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Abstract: Change point detection is widely used in signal detection, industrial engineering, economy,
finance, biomedicine and many other fields. The widely used parametric methods require prior
knowledge of the noise signal distribution, which are seldom realistic. In practice, when the
distribution of noise is not known, it is desirable to design algorithms based on non-parametric
statistics, which, in the null case (no change point), are completely distribution free. To this end, we
propose to use two symmetric sliding windows to compute the Area Under the receiver operating
characteristic Curve (AUC) as a test statistic to measure the difference between the distribution
of two samples. In the stage of change point detection, a threshold is designed according to
hypothesis test which is based on the null distribution of the test statistics. This threshold is
used to detect the potential change points in the signal. To reduce the probability of false alarm
detection, a key parameter K is set to distinguish and delete the false alarms in potential change
points. Comparative studies showed that our proposed method outperforms the classical Relative
unconstrained Least-Squares Importance Fitting (RuLSIF) algorithm and is also better than the
Hawkins, Qiu, and Kang (HQK) algorithm when the noise follows non-normal distributions.

Keywords: AUC; Mann Whitney U statistic; change point detection; sliding window; Nonparametric
methods

1. Introduction

In a time series (or signal), a change point refers to a point which separates the whole signal into
two sub-series with different statistical properties. Thus the change point detection aims at identifying
whether the distribution or parameter of the process changes, and the point that causes this abrupt
change is the point that needs to be detected [1–3]. It is a significant and practical problem in some
modern fields, such as quality control [4], sensor signal analysis [5], Network attack detection [6],
tracking [7], and so on. In general, the change point detection algorithms assume that it follows one
probability distribution before the change point, and it starts to follow another distribution after the
change point.

Change point detection techniques can be classified as parametric or non-parametric methods.
In general, parametric methods are based on known distributions, whose likelihood function plays an
important role. There are a number of parametric methods for change point detection that have been
proposed. The most widely used are the Cumulative Sum control chart (CUSUM) type methods under
various distributions. Gan et al. [8] developed an optimal design of CUSUM control charts under the

Symmetry 2020, 12, 599; doi:10.3390/sym12040599 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-5093-8529
https://orcid.org/0000-0001-6203-6883
https://orcid.org/0000-0002-8751-7509
https://orcid.org/0000-0002-3031-7944
https://orcid.org/0000-0001-6516-0927
http://dx.doi.org/10.3390/sym12040599
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/4/599?type=check_update&version=2


Symmetry 2020, 12, 599 2 of 17

binomial distribution. Jiang et al. [9] proposed a class of weighted CUSUM chart to efficiently detect
changes in the incidence rate under Poisson distribution. For an online setting, when the Average
Run Length (ARL) is fixed, the minimum value of a CUSUM method’s random variable is lower than
the corresponding Sherwert-type method, because the parameters change continuously from small
to medium. Steiner et al. [10] used Normal distributions to monitor processes with highly censored
data. Noura et al. [11] estimated the proportional risk model whether includes a change point using a
Weibull distribution.

Despite the advantages of parametric methods, in practice, however, parametric information,
i.e., prior knowlege of the signal distribution are often unavailable. In such cases, it is more practical
and flexible to employ nonparametric methods. Many nonparametric methods have been considered
in the literature for change point detection. Gijbels et al. [12] used a bootstrap method for selecting
bandwidth parameters in a nonparametric two-step estimation method. This method produces a
completely data-driven process in the regression function. Wang et al. [6] applied the non-parametric
CUSUM test for detecting the traditional flooding-based Denial of Service (DoS) attacks which is
essentially a change-point problem. This method makes the attack detection more robust , more
applicable, and easier to deploy. In terms of variance change points problems, Kyong et al. [13]
proposed a nonparametric and data-adaptive approach. In essence, the approach uses an artificial
neural network (ANN) to treat variance change point problem as a pattern classification problem, and it
includes the selection of training strategies and classification tools. For nonparametric change-point
estimation from indirect noisy observations, Goldenshluger et al [14] established some theoretical
results of estimating a peak from a short filtered data where the lengths are very short with two to five
observations. For the uncensored and censored linear model, Wang et al. [15] studied a nonparametric
change point statistical test based on the least absolute deviation.

