aided education has become an important part of modern
education. The online judge system is an educational website which refers to a network service and
was originally designed for programming competitions such as the ICPC(International Collegiate
Programming Contest) of ACM. The online judge system has a large number of programming problems,
which can be solved online and offline. As an open and shared testing platform, online judge system
provides more and more new resources for students to learn independently, and also provides new
tools and platforms for the teaching of programming courses [1].

Programming is an interdisciplinary subject. In addition, competitive programming may
be relatively difficult and daunting for entry-level students due to the difficulty, variety and
competitiveness of the problem. From our research on the log data submitted by the anonymous
online judge system, we can see that quite a number of students are trying to find the right solutions

Symmetry 2020, 12, 601; doi:10.3390/sym12040601 www.mdpi.com/journal /symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/2073-8994/12/4/601?type=check_update&version=1
http://dx.doi.org/10.3390/sym12040601
http://www.mdpi.com/journal/symmetry

Symmetry 2020, 12, 601 20of 11

and appropriate problems to solve. In order to help them overcome difficulties, it is very important to
correctly identify these students with certain risks at an early stage. However, online judge system
is designed for self-directed learning. It only provides real-time automatic evaluation of the source
program of the solution submitted by the user and has no interaction with the teacher. Therefore,
it is difficult for teachers to evaluate students’ learning, track and correct students’ learning behavior.
Some studies have shown that classifying students’ participation in learning in daily teaching helps to
improve the educational effect of students in different classes [2]. Many researches [3,4] focus on the
development of theoretical models of student participation, but these models are usually limited to
formal educational environment and pay less attention to online judge system.

The strength of students depends on the characteristics of online judge system submission
log. Each of these features is interrelated. Therefore, clustering and statistical analysis of these
multidimensional data can help us understand these students’ thinking patterns. In this research, we
used exploratory factor analysis to identify the potential variable structure from the submission log
data of students in online judge system. Aiming at the submission log data of students in online judge
system, we proposed a participation model “SCFH” described by the key features of the submission
log. In addition, we trained the deep neural network based on the SCFH model by using the students’
log data and final exam scores in C language course, and divided the students into three different
grades. In order to verify the validity of the model, we used the prediction model to classify students
in another C+ + programming course.

2. Related Works

2.1. Application of Online Judge System in Programming Education

Online judge system has a long history of application in education. It was introduced by Stanford
University at least in 1961 to support the evaluation of student procedures coded with ALGOL [5].
Since then, online judge system has quickly replaced traditional manual judgment. Many scholars
have conducted a large number of researches related to online judge system. Andy Kurnia et al. [6]
analyzed the advantages of online judge system for student project evaluation and labor. They first
systematically introduced the design of the online test system, and then compared the efficiency
and fairness issues. M. Choy et al. [7] analyzed the experience of applying online judge system to
programming education and emphasized that timeliness and development motivated students to be
passionate about programming.

The application of online judge system has several advantages. First, the teacher can accurately
verify the correctness of the source code submitted by the student by preparing a complete test case
that covers all the results. Second, the time for judging is greatly reduced, so students can do a lot
of preparation and practice. Finally, students are able to get immediate feedback and know if their
answers are correct.

It is worth noting that online judge system requires a high degree of motivation and self-discipline,
so online judge system can only serve as a teaching aid to enhance professional skills [8]. However,
due to the limitations of online judge system, teachers are not able to obtain feedback on the ability of
students to gain experience in online judge system. There is currently no effective tool for analyzing
and evaluating students’ interactions in online judge system and providing valuable feedback to
teachers. Therefore, it is necessary to find a set of observation indicators to measure the students’
learning in online judge system, and to classify students by model. In this way, teachers can get
feedback on students’ learning situations and correct students’ learning behavior.

2.2. Programming Level Assessment

In online systems and non-online learning environments, a great deal of research has been done to
identify “risky” entry-level students. The key features that have been considered in these studies [9-12]
are given in Table 1.

