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Abstract: A problem with the thermogravitational energy transference of a hybrid nanofluid
(Al2O3-SiO2/H2O) in a porous space with a central heat-conducting body has been presented
and numerical analysis has been performed. Governing equations, transformed in terms of
non-dimensional parameters, have been solved by a developed numerical algorithm based on
the finite difference technique. The behavior of streamlines and isotherms was investigated, and
the impact of various important characteristics is discussed. The variation in the average and local
Nusselt numbers was studied; by selecting various appropriate nano-sized particle combinations in
hybrid nanosuspension, the desired energy transport strength could be obtained. The results were
compared and successfully validated with previous reported numerical and experimental data from
the literature.

Keywords: natural convection; hybrid nanofluid; porous medium; square cavity; cenral
heat-conducting body; numerical analysis

1. Introduction

Chambers and closed spaces can be found in various industrial systems and equipment, heat
exchangers, nuclear power, renewable energy units, etc. (Izadi et al. [1]). The low chemico-physical
characteristics of usual Newtonian liquids demand that researchers develop new cooling liquids. As a
result of solutions to the considered problem, the idea of suspending nano-sized metallic particles in
the water was proposed by Choi [2], who introduced the term “nanofluid” for the first time in 1995.
Since then, nanoliquids have provoked significant attention from scientists and engineers. The broad
range of current and future applications involving nanosuspensions can be viewed in the monographs
by Das et al. [3], Minkowicz et al. [4], Shenoy et al. [5], and Nield and Bejan [6]; and in the review
manuscripts by Ambreen and Kim [7], Hemmat Esfe et al. [8], Pandya et al. [9], Ahmadi et al. [10],
Pordanjani et al. [11], Mahian et al. [12,13], Keshteli and Sheikholeslami [14], Groşan et al. [15], Sajid
and Ali [16], etc.

Nowadays, many published papers are devoted to experimental or numerical analyses of heat
transfer processes within hybrid nanosuspensions that can be considered as a new kind of working
liquid including two or three solid materials [17–20]. The solid nano-sized particles employed for the
energy transport augmentation of working liquids are: Al2O3–Cu/water, Fe3O4–graphene, graphene,
Al2O3–SiO2, etc. In the last few years, such hybrid nanosuspensions have been employed in different
engineering and industrial applications, including heat exchangers, solar collectors, chemical reactors,
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heat sinks, air conditioning systems, and others. Comprehensive reviews of hybrid nanofluids
have been presented by Devi and Devi [21,22], Sarkar et al. [23], Akilu et al. [24], Sidik et al. [25],
Sundar et al. [26], Babu et al. [17], Hayat and Nadeem [27], Yousef et al. [28], Sajid and Ali [29],
Chamkha et al. [30], Izadi et al. [31,32], Suresh et al. [33,34], Soltani and Akbari [35], Leong et al. [36],
Waini et al. [37–39], and Aly and Pop [40].

Hayat and Nadeem [27] numerically studied 3D hybrid nanosuspension motion over a linearly
stretching surface under the effect of rotation, thermal radiation and internal heat generation/absorption.
The formulated boundary-layer equations were transformed to ordinary differential equations that
were solved numerically. It was found that the energy transport strength at the surface can be improved
by using the hybrid nanosuspension. Chamkha et al. [30] numerically investigated the transient natural
convection in a semicircular chamber with solid walls of finite thickness. Non-primitive variables with
cylindrical coordinates were employed for analysis. The developed finite difference code allowed
the analyzing of the impacts of many different parameters, including the Rayleigh number, heat
conductivity ratio, nanoadditives concentration, and time. It was revealed that the combination of
two kinds of nanoparticles can improve the energy transport strength. The influence of combined
magnetohydrodynamic and ferrohydrodynamic effects on hybrid nanosuspension motion in a porous
chamber with isothermal surfaces was investigated by Izadi et al. [32]. The Brinkman–Forchheimer
approach was employed for the description of nanosuspension transport within porous material.
The authors showed that a rise in the heat conductivity ratio leads to the intensification of heat
transference. An experimental analysis of the hybrid nanosuspension flow in a circular tube with
fixed thermal flux at the borders was conducted by Suresh et al. [34]. The authors defined correlations
for the average Nusselt number and liquid friction factor that illustrate a rise in these parameters
with the nanoadditives concentration and reduction with the Reynolds number. Ghalambaz et al. [41]
computationally scrutinized the thermal convective energy transport of a hybrid nanoliquid in a
square porous cavity with vertical solid walls of finite thickness under the influence of a local thermal
non-equilibrium approach to the transport processes within the porous material. The finite element
method was used for analysis. The authors ascertained that the addition of nano-sized particles of Ag
and MgO to water results in a reduction in the mean Nusselt number.