In this paper, we propose a new algorithm for change point detection with mean shift. The basic
idea is to use two symmetric sliding windows to compute the Area Under the receiver operating
characteristic Curve (AUC) as the test statistic. The maximum or minimum values of this statistic are
further utilized to itendify the location of the change point(s). This test statistic of AUC is well known
to be equivalent to the Mann Whitney U statistic (MWUS). As early as 1970s, Pettitt [16] has employed
MWUS to the problem of change-point detection. Following Pettitt’s work, Hawkins and Deng [17]
combined MWUS with an exponentially weighted moving average (EWMA) chart as a nonparametric
and distribution-free tool to monitor the change in mean shift. Ross et al. [18], inspired by the method
of Hawkins and Deng [17], proposed another technique for detecting a change point in the location
and scale parameter of an arbitrary continuously distributed univariate data stream. Zou et al. [19]
proposed a non-parametric control chart with the EWMA procedure for profile monitoring combined
with local linear kernel smoothing. For similar work, the readers are referrd to [20,21].

The advantages of our approach over the above mentioned MWUS-based methods lie in the
following aspects:

(1) We do not need to know the exact distribution of the data. We only assume that the data follows
some indpendent and identically distributed (i.i.d.) continuous distribution. In other words, our
method is a completely distributed free method.

(2) The strategy of reducing false alarm change points can enhance the robustness of the algorithm.
(3) We design the optimal window size ratio and size, so as to optimize the algorithm.

To demonstrate its advantages, we compare our method with two state-of-the-art algorithms, i.e.,
the classical Hawkins, Qiu, and Kang (HQK) [22] algorithm and Relative unconstrained Least-Squares
Importance Fitting (RuLSIF) algorithm [23]. HQK method is essentially a likelihood ratio method,
which detects the mean shift of a sequence based on two normally distributed samples with the same
variance. In this method, the autoregressive model is adopted to fit, and the joint likelihood ratio is
calculated based on the sequence residuals in two adjacent time windows and their combined windows.
When the obtained statistics exceed a prescribed threshold, the boundary location of the window is
defined as the location of the change point. This method does not need to know any parameters, thus
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avoiding the assumption of known parameters. The RuLSIF method achieves change point detection
by directly estimating the probability density function ratio and using this ratio to calculate the mixed
divergence of the two distributions to obtain the difference between the two sample distributions. This
method overcomes the infinite problem caused by the unbounded limit of the probability density ratio
estimated by unconstrained Least-Squares Importance Fitting (uLSIF) method [24]. It guarantees the
boundedness of probability density ratio and has good robustness, but it has the disadvantage of high
computational cost.

The rest of the paper is organized as follows. Section 2 presents the data model of an unknown
number of change points with mean shifts. In Section 3, we introduce the change point detection
algorithm based on AUC statistics. We also prove that the statistics are optimal when the two windows
are symmetrical. We set the threshold which is related to window size to determine the potential
change point. To reduce the false alarm rate, a key parameter K is set to distinguish and reduce the false
alarm in potential change points. In addition, we establish the relationship between the window size
and test power and the magnitude of the mean shift. In Section 4, we define the evaluation criteria of
our algorithm and compare it to with the classical HQK algorithm and RuLSIF algorithm respectively
in single change point detection. Moreover, we also apply the method to multi change point detection
with a real data set. Finally, we draw our conclusion in Section 5.

2. Data Model of Abrupt Change with Mean Shift

In the change point detection framework, we consider a piecewise stationary and independent
identically distributed (i.i.d.) sequence S = {Si}T

i=1 with some change-points at some unknown
moment t∗j . Given that there are q change points (q is unknown), this stochastic process can be
defined by

Si = µ0 + ∆j

q

∑
j=1
I
(

i > t∗j
)
+ ei, i = 1,2,...T, j = 1,2,...q (1)

where µ0 is the mean value of S when it has no change points, j is the index of the change-points
and ∆j denote the mean shift from the change point time t∗j . Function I(·) is an indicator, if i is in
the set i > t∗j , then I(·) = 1, otherwise I(·) = 0. The symbol ei denotes the error term, which is an
independent stationary stochastic process. In the signal domain, the error term can also represent the
signal processing noise.

Assumption 1. The error sequence ei is i.i.d, with expectation and variance being E (ei) = 0 and Var (ei) = σ2,
respectively. It is also independent of the numbers and the location of change points, as well as the mean shift.

Assumption 2. The two window lengths m and n satisfy the constraint of min
(

t∗j+1 − t∗j
)
> m + n >

0, j = 0,1,2, · · · , q.