Symmetry 2020, 12, 601 3of11

Table 1. Key features considered in the study.

Features Description
The progress of the introductory Whether the students have studied the introductory
programming course course of programming and the progress of learning.
Previous programming experience Do students have programming experience before class.
Gender The gender of the student.

Whether the students have a negative attitude of giving
up and depression in the programming course.
Mathematical background Students” mathematics foundation.

Formal training in programming Training progress of student courses.

Students” understanding of learning
material difficulties

Students’ ability to find solutions to problems = Whether students can find the right solution.

Negative attitude in programming

Students’ ability to understand difficult problems.

In order to classify students” programming level, many researches have realized and trained
statistical learning models and neural networks. Recent research [9] has proposed a back propagation
neural network, which can estimate students’ performance according to their prior knowledge.
The study also construct a student attribute matrix (SAM), indicators and predictors, which reflect
how much influence a particular factor will have on students” performance. D Capobia’s [12]
research focuses on learning behaviors and programmers’ personality traits to determine their abilities
and motivations. This study compares programmers who learn through conceptualization with
programmers with relevant experience, and proposes a measurement index based on a small number
of questionnaires, called DiCS-Index. Research [13] classifies programmers’ abilities according to the
timeliness of homework submission, that is, the timeliness of students, as well as their average scores
and progress in the past few years.

It is obvious from the existing research that there are a lot of contents related to “risk” student
prediction in online and offline learning environments. Data mining and knowledge discovery are
still rarely used in online judge programming systems. However, research and contributions in this
field are increasing rapidly recently. In recent years, different support systems and recommendation
systems have been proposed for online judge programming environment [14,15]. The support system
includes problem difficulty assessment [16,17], problem suggestion [18,19] and other services. Most
of the proposed support systems are based on collaborative filtering [14,16,17] and are limited to
classroom data. As far as we know, there is no clear research on classification in online judge system
based on submitting log data, scoring and other key features.

2.3. Exploratory Factor Analysis

In the field of scientific research, some variables are not easy to be directly observed, and these
variables can only be indirectly reflected by the observable variables related to them [20]. We call the
observable variable the original variable, and the variable that is not easy to be observed that has a
correlation effect on the original variable is called the factor.

The exploratory factor analysis is a multivariate statistical analysis method that finds out the
main factors that affect the original variables and estimates the influence of the factors on the
original variables by exploring the characteristics, properties and internal relations of the original
variables. It can reduce many disordered original variables into fewer core factors and make them
have subsequent interpretation ability, thus realizing the extraction and reconstruction of measurement
information.

Symmetry 2020, 12, 601 40f11

3. Method

3.1. Research Questions

e Find the potential variable structure in the log data submitted by online judge system, and find

the key features that are more sufficient to evaluate students” programming ability.
o Verify whether the key feature model we found can be related to the course scores and whether it

can be applied to different courses in online judge system.

3.2. Data

The data for this study are from the log data of first-year C programming course students using
online judge system. Table 2 shows the detailed statistical data. The explanation of these data is given
in Table 3. The definition of hint is that when a student is unable to solve the problem by himself, he
or she chooses to ask for help from others. We detect whether help is requested by comparing the
code similarity of the two students. All these data come from 1043 students enrolled in the course.
Figure 1 shows the dispersion matrix of the data. The graph depicts the correlation between each pair
of features.It can be seen from the figure that these features are highly correlated.

score

8 o B &

8 e

correct true_submit submit
¥ e

true_correct

total
B . B B.wue.

easy_count true_total
¥,

g

2 e

B &

B e

Giff_correct easy_correct Giff_count

frequency

™
N

.

& g @ F
scare submit true submit comect true_correct

B o5,

hint

*B
s e ||

< & - T 7 - £ < a- i< 3
| casy_count Off count easy_correct aff correct frequency nt

-

tal true_tota

Figure 1. A decentralized matrix describing the correlation between features in online programming
judge systems. This figure describes the correlation between each pair of features.