Nowadays, many papers are devoted to convective energy transport in hybrid nanoliquids in the
case of motion along the stretching/shrinking sheets under the influence of various factors [37–40].

The aim of the present analysis was to computationally investigate natural convection in
a porous closed space saturated with a hybrid nanosuspension under the effects of an internal
heat-conducting block and horizontal temperature difference. Considering the literature survey
performed, thermogravitational convection in a porous chamber with an internal solid body filled
with a hybrid nanofluid is analyzed for the first time in this manuscript. Moreover, here, non-primitive
variables were employed for the description of convective transport within a double-connected region.
Such an approach included a mathematical equation related to the definition of the stream function
value at the surface of the inner solid block. Therefore, the developed numerical technique for the
nanoliquid within a clear medium presented in [42] was generalized here for the case of the porous
medium and hybrid nanoliquid. In addition, a detailed analysis of the nanoadditives’ concentration
with the permeability of the porous material allows an opportunity to understand how to intensify the
convective transport within such a domain of interest.

2. Control Equations and Conditions

Free convection in a porous chamber filled with a hybrid nanoliquid with a bottom border
the size of L was scrutinized. Figure 1 demonstrates the proposed enclosure and some boundary
conditions. The considered region contained a porous medium. The bottom and upper borders were
thermally insulated, while the left boundary was hot (Th) and the right border was cold (T = Tc).
The thermal-conducting body was placed in the center of the region. The hybrid nanofluid included
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two kinds of solid nano-sized additives; their characteristics are demonstrated in Table 1. Heat
equilibrium between the liquid phase and nano-sized particles was assumed.
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Figure 1. Engineering sketch and mathematical conditions.

Table 1. The physicochemical characteristics of the host liquid, Al2O3 and SiO2 nano-sized particles,
solid matrix of porous material and central block material [30,41,43].

Physical
Properties

Host Fluid
(Water)

Al2O3 SiO2
Aluminum

(Solid Matrix)

Central Block Material

Glass Steel Copper

cp (J·kg−1
·K−1) 4179 765 703 880 750 460 380

ρ (kg·m−3) 997.1 3970 2200 2700 2600 7800 8960
λ (W·m−1

·K−1) 0.613 40 1.2 211 0.65 46 385
β × 10−5 (K−1) 21.0 0.85 6.0 – – – –

The Brinkman porous approach was used for the momentum transport inside the porous chamber.
The dimensional control equations can be written as [30,41]:

∂u
∂x

+
∂v
∂y

= 0 (1)

ρhn f

(
1
ε
∂u
∂t

+
u
ε2
∂u
∂x

+
v
ε2
∂u
∂y

)
= −

∂p
∂x

+
µhn f

ε

∂2u

∂x2 +
∂2u

∂y2

− µhn f

K
u (2)

ρhn f

(
1
ε
∂v
∂t

+
u
ε2
∂v
∂x

+
v
ε2
∂v
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∂p
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+
µhn f

ε

∂2v

∂x2 +
∂2v

∂y2

+ (ρβ)hn f g(T − Tc) −
µhn f

K
v (3)

η
∂T
∂t

+ u
∂T
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+ v
∂T
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=
λmhn f
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∂2T

∂x2 +
∂2T

∂y2

 (4)

In the case of the internal heat-conducting block, an additional heat conduction equation has been
included in the following form [42,43]

(ρc)b
∂T
∂t

= λb

∂2T

∂x2 +
∂2T

∂y2

 (5)

The nanosuspension chemical characteristics were [30–32]:

hybrid nanosuspension density, ρhn f = φAl2O3ρAl2O3 + φSiO2ρSiO2 +
(
1−φSiO2 −φAl2O3

)
ρ f
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hybrid nanofluid buoyancy coefficient

(ρβ)hn f = φAl2O3(ρβ)Al2O3
+ φSiO2(ρβ)SiO2

+
(
1−φSiO2 −φAl2O3

)
(ρβ) f

hybrid nanofluid heat capacitance

(ρc)hn f = φAl2O3(ρc)Al2O3
+ φSiO2(ρc)SiO2

+
(
1−φSiO2 −φAl2O3

)
(ρc) f

hybrid nanofluid thermal conductivity

λhn f
λ f

=
{
φAl2O3λAl2O3+φSiO2λSiO2

φAl2O3+φSiO2
+ 2λ f + 2

(
φAl2O3λAl2O3 + φSiO2λSiO2

)
− 2

(
φAl2O3 + φSiO2

)
λ f

}
×

×

{
φAl2O3λAl2O3+φSiO2λSiO2

φAl2O3+φSiO2
+ 2λ f −

(
φAl2O3λAl2O3 + φSiO2λSiO2

)
+

(
φAl2O3 + φSiO2

)
λ f

}−1

hybrid nanofluid viscosity

µhn f = µ f
(
1−φAl2O3 −φSiO2

)−2.5

porous medium thermal conductivity saturated with hybrid nanofluid

λmhn f = ελhn f + (1− ε)λs

and porous medium heat capacity ratio

η = ε+ (1− ε)
(ρc)s

(ρc)hn f

The written basic Equations (1)–(5) have been transformed into a dimensionless form using