3. AUC Statistics for Change Point with Abrupt Mean Shift

In this section, we use AUC as the statistic to detect the change point. Specifically, the change
point detection algorithm can be divided into two stages. In the first stage, the sample data is processed
by two sliding windows. The statistic is indirectly obtained by calculating the data sequence in the
windows according to the definition of AUC. It can be proved that our algorithm is optimal when the
two adjacent windows have the same size. In the second stage for change point analysis, the method
of hypothesis testing is used to set a threshold to determine the potential change point. To reduce false
alarms, parameter K is used to remove the false alarm interval.
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3.1. AUC Statistics from Symmetric Sliding Windows

We consider the data model in Equation (1) with Assumptions 1 and 2. The two-sided two-sample
MWUS is used for change point detection. Let X = {Si}k

i=k−m and Y =
{

Sj
}k+n

j=k+1 are derived from a
continuous i.i.d. samples ST . The statistic for potential change points can be expressed as follows:

θ̂k =
1

mn

k

∑
i=k−m+1

k+n

∑
j=k+1

I
(
Si > Sj

)
(2)

where I (·) is the indicator function defined in (1), and T − n > k > m. As pointed out by
Hanley et al. [25], θ̂k is equal to AUC that represents the probability of X > Y. This equivalence
relationship enables us to call the change point statistics as AUC. In the following, we simply write θ̂k
as θ̂ for notational convenience.

Assume that the positive samples X and negative samples Y have two different distributions,
denoted by FX and FY, respectively. The test statistic defined in (2) is actually a measure of the
difference between FX and FY. Figure 1 below illustrates such property of the test statistic. Assume
that the first half of the data are negative samples and the second half are positive samples. As shown
in the first column of Figure 1, if there is no mean shift in the data, the corresponding test statistic
is θ̂ = P(X > Y) = 0.5, which means FX = FY, i.e., this data exist only one distribution. However,
if FX 6= FY, which means that the data has two different distributions, the test statistic will significantly
deviates from 0.5. As shown in the second column of Figure 1, when the test statistics are significantly
greater than 0.5, it represents the data has an upward mean shift. On the other hand, as shown in the
third column of Figure 1, when the test statistic is significantly less than 0.5, it means that the data has
a downward mean shift.
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Figure 1: Comparison of ROC curve for n = 100, ε = 0 and ε = 0.06. From
top to bottom, three columns corresponde to a different ρ ∈ {0.0, 0.5, 0.9},
respectively; whereas from left to right, two rows correspond to ε = 0 (normal
cases) and ε = 0.06.

1

Figure 1. Probabilistic meaning of the test statistic. From left to right, the first column is the data
without mean shift and its corresponding θ̂ = 0.5012; the second column is the data with upward mean
shift and its corresponding θ̂ = 0.8792; the third column is the data with the downward mean shift and
its corresponding θ̂ = 0.0384.

In order to detect the change point(s) from a data sequence ST , we designed two sliding windows,
namely, the positive window X (right) of size m, and negative window Y (left) of size n. That is,
X = {Si}k

i=k−m+1 and Y = {Si}k+n
i=k+1. For each pair of the windows, we can calculate a statistic based

on (2). By gradually sliding the two windows along the data, we will obtain a sequence of test statistics.
From Lemma 1, we know that when FX = FY, i.e., there is no mean shift, the expectation of θ̂ is
E
(
θ̂
)
= 0.5. As shown in Figure 2, the test statistic θ̂ fluctuates around 0.5 before the change point at τ

entering in the two sliding windows X and Y. However, when the change point begins to enter the
positive slide window X, θ̂ begins to increase. When the change point enters the negative slide window
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Y, θ̂ begins to decrease. And θ̂ returns to around 0.5 when the change point leaves the two sliding
windows. The resultant sequence of θ̂ thus contains the location information of the change point(s).
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Figure 2. Two continuous sliding windows slide to calculate the test statistics one data point by one
data point to obtain a continuous test sequence.

In the above procedure of calculating θ̂, two problems need to be addressed. The first one is: when
the length sum m + n is fixed, under what relationship of m and n will the variance of θ̂ is minimized.
The second problem is: how to select the suitable window sizes. We will address the two problems in
Theorem 1 below and in Section 3.3, respectively.