Table 2. Statistical of C language course data.

Score Submit True_Submit Correct True_Correct Total True Total Easy Count Difficult Count Easy_Correct Difficult_Correct Frequency Hint

count 1043 1043 1043 1043 1043 1043 1043 1043 1043 1043 1043 1043 1043

mean 35.17 53.86 36.40 52.16 29.52 104.50 57.78 4235 15.44 20.76 8.76 11.68 46.72
std 9.95 18.17 16.42 19.00 15.19 49.86 31.43 2221 13.73 9.66 7.10 5.04 27.55
min 0.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00
0.25 28 40 24 38 17 72 34 25 4.5 13 3 8 28
0.50 36 58 36 57 28 98 56 42 12 20 7 1 42
0.75 44 71 49 70 41 129 76 55 24 29 14 15 61

max 50 76 71 76 70 443 292 246 80 42 29 28 298

Symmetry 2020, 12, 601 50f11

Table 3. Candidate Characteristics of Factor Analysis.

Metric Description
Submit Number of problems submitted by students
true_submit The number of problems submitted by students without asking for a prompt
Correct Number of students solving problems
true_correct The number of students actually solving the problem
Total Total number of submissions by students
true_total The Total number of problems submitted by students without asking for a prompt
easy_count Number of attempts by students to solve simple problems
difficult_count =~ Number of attempts by students to solve difficult problems
easy_correct The correct number of times students solve simple problems
difficult_correct The correct number of times students solve complex problems
Frequency Number of times students log in to online judge system
Hint Number of requests for help from students.

3.3. Factor Analysis

In order to solve our first research problem, that is, to identify the potential variable structure,
we used exploratory factor analysis on the data and established an exploratory factor analysis model
based on the characteristics in Table 3. The model is as follows:

X =AF+¢ 1

where X = (x1,xp,- -, xn)—r is an n * 1-dimensional random vector composed of 1 original variables,
F = (fi,fo,---,fm) isacommon factor matrix composed of m factors, A is an n % m-dimensional
factor load matrix, and € = (e1, €3, - -, sn)T is an n * 1-dimensional special factor matrix or residual
matrix. Therefore, the model can be written as:

X1 a1 A4 o Am f1 €1
X2 a1 4y - A f €

=) .) ol m<n ()
Xn ap1 An2 - Aum fm En

We have the following assumptions about the model:

1. The special factorse;, i=1,2,---,n are independent of each other.

2. The expectation of the special factor ¢; is 0, and the variance is 07, thatis,E (¢;) =0, Var (g;) =

(Tl-Z,i =1,2,---,n.

The special factor ¢;(i = 1,2, - - -, n) is independent of the common factor f;(i = 1,2,--- ,n).

The common factors f;, i=1,2,---,n are independent of each other.

5. The expectation of the common factor f; is 0, the variance is 1, that is, E (f;) = 0, Var(f;) =
1,i=1,2,---,n.

=

Based on model (2) and model assumptions, we can obtain the covariance matrix) of X,
as follows:
¥~ = Cov(X) = Cov(AF +¢) = ACov(F)A" + Cov(e) = AAT + D, @)

where A is the factor load matrix, D, = diag (012,022,- . ,(T,%). The eigenvalue (A1, Ay, -+ ,Ay) of ¥ and

the corresponding eigenvector (e1, ey, - - - ,e,) can be solved by formula (2). Therefore, the covariance
matrix) can also be expressed as:

Symmetry 2020, 12, 601 6 of 11

VAmem (4)

vV Am1€mi1
vV Amg28m 42

VAnen

(VAm1emi1 \/)\m+2€m+2 Y/ /\nen)

=AA" +D,

Thus, the estimated value ll-j = \/)Tieij(i, j=1,2,---,n) of the ij-th factor load can be obtained.
Where, A; represents the i-th characteristic value, ¢;; represents the j-th component of the i-th
characteristic vector corresponding to A; , and I;;(i,j = 1,2, - - ,n) represents the degree of influence
of the j-th factor on the i-th original variable.