x = x/L, y = y/L, u = u/
√

gβ(Th − Tc)L, v = v/
√

gβ(Th − Tc)L,
τ = t

√
gβ(Th − Tc)/L, θ = (T − Tc)/(Th − Tc)

(6)

stream function ψ (u = ∂ψ/∂y , v = −∂ψ/∂x ) and vorticity ω = ∂v
∂x −

∂u
∂y . As a result,

Equations (1)–(5) are
∂2ψ

∂x2 +
∂2ψ

∂y2 = −ω (7)

ε
∂ω
∂τ

+
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)
+ ε2H2(φ)

∂θ
∂x

(8)
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∂y
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√
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)
(9)

In the case of the internal heat-conducting solid body, we should add to the previous system of
equations the following non-dimensional heat conduction equation

∂θb
∂τ

=
H4
√

Ra·Pr

(
∂2θb

∂x2 +
∂2θb

∂y2

)
(10)
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Additional conditions are

τ = 0 : ψ = ω = θ = 0;

τ > 0 : ψ = 0, ∂ψ∂x = 0,ω = −
∂2ψ
∂x2 ,θ = 1atx = 0;

ψ = 0, ∂ψ∂x = 0,ω = −
∂2ψ
∂x2 ,θ = 0atx = 1;

ψ = 0, ∂ψ∂y = 0,ω = −
∂2ψ
∂y2 , ∂θ∂y = 0aty = 0andy = 1;

ψ = γ, ∂ψ∂n = 0,ω = −
∂2ψ
∂n2 ,

 θhn f = θb

λ
∂θhn f
∂n =

∂θb
∂n

atinternalsolid− nanofluidinterface.

(11)

Here λ = λmhnf/λb is the thermal conductivity ratio and H1(φ), H2(φ), H3(φ,ε), H4 are given by

H1(φ) =
µhn f
µ f

ρ f
ρhn f

= 1

(1−φAl2O3−φSiO2)
2.5
[1−φSiO2−φAl2O3+φAl2O3ρAl2O3 /ρ f +φSiO2ρSiO2 /ρ f ]

,
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(ρβ)hn f

(ρβ) f

ρ f
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,
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λmhn f
λb

=

ε
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λAl2O3
+φSiO2
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λSiO2
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+
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λ f

]
λ f
λb

H4 =
λb
λ f

(ρc) f

(ρc)b

An investigation of the energy transport strength can be performed using the local (Nu) and mean(
Nu

)
Nusselt numbers

Nu = −
ελhn f + (1− ε)λs

ελ f + (1− ε)λs

∂θ
∂y

∣∣∣∣∣
y=0

, Nu =

1∫
0

Nu dx (12)

3. Computational Technique and Validation

Equations (7)–(10) with additional relations (11) were calculated on the basis of the finite difference
technique [30,44,45]. Finite differences of the second order were used for the spatial derivatives and the
first order finite differences were used for the time derivatives. The convective terms were approximated
on the basis of the monotonic Samarskii scheme, while the diffusive terms were approximated using the
central differences. It should be noted that the difference Poisson equation for the stream function was
worked out by the successive over-relaxation method. The optimal value of the relaxation parameter
was defined by numerical experiments. The parabolic equations for vorticity and temperature were
solved using the local one-dimensional Samarskii scheme and the obtained system of one-dimensional
difference equations were solved by means of the Thomas algorithm. It should be noted that the
numerical analysis of convective heat transfer within a double-connected region was performed
employing non-primitive variables, and as a result, a special numerical algorithm has been developed
for the definition of the stream function value at the inner block surface. A detailed description of this
technique can be found in [42,46]. The described numerical approach was implemented using the C++

programming language.
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The developed numerical program was validated using the computational data of Das and
Reddy [47] and Garoosi and Rashidi [48] for free convection in a differentially heated chamber
with a centered heat-conducting body. Figures 2 and 3 show a good comparison for the isolines of
stream function and temperature between the obtained results and numerical data [47,48] for different
Rayleigh numbers.
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A grid sensitivity study was performed for free convection in a porous chamber filled with a
hybrid nanosuspension at Ra = 106, P = 6.82, Da = 10−3, ε = 0.8, φAl2O3 = φSiO2 = 0.01. Steel was
the material of the internal block, and the dimensionless size of the internal block δ = 0.5. Three
different grids of 100 × 100 points, 200 × 200 points, and 400 × 400 points were investigated. Figure 4
demonstrates the influence of the mesh characteristics on the time profiles of the mean Nusselt number
of the heated border.Symmetry 2019, 11, x FOR PEER REVIEW 7 of 13 
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As a result of this mesh analysis, the grid of 200 × 200 points has been selected for studying.