Lemma 1. [26] Let X = {Xi}m
i=1 and Y =

{
Yj
}n

j=1 be two i.i.d. samples drawn from two unknown continuous
distributions with cumulative distribution functions (cdf) FX(x) and FY(y), respectively. Then the mean and
variance of θ̂ in Equation (2) are:

E(θ̂) , θ = Pr(Y < X) =
∫ +∞

−∞
FY(y)dFX(x) (3)

V(θ̂) = 1
mn
{Q0 + (n− 1)(Q1 − θ2) + (m− 1)[Q2 − (1− θ)2]} (4)

where

Q0 = θ (1− θ) (5)

Q1 = Pr(Y < X ∩Y′ < X) =
∫ +∞

−∞
F2

Y(y)dFX(x) (6)

Q2 = Pr(X < Y ∩ X′ < Y) =
∫ +∞

−∞
F2

X(x)dFY(y) (7)

with X′ and Y′ being the i.i.d copies of X and Y, respectively. Moreover, in the case of null hypothesis, that is,
FX(·) = FY(·), the expectation and variance of θ̂ satisfy, respectively,

E(θ̂) = 1
2

(8)

V(θ̂) = m + n + 1
12mn

(9)

Theorem 1. Assume that the two adjacent sliding windows contain two i.i.d. data X = {Xi}m
i=1 and

Y =
{

Yj
}n

j=1, with continuous cdfs FX(x) and FY(y), respectively. Assume further that FX(x) and FY(y) are
symmetric. Let N = m + n be a fixed integer. Define the segmentation factor as λ = m/N. If there is a mean
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shift ∆ between X and Y, i.e., FY(x) = FX(x + ∆), then we have

(i)
∫ +∞
−∞ F2

Y(x)dFX(x) =
∫ +∞
−∞ (1− FX(x))2dFY(x)

(ii) For all of the ∆, the variance of θ̂ based on X and Y reaches its minimum when m = n.

Proof.

(i). Denote by fx and fy the probability density functions (pdfs) of X and Y, respectively. Since
FY(x) = FX(x + ∆), it follows that fx(x + ∆) = fy(x), which is equivalent to fx(x) = fy(−x − ∆).
Therefore FY(x) = FX(x + ∆) is equivalent to FY(x) = 1− FX(−∆− x). Hence,

∫ +∞

−∞
F2

Y (x) dFX (x) =
∫ +∞

−∞
F2

Y fx (x) dx

=
∫ +∞

−∞
F2

Y (x) fy (−x− ∆) dx

=
∫ +∞

−∞
(1− FX (−x− ∆))2 fy (−x− ∆) dx

=
∫ +∞

−∞
(1− FX (x))2dFY (x)

(10)

(ii). Given the assumption that N = m + n is fixed, it follows from (4) that

V(θ̂) = 1
mn
{Q0 + (n− 1)(Q1 − θ2) + (m− 1)[Q2 − (1− θ2)]}

=
1

mn
{θ − θ2 − (n− 1)θ2 − (m− 1)(1− θ)2 + (n− 1)Q1 + (m− 1)Q2}

=
1

mn
{θ − (m + n− 1)θ2 + (m− 1)(2θ − 1 + Q2) + (n− 1)Q1}

(11)

which, along with the result of the above equation, leads to

2θ − 1 + Q2 = −1 + 2
∫ +∞

−∞
FY(y)dFX(x) +

∫ +∞

−∞
F2

X(x)dFY(y)

= −1 + 2(1−
∫ +∞

−∞
FX(x)dFY(y)) +

∫ +∞

−∞
F2

X(x)dFY(y)

=
∫ +∞

−∞
(1− FX(x))2dFY(y)

= Q1.

(12)

Therefore, we have

V(θ̂) = 1
mn
{θ − (m + n− 1)θ2 + (m− 1)(2θ − 1 + Q2) + (n− 1)Q1}

=
1

mn
{θ − (m + n− 1)θ2 + (m− 1)Q1 + (n− 1)Q1}

=
1

λ(1− λ)
{θ − (N − 1)θ2 + (N − 2)Q1}

(13)

which shows that the variance of θ depends only on the length segmentation factor λ. It thus follows
readily that V(θ̂) is minimized when λ = 0.5, or equivalently, m = n.

3.2. Change Point Detection with AUC Statistics

In this section, we use hypothesis testing method to determine whether there is any change point
in the signal. We also develop a search strategy to identify the location of the change point. The
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objective of the search strategy is to reduce the false alarm rate. Before going through the detailed
steps, we introduce Theorem 2 as follows.

Theorem 2. [27] Let X = {Xi}m
i=1 and Y =

{
Yj
}n

j=1 be i.i.d. random variables having continuous cdfs
FX(x) and FY(y), respectively. Assume that m 6 n, and m/n → λ when m, n → ∞ . Then under the null
hypothesis, i.e., FX(·) = FY(·), the test statistic in Equation (2) follows approximately a Normal distribution
N
(

1
2 , m+n+1

12mn

)
.