After the model is established, the key problem is to extract common factors. In order to preserve
the variance caused by common factors and the variance caused by special factors, we used the
principal axis factor method to extract common factors. In the process of extracting common factors,
it is very important to decide how many factors to keep. We used scree plot test to determine the
number of reserved factors. In order to study the potential factors that affect the original variables and
make these factors have clearer explanatory significance, it is also necessary to rotate the model by
factors. Considering the correlation between various factors, we used oblique rotations in determining
the factor model. At this time, by calculating the model, we got a factor pattern load matrix that
identifies the potential variable structures in all features, and these common factors can explain almost
all the differences of the original features. All of the above methods are analyzed by using R’s Psych
package[21,22].

3.4. Verify the Effect of the Model

In factor analysis, we found a variable model to analyze the level of students’ participation in
online judge system programming. In order to verify the effectiveness of the model in relevant courses,
we have established a student classification model using the deep neural network. The criteria for
classification come from the scores students get in the final examination. The teacher divided the
students into three categories according to their examination scores. The first category is students
with risks, i.e., students with weak programming ability, whose scores are far lower than those of
other students. The second category is students who master basic programming knowledge and can
solve simple problems. They can solve moderately difficult problems in exams. The third category is
students who are familiar with programming knowledge and can solve most problems.

The input layer of the deep neural network we established consists of four neurons, and the
four features obtained through factor analysis are used as input vectors. The hidden layer has two
layers with 5 and 6 neurons respectively. Then there is the output layer, which consists of 3 neurons,
corresponding to the number of categories of target variables. Finally, create a softmax function output
layer to solve the multi-classification problem. The structure of the network is shown in Figure 2.
We divided the data set of C language course into training set and test set according to the ratio of 7:3
for cross-validation. In order to solve the convergence speed of the algorithm, a cross entropy loss
function is used in the network.

Symmetry 2020, 12, 601 7 of 11

\
y

/
ﬂ?
?/'%
?
\

’
)
"\
N/
%y
N
W)

’(;
/
)
i

{

Q
‘)@
/k
d
o
"
i
i

z
i
b
<i//‘
i
)

;5‘;
J

Y
A
W
\"4
‘\1
O
“
)
7

}

Input Layer € R4 Hidden Layer € RS Hidden Layer € R® Output Layer € R3

Figure 2. The student classification model.

First of all, we used the feature model obtained from the previous factor analysis to train and
verify the deep neural network on the C language programming course data set, and used the area
under the curve (AUC) and accuracy to evaluate the classification effect of the model. The greater the
AUC value, the stronger the robustness of the model to classification. The greater the accuracy value,
the more accurate the classification result. Then, we transferred the trained model to another C++
language programming course for verification to verify the invariance of the model, that is, to verify
the effectiveness of the model in different courses. We used the model-based transfer learning method
to share the trained model parameters with the new target domain. Use all data set records of the
C++ course as test sets. The classification results of the final examination scores of the C++ language
programming course are used as labels to verify the classification results of the neural network.
The two courses we had chosen are those that use the same online judge system for programming
exercises, so the characteristics of the two courses remain unchanged. AUC and accuracy are still used
for evaluation.

Considering that our teaching method is a combination of online judge system and offline teaching,
we have designed comparative experiments of different classes to verify whether different teaching
methods will affect the identification of models. We used SCFH model to classify students of three
different majors in C language course, including mechanical major, material major and biology major.
The three majors are all non-computer majors and adopt the learning method of combining online
judge system with offline courses, using the same learning materials. Different majors have different
teachers, and each teacher has different teaching methods and strategies. In order to eliminate the
influence of these external factors, we respectively extracted subsets of the three major students from
the big data set, and observed the classification effect of SCFH model on the three data sets through
experiments.