4. Results and Discussion

Numerical research was conducted on the Rayleigh number (Ra = 106), Prandtl number (Pr = 6.82),
Darcy number (Da = 10−4–10−1), porosity (ε = 0.8), nanoparticles’ volume fraction, and internal block
material (φAl2O3 +φSiO2 = φ1 +φ2 = 0.0− 0.04) (glass, steel, copper). The influence of these mentioned
parameters on the hybrid nanofluid circulation and energy transference within the enclosure was
tested. The isolines of ψ and θ and profiles of Nu and Nu were investigated in Figures 5–9.

Figure 5 demonstrates the isolines of ψ and θ within the chamber for various Darcy numbers and
nano-sized additives’ concentrations. For low Da numbers (Da = 10−4), a weak clockwise circulation
appeared inside the region, while the temperature field illustrated the dominant heat conduction. A rise
in Da resulted in a strengthening of liquid motion, causing a small distortion of isotherms. The latter
reflected an interaction between the hot liquid in the upper part with a cold right wall and the cold
liquid in the bottom part with a hot left border. A further increase in the porous medium’s permeability
caused a strengthening of the convective circulation and more essential distortion of the temperature
pattern, with a generation of boundary layers by the isothermal borders. It is worth highlighting that
for Da ≥ 10−2, the streamlines illustrated a formation of irregular circulation where one could find the
boundary layer separation near the surface of the internal block from the leeward side. The addition of
nano-sized particles reflected the appearance of some differences in the temperature field, while the
isolines of stream function had weak changes. The isotherms described a less strong cooling of the
lower zone and less intensive heating of the upper zone with nano-sized particles. It is important to
emphasize the temperature changes within the solid block when the nanoparticles’ volume fraction
was increased. In the considered case, nanoadditives were introduced for 2% of Al2O3 and 2% of SiO2.
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Da = 10−3, c shows Da = 10−2, d shows Da = 10−1.

Figure 6 represents Nu profiles dependent on the vertical coordinate for various Da numbers.
As has been mentioned above, a low Da (Da = 10−4) characterized a constant magnitude of Nu where
the heat convection was very low. For Da = 10−3, Nu diminished with the y-coordinate owing to
a reduction in the temperature gradient from the bottom border, where an interaction between the
cold liquid and hot wall occurred, to the upper one, where it was possible to reveal an enlargement
of the thermal boundary layer. For Da ≥ 10−2, Nu rose with y for a short zone (y < 0.2) and after
that Nu decreased. The small increase in Nu that occurred for y < 0.2 can be explained by a vertical
displacement of the interaction zone between the cold liquid and hot surface of the bottom part.
Moreover, a rise in the Darcy number (Da ≥ 10−2) did not cause any essential changes in the upper
part of the hot wall, while Nu increased in the bottom part with Da. The addition of nanoadditives
characterized a diminution of Nu in the lower zone and an increase in Nu in the top part for Da < 10−2.
For Da ≥ 10−2, Nu decreased with ϕ. Moreover, Nu increased with the growth in Da in the lower part
of the cavity and it decreased with Da in the upper part. This confirms that heat transport is enhanced
there due to the heated left border.
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Figure 7 represents the isolines of ψ and θ for different internal block materials: glass, steel, and
copper. The flow structure did not change with the internal block material. One can find only low
suppression of internal circulation for copper in comparison with steel and glass. The temperature
pattern depended on the solid block material. In the case of the glass solid block with low thermal
conductivity, the temperature within this block changed from 0.1 to 0.9, with essential heating in the top
left corner and significant cooling in the lower right corner. For the steel solid block, one could find that
the isotherms within the solid block had not some distortions due to the similar thermal conductivity.
Namely, the material of the porous medium solid matrix was aluminum and the nanosuspension
heat conductivity within the porous domain was similar to the thermal conductivity of the solid
block material. Therefore, isotherms in the case of steel did not have any distortions at the internal
block surface. In the case of the copper solid block, which had a high thermal conductivity, there was
significant