From Lemma 1, we know that when the null hypothesis holds true, the expectation and variance
of the θ̂ equal E

(
θ̂
)
= 0.5 and V

(
θ̂
)
= (m + n + 1) /12mn, respectively. Theorem 2 actually means that

when m, n→ ∞ , W = 1√
V(θ̂)

(
θ̂ − 0.5

)
converges in distribution to the standard Normal distribution,

namely:

W =
1√

V
(
θ̂
) (θ̂ − 0.5

) d−→ N (0,1) (14)

Note that, to satisfy the requirements of the Theorem 2, literature [28] points out that the sample
sizes must be large enough. Sepcifically, max(m, n) > 30 and m + n > 40.

After selecting the suitable window sizes m and n statisfying the requirements in Theorem 2, we
can move the two sliding windows forward one data point at a time and calculate the two-sample
test statistics. For each window pair, if the test statistic is higher than the threshold determined by a
particular significance level, it is considered as a potential change point. Otherwise, the data point
is not considered a change point. Mathematically, given the significance level α, the test statistics for
potential change points satisfy:

|W| > z1− α
2

(15)

where z1− α
2

is the percentile 1− α/2 of standard Normal distribution. When the length of two windows
is selected to be m = n = L0, the range of potential change-points can be defined as

θ̂ =

{
θ̂ : θ̂ > 0.5 + z1− α

2

√
1

6L0

∣∣∣∣∣θ̂ < 0.5− z1− α
2

√
1

6L0

}
(16)

We define two decision threshold as thr1 and thr2 from Equation (16). It is obvious that thr2 =

1− thr1. As shown in Figure 3, the upper and lower thresholds are set for the value of θ to determine

whether any potential change point occurs. From the formula thr1 = 0.5 + z1− α
2

√
1

6L0
, we can see that

it is related to the significance level and window length. Generally, significance level is set as α = 0.05.
After the significance level is fixed, the threshold value decreases with the increase of the window size.
We discuss the problem of window size in Section 3.3.
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Figure 3. Thresholds are determined via the confidence level of the null hypothesis distribution.

After determining the decision thresholds, we need the necessary search strategy to determine
the location of change point. If the change point is located at the local extrema value of θ̂ in the data
points that continuously exceeds the threshold, it may lead to false alarms. To reduce the chance of
false alarm, we define a range parameter K. As shown in Figure 4, if the number of θ̂ exceeding the
threshold is less than K, the point corresponding to the local maximum of θ̂ is not considered as a
change point. On the other hand, if the number of θ̂ exceeding the threshold is larger than K, the point
corresponding to the local maximum of θ̂ is considered as a change point. As for the selection of K, we
will discuss it in Section 3.3. After reducing the false alarm rate, the direction of the change point is
determined as follows. If the ultimate extreme value obtained is a local maximum, the data changes
upwards; If the ultimate extreme value obtained is a local minimum, the data changes downwards.
For example, we define the local maximum of θ to be:

max θl
n = max

{
θj : θj > thr1, j = n, n + 1 · · · n + l − 1, l > K

}
(17)

The location of the change point is thus:

τ = arg max
n6τ6n+l−1

θl
n , l > K (18)

In a parallel manner, we can also define the location of change points whose directions
are downward.

Number of points>KNumber of points<K

thr1

Figure 4. Demonstration of data points that continuously exceed the threshold value of K.
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3.3. The Window Size and K

Theorem 3. Assume that the two adjacent sliding windows contain two i.i.d. data X = {Xi}m
i=1 and

Y =
{

Yj
}n

j=1, with continuous cdfs FX(x) and FY(y), and pdfs fX(x) and fY(y), respectively. Let N = m + n
be fixed. Define the segmentation factor as λ = m/N . If there is a mean shift ∆ between X and Y, that is,
FY(x) = FX(x + ∆), the power of test against ∆ = 0 is approximately

β = 1−Φ

(
zα −

∆

τ

√
λ (1− λ) N

)
(19)

at level α. Moreover, if the power β has been determined, the sample size required for the test can be estimated as

N =

(
zα − zβ

)2

∆2λ (1− λ)
τ2 (20)

where τ =
(√

12
∫

f 2
X (x)dx

)−1
.