4. Results

4.1. Results of Factor Analysis

In the first research question, we used scree plot test to determine the number of retained factors.
The results of this analysis are shown in Figure 3. The curve in the figure shows that this is a
four-element structure. Then a factor pattern load matrix is obtained through calculation of the model,
and variables with factor loads greater than 1 are deleted. Table 4 shows the load matrix of the final
model factors and generates a model with 9 variables and 4 factors.

Symmetry 2020, 12, 601 8of 11

Parallel Analysis Scree Plots

o
2w o —¢ PC Aclual Dala
g PC Simulated Data
o —&— FA Actual Data
‘g FA Simulated Data
T ©
=
3
o
=
I
=
2
£ 7]
[=]
L&)
@
O
5]
=
5
= .
—
)
Z o 4 ﬁ‘“é:é_x“—x—x — W —x— X
) ““A*—A__&___ﬂ_ﬁ 7
=2 A
& T T T T T T
2 4 o] g 10 12

FactoriComponent MNumber

Figure 3. Scree Plots of Parallel Analysis.

Table 4. Factor pattern load matrix obtained from exploratory factor analysis.

PA1 PA4 PA2 PA3

true_submit 0.59 - - -
true_correct 0.61 - - -
true_total 0.57 - - -
easy_correct 0.9 - - -
submit - - - 0.83
correct - - - 0.75
total - - - 0.81
frequency - - - 0.85
difficult_correct - 1 - -
hint - - 096 -

According to Equation (2), we can define the variance of the original variable x; as follows:

Var (x;) =a?, Var (f,) + a} Var (f,) + - - - + a2, Var (f,,) + Var (¢;)
=a tap+e a0 5)

i=1,2-n
2y g2 =12 :
If hl T =1 al’]'/ 1= 1/ 2/ N, then:

Var (x;) =h? +02,i=1,2,-- ,n (6)
where, h? is constituted by the sum of squares of the factor loads of the original variable x;, which
represents the ratio of the variance of the common factor F to the original variable x;. We call h? the
common degree of the original variable x;, which reflects the influence of the common factor F on the
total difference of the original variable x;. ¢ can be called the special degree or residual variance of
the original variable x;, which reflects the difference part of the original variable x; not considered by
the common factor F. As the common degree h? approaches 1, this means that the common factor F
can account for almost all the differences in the original variable x;.

Symmetry 2020, 12, 601 9of 11

Therefore, it can be seen from Table 4 that the four variables: easy_correct, frequency,
difficult_correct, hint are the common factors of each group of factors, and these four features can
explain the original twelve features. So we got a participation model extracted from the submission
log data of online judge system. We described it as SCFH, and the model consists of four factors:
the number of simple items that students correctly solve (Simple), the number of complex items
that students correctly solve (Complex), the frequency of students accessing online judge system
(Frequency) and the number of times that students ask for help (Hint). The model can be used as a
tool to measure students’ programming level in online judge system.

4.2. Verify the Effect of the Model

In order to verify the validity and invariance of the model, we used the deep neural network
to model. We used the four factors of SCFH model as the input features of deep neural network to
classify students. The results of the classification are compared with the results given by the final
examination results classification to study and verify the relationship between our variable structure
and academic performance. We have also extracted a subset of student data from the big data set for
mechanical, materials and biology majors, and verified the factor of lecture method on the student data
sets of three different majors to determine whether our model will be affected by the lecture method.
The final results are shown in Table 5. These data are obtained by classifying students in C language
programming courses and C++ language programming courses using SCFH model.

Table 5. Results obtained by SCFH classification.

AUC Accuracy

SCFH(C) 0.904 0.942
SCFH(C++) 0.763 0.837
SCFH(Mechanics) 0.886 0.948
SCFH(Materials) 0.901 0.912
SCFH(Biology) 0.888 0.918

The data in the table show that the AUC of SCFH model is higher than 90% in C language
programming course, which indicates that our model classification effect is very stable. When SCFH
model is used in C++ programming courses, the accuracy rate can still reach 84% and AUC exceeds
75%. This indicates that the classification ability of SCFH is still good and stable after transfer. By
comparing the results obtained on the subset of students majoring in mechanics, materials and biology,
it is found that the SCFH model effect is very close on the student data sets of three different majors,
which indicates that different lecture methods will not have significant influence on the students’
programming ability. In the mode of combination of online judge system and offline teaching, students’
programming level depends more on their actual programming experience. These results mean that
SCFH model can be used as a general model to classify and evaluate students” programming level in
online judge system.