Theorem 3 shows that when α, β and segmentation factor λ are prescribed, the size of the window
is related to the mean shift and the distribution under the null hypothesis. That is, as long as the null
distribution and the mean shift are determined, the required sample size can be obtained. For example,
the null distribution is the standard Normal distribution. When it has a mean shift ∆ = 1.0 , then
τ =

√
π
3 . In this case, if α = 0.05 , β = 0.95, and the two windows are symmetric with λ = 0.5, the

corresponding sliding window size is at least m = n = 22. If only the mean shift is changed to ∆ = 0.5
while other conditions remain unchanged, the sliding window size is at least m = n = 88. It should be
noted that this theorem has been proved by Lehmann. See [29] for the detailed argument. In addition,
when the distribution of null hypothesis is unknown, the sample sizes dependon on τ, which can be
estimated by the technique in [30].

According to Equation (19), the test power is affected by both the window sizes and mean shift.
We use Monte Carlo method to simulate the stand Normal distribution for 1000 times, so as to observe
the influence of window sizes on the accuracy of change point detection under different mean shifts.
In this simulation study, the data sequence contains T = 1000 data points, and the change point is
at the location of t∗ = 500. As shown in Figure 5, in the case of a single change point, the accuracy
of detection increases with the increase of window sizes within a certain range. Furthermore, when
the window size is fixed, it is observed in Figure 5 that, the smaller the shift ∆ is, the more likely the
data is to be interfered by noise, and the more difficult the change point is to be detected. On the
other hand, the larger the shift is, the higher the accuracy of the algorithm is. When the shift increases
to a certain value, the accuracy of the alogrithm tends to 100%. However, in the case of multiple
change points detection, the size of the sliding windows cannot be too large. When the size of the
windows is larger than the interval between two neighboring change points, the detection results will
become unacceptable. Therefore, care should be taken when selecting the size of the sliding windows
in practice.
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Figure 5. The effect of window size on the performance of the proposed algorithm.

Another problem is the choice of K. Cunen et al. [31] proposed some methods for the confidence
interval distribution of change points. Inspired by this method, we take into account he interval length
distribution of test statistics beyond the set threshold when selecting the magnitude of K. We define θ0,j
and θ1,j as the obtained test sequences in the cases of change-point absence and change-point presence,
respectively. In the former case (null case), the longest interval beyond the threshold is defined as
Kmax

0 ; while in the latter case (there is an upward mean shift), the interval where the truce change point
t∗ locates is defined K∗1 . They are expressed respectively as:

Kmax
0 = max

{
l : θl

0,n > thr1∪ θl
0,n < 1− thr1, θl

0,n = θ0,j , j = n, n + 1, · · · n + l − 1
}

(21)

K∗1 =
{

l : t∗ ∈ [n, n + l − 1] ∩ θl
1,n > thr1, θl

1,n = θ1,j , j = n, n + 1, · · · n + l − 1
}

(22)

Figure 6 illustrates the idea of how to choose a suitable K for Normal distribution, Log-normal
distribution and Cauchy distribution. The window size is set to be m = n = 50, and the mean shifts
are set to be 0.75, 1.0, 2.0, respectively. From the distributions of Kmax

0 and K∗1 shown in Figure 6, it is
observed that, (1) when shi f t = 0.75, the optimal K corresponding to the Normal and Log-normal
distribution is within [20, 25], while the selection of K for the Cauchy distribution is meaningless;
(2) when shi f t = 1.0, the optimal K corresponding to the Normal and Log-normal distribution is
within [30, 35], while the selection of K for the Cauchy distribution is [25, 30]; (3) when shi f t = 2.0,
the optimal K corresponding to the Normal and Log-normal distribution is within [40, 45], while the
selection of K for the Cauchy distribution is [25, 30]; (4) if the value of the shift continues to increase,
the optimal K of the three distributions will be all stable at 50. Based on the above observations, we
suggest that the selection interval of K is [15, 50] when the symmetrical window size is 50.
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Figure 6. The distribution of the maximum value of K under the null hypothesis (red) and the
distribution of the interval length of the true change point (blue).

4. Comparative Studies and Analysis

In this section, we evaluate the performance of our algorithm under various scenarios based on
the MATLAB platform. We first compare our method with the classical algorithms by Monte Carlo
simulations with respect to three distributions in the scenario of single change point detection. We also
apply our method to the case of multiple change points detection based on artificial and real data sets.

4.1. Comparative Results for Single Change Point Detection

In order to evaluate performance, we employ the index of accuracy as a figure of merit. Specifically,
if the detected change point is sufficiently close to a real change point, i.e., t̂∗ ∈ [t∗ − 20, t∗ + 20], where
t∗ is the true location of change point, the point at t̂∗ is considered to be a correct detection. According
to the above rule, the accuracy is computed by

Ncorrect =
w

∑
i=1
I{|t̂∗i − t∗i | ≤ 20} (23)

accuracy =
Ncorrect

w
(24)

where w is the number of trials, and Ncorrect is the number of correct detections.
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In the following simulation studies, the data length T in Equation (1) is set to be T =

1000. The abrupt change location is set at t∗ = 500, the mean shifts at t∗ = 500 are ∆ =

[0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00], respectively. The sliding window size was set to be m = n =

50. We use a constant signal with µ0 = 0 and corrupt it with three types of i.i.d. noise. The models of
noise are:

• Model 1 : Normal distribution

e(t) ∼ N (0, 1) , 1 ≤ t ≤ T

• Model 2 : Log normal distribution

log(e(t)) ∼ N (0, 1) , 1 ≤ t ≤ T

• Model 3 : Standard Cauchy distribution

e(t) ∼ C(1, 0) , 1 ≤ t ≤ T

Given the above conditions, the data used in single change point detection can thus be expressed as

S(t) = ∆ ∗ I(500 6 t 6 1000) + e(t), t = 1, 2, ..., 1000 (25)

Figure 7 shows the comparative results of our method with HQK [22] and RuLSIF [23], where
the number of trials w = 1000. It is observed that, (1) under Model 1, i.e., the noise is Normal, our
method performs only sightly worst than HQK and RuLSIF (Figure 7a,b); (2) under Model 2, i.e., the
noise is Log-normal, our method outperforms HQK outperforms RuLSIF, especially for ∆ < 0.75
(Figure 7c,d); (3) under Model 3, i.e., the noise is Cauchy, the performance of our method is much
better than HQK and RuLSIF, manifesting the robustness of our method against noise with strong
spiky patterns (Figure 7e,f). For the detailed detection accuracis, see Table A1.
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Figure 7. Comparative results with respect to noises with (a) Normal distribution, (c) Log normal
distribution, and (e) Cauchy distribution. (b) Accuracy under Normal distribution.(d) Accuracy under
Log normal distribution. (f) Accuracy under Cauchy distribution.

4.2. Multiple Change Points Detection

Besides the ability of detecting single change point, our method is also capable of detecting
multiple change points. Similar to the previous settings, we also use a sequence with 1000 data points.
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The locations of the change points are t∗1 = 200, t∗2 = 400, t∗3 = 600, t∗4 = 800, with corresponding
mean shifts being [∆1, ∆2, ∆3, ∆4] = [−1,1,1,− 1]. The window size is m = n = 50. The maximum of
20 or more data points that continuously exceed the threshold (K = 20) is considered as the location
estimates of the change points. The detection results with respect to Model 1 to Model 3 are depicted
in Figures 8–10, respectively.

Figure 8 depicts the detection precedure under Model 1, where the noise follows the Normal
distribution. The top panel shows the data with red lines indicating the real locations of the change
points. In the middle panel are the local extrema without the process of false alarm rejection. It can
be seen that 10 change points are detected, 6 of which are false alarms. The bottom panel shows
finally detected change points after the false-alarm rejection procedure. The final detected change
points are located at 199, 400, 599, 800, respectively, very close to the corresponding true locations at
t∗1 = 200, t∗2 = 400, t∗3 = 600, t∗4 = 800. Figure 9 depicts the detection precedure under Model 2, where
the noise follows the Log normal distribution. Similar to that in Figure 8, The final detected change
points are located at 200, 400, 602, 805, respectively, very close to the corresponding true locations at
t∗1 = 200, t∗2 = 400, t∗3 = 600, t∗4 = 800. Figure 10 depicts the detection precedure under Model 3,
where the noise follows the Cauchy distribution. The final detected change points are located at
200, 398, 599, 799, respectively, very close to the corresponding true locations at t∗1 = 200, t∗2 = 400,
t∗3 = 600, t∗4 = 800.

The detection results in Figures 8–10, respectively, verify the ability of our method in detecting
multiple change points when the noise follows various distributions.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1,000
−10

−5

0

5

10

V
a
lu
e

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1,000
0

0.2
0.4
0.6
0.8
1

A
U
C

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1,000
0

0.2
0.4
0.6
0.8
1

sample size

A
U
C

Figure 8. (Top) : Data with Normal distribution. The red lines are located at the positions of four real
change points; (Middle): test statistics with decision thresholds, and the dotted red lines correspond the
local extrema without false alarm reduction; (Bottom): the dotted red lines indicate the final detected
locations for the change points.
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Figure 9. (Top) : Data with Log normal distribution. TThe red lines are located at the positions of
four real change points; (Middle): test statistics with decision thresholds, and the dotted red lines
correspond the local extrema without false alarm reduction; (Bottom): the dotted red lines indicate the
final detected locations for the change points.
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Figure 10. (Top) : Data with Cauchy distribution. The red lines are located at the positions of four real
change points; (Middle):test statistics with decision thresholds, and the dotted red lines correspond the
local extrema without false alarm reduction; (Bottom): the dotted red lines indicate the final detected
locations for the change points.