5. Conclusions and Future Work

Through factor analysis, we have found a potential variable structure, which can be used as a
classification evaluation model of students’ programming level in online judge system. The model
includes 4 factors and 9 features. According to the factor load, a model SCFH is extracted to judge
the students’” programming level. The model consists of four factors: the number of simple items
that students correctly solve (Simple), the number of complex items that students correctly solve
(Complex), the frequency (Frequency) that students visit online judge system and the number of times
that students ask for help (Hint).

Then the SCFH model is modeled by a deep neural network to classify the students in the existing
courses. The experimental results show that the student evaluation results classified by the model are

Symmetry 2020, 12, 601 10 of 11

basically consistent with the results classified according to the final examination results. Through the
verification in another course, the results show that our model can be transformed between different
courses and can be used as a general model for students’ classification in online judge system.

Although our model can express the relationship between the submitted log data and academic
performance in online judge system, and classify the students” programming level. However, we hope
to explore more information that features in online judge system can represent. Therefore, our future
work will study how to make this potential variable result represent more information and explore the
relationship among more information.

When evaluating the validity and invariance of the model, we transferred the model, but only
the structure of the model was transferred to share the parameters of the model. Nowadays, transfer
learning has become an important branch of in-depth learning, and there are many methods of transfer
model. Our future work will also focus on how to use transfer learning to improve the effectiveness of
our model in different courses.

Author Contributions: The presented work is a result of the intellectual contribution of the whole team.
The author’s contributions are as follows: Data curation, S.Y., X.J. and S.F,; Formal analysis, S.Y.; Investigation,
S.Y.; Methodology, S.Y.; Project administration, B.X.; Validation, S.Y.; Writing—original draft, S.Y.; writing—review
and editing, B.X., X.J. and S.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under grant number
U1811261.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Revilla, M.A.; Manzoor, S.; Liu, R. Competitive learning in informatics: The uva online judge experience.
Olymp. Inform. 2008, 2, 131-148.

2. Yoshihashi, R.; Shimada, D.; Iyatomi, H. Feasibility study on evaluation of audience’s concentration in
the classroom with deep convolutional neural networks. In 2014 IEEE International Conference on Teaching,
Assessment and Learning for Engineering (TALE); IEEE: Piscataway, NJ, USA, 2014; pp. 288-292.

3. Baradwaj, B.K.; Pal, S. Mining educational data to analyze students’ performance. arXiv 2012,
arXiv:1201.3417.

4. Pal, AK; Pal, S. Analysis and mining of educational data for predicting the performance of students. Int. .
Electron. Comput. Eng. 2013, 4, 1560-1565.

5. Hext,].B,; Winings,]. An automatic grading scheme for simple programming exercises. Commun. ACM 1969,
12,272-275. [CrossRef]

6. Kurnia, A.; Lim, A.; Cheang, B. Online judge. Comput. Educ. 2001, 36, 299-315. [CrossRef]

7. Choy, M,; Nazir, U.; Poon, CK; Yu, Y.-T. Experiences in using an automated system for improving students’
learning of computer programming. In International Conference on Web-Based Learning; Springer: London, UK,
2005; pp.267-272.

8. Kaplan, A.M.; Haenlein, M. Higher education and the digital revolution: About moocs, spocs, social media,
and the cookie monster. Bus. Horiz. 2016, 59, 441-450. [CrossRef]

9. Yang, F; Li, EW. Study on student performance estimation, student progress analysis, and student potential
prediction based on data mining. Comput. Educ. 2018, 123, 97-108. [CrossRef]

10. Tabanao, E.S.; Rodrigo, M.M.T.; Jadud, M.C. Predicting at-risk novice java programmers through the
analysis of online protocols. In Proceedings of the Seventh International Workshop on Computing Education
Research, Providence, RI, USA, 8-9 August 2011; pp. 85-92.

11. Bergin, S.; Reilly, R. Programming: factors that influence success. In Proceedings of the 36th SIGCSE Technical
Symposium on Computer Science Education, St. Louis, MI, USA, 23-27 February 2005; pp. 411-415.

12. Capovilla, D.; Hubwieser, P.; Shah, P. Dics-index: Predicting student performance in computer science by
analyzing learning behaviors. In Proceedings of the 2016 International Conference on Learning and Teaching
in Computing and Engineering (LaTICE), Mumbai, India, 31 March-3 April 2016; pp. 136-140.

http://dx.doi.org/10.1145/362946.362981
http://dx.doi.org/10.1016/S0360-1315(01)00018-5
http://dx.doi.org/10.1016/j.bushor.2016.03.008
http://dx.doi.org/10.1016/j.compedu.2018.04.006

Symmetry 2020, 12, 601 11 of 11

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

Falkner, N.J.; Falkner, K.E. A fast measure for identifying at-risk students in computer science. In Proceedings
of the Ninth Annual International Conference on International Computing Education Research, New York,
NY, USA, 9-11 September 2012; pp. 55-62.

Yu, X,; Chen, W. Research on three-layer collaborative filtering recommendation for online judge.
In Proceedings of the 2016 Seventh International Green and Sustainable Computing Conference (IGSC),
Hangzhou, China, 7-9 November 2016; pp. 1-4.

Francisco, R.E.; Ambrosio, A.P. Mining an online judge system to support introductory computer
programming teaching. In EDM (Workshops); EDM Academy: Amsterdam, The Netherlands, 2015.

Verdd, E.; Verdd, M.].; Regueras, L.M.; de Castro,].P,; Garcia, R. A genetic fuzzy expert system for automatic
question classification in a competitive learning environment. Expert Syst. Appl. 2012, 39, 7471-7478.
[CrossRef]

Zhao, W.X,; Zhang, W.; He, Y.; Xie, X.; Wen, J.-R. Automatically learning topics and difficulty levels of
problems in online judge systems. ACM Trans. Inf. Syst. (TOIS) 2018, 36, 1-33. [CrossRef]

Toledo, R.Y.; Mota, Y.C. An e-learning collaborative filtering approach to suggest problems to solve in
programming online judges. Int.]. Distance Educ. Technol. (IJDET) 2014, 12, 51-65. [CrossRef]

Yera, R.; Martinez, L. A recommendation approach for programming online judges supported by data
preprocessing techniques. Appl. Intell. 2017, 47, 277-290. [CrossRef]

Norris, M.; Lecavalier, L. Evaluating the use of exploratory factor analysis in developmental disability
psychological research. |. Autism Dev. Disord. 2010, 40, 8-20. [CrossRef] [PubMed]

Field, A.; Miles, J.; Field, Z. Discovering Statistics Using R; Sage Publications: Thousand Oaks, CA, USA, 2012.
Revelle, W.R. Psych: Procedures for Personality and Psychological Research; Northwestern University: Evanston,
1L, USA, 2017.

® (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.eswa.2012.01.115
http://dx.doi.org/10.1145/3158670
http://dx.doi.org/10.4018/ijdet.2014040103
http://dx.doi.org/10.1007/s10489-016-0892-x
http://dx.doi.org/10.1007/s10803-009-0816-2
http://www.ncbi.nlm.nih.gov/pubmed/19609833
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Application of Online Judge System in Programming Education
	Programming Level Assessment
	Exploratory Factor Analysis

	Method
	Research Questions
	Data
	Factor Analysis
	Verify the Effect of the Model

	Results
	Results of Factor Analysis
	Verify the Effect of the Model

	Conclusions and Future Work
	References