4.3. An Application to Real Data Set

To gain further insight of our method, we apply it to detecting multiple change points based on a
real genetric data set [32] (http://microarrays.curie.fr/publications/oncologie_moleculaire/bladder_
TCM/). It is a sample of 57 patients with bladder cancer and contains the log2ratio, GNL status
(Gain/−1, normal/0 or loss/1) and outlier status of all 2385 BAC clones. It should be noted that these
data are the result of normalization of the original data on a logarithmic scale.

We need to process the missing values in the data set before applying our method. Following the
work in [33], we remove all sequences with missing values greater than 7%. After screening, we retain
the genetic data of 41 samples and set the missing value of these samples to zero. We randomly select
the 40th sample as an example in this study.

Figure 11 (K = 30) shows the procedure as well as the results of our algorithm: (a) the
pre-processed genetic data; (b) demo of the sliding windows (m = n = 50); (c) the test statistics
and decision thresholds; (d) the detected local extrema with false alarms; (e) the final change points
obtained after false alarm rejection; and (f) the the original data marked with the location of the
detected change points. As can be seen, our method detects 16 change points, among which nine

http://microarrays.curie.fr/publications/oncologie_moleculaire/bladder_TCM/
http://microarrays.curie.fr/publications/oncologie_moleculaire/bladder_TCM/
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mutate upward and seven mutate downward. These 16 change points are not missing, but there are
two change points that are false alarms and are not technically change points. They are located near
800 and 1600 respectively.
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Figure 11. The procedure of change point detecion on real genetic data. (a) The pre-processed genetic
data. (b) Demo of the sliding windows with m = n = 50. (c) The test sequence and decision thresholds.
(d) Detected change points with false alarms. (e) Final change points after false alarm rejection.
(f) Original data marked with the locations of the finally detected change points.

5. Conclusions

In this paper, we propose an AUC-based algorithm for the detection of change point(s) with
mean shift. Theoretical derivations and numerical results showed that our method has the following
advantages, including (1) it is a non-parametric method possessing the distribution free property, (2) it
performs comparably well with two state-of-the-art methods when the noise is Normal, (3) it performs
better than the other two methods when the noise is impulsive (Log-normal and Cauchy distributions),
(4) it can be applied to detecting of multiple change points, and (5) it is capable of detecting the
direction of mean shift. Having the above advantages, the proposed method can play a complementary
role to other methods in the literature, especially when the noise distribution, deviating significantly
from Normal, exhibits an impulsive manner (such as Cauchy noise).
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Abbreviations

The following abbreviations are used in this manuscript:

ROC Receiver Operating Characteristic
AUC Area Under the receiver operating characteristic Curve
MWUS Mann Whitney U statistic
HQK Hawkins, Qiu, and Kang
DoS Denial of Service
RuLSIF Relative unconstrained Least-Squares Importance Fitting
ARL Average Run Length
ANN Artificial Neural Network
EWMA Exponentially Weighted Moving Average
CUSUM Cumulative Sum Control Chart
i.i.d. independent and identically distributed
cdf cumulative distribution functions

Appendix A. Data of Figure 7

Table A1. Experiment Performance.

Shift (∆)
Normal Distribution Log Normal Distribution Cauchy Distribution

AUC RuLSIF HQK AUC RuLSIF HQk AUC RuLSIF HQK

0 0.047 0.0 0.014 0.052 0.0 0.015 0.058 0.0 0.006
0.25 0.188 0.0 0.391 0.244 0.0 0.123 0.077 0.0 0.009
0.5 0.496 0.0 0.808 0.605 0.0 0.366 0.180 0.0 0.012

0.75 0.778 1 0.939 0.867 0.0 0.604 0.380 0.0 0.012
1 0.954 1 0.988 0.946 0.0 0.772 0.561 0.0 0.018

1.25 0.989 1 0.998 0.972 1 0.882 0.724 0.0 0.027
1.50 0.998 1 1 0.986 1 0.928 0.839 0.0 0.050
1.75 1 1 1 0.995 1 0.964 0.901 0.0 0.040
2.00 1 1 1 0.999 1 0.965 0.932 0.0 0.057
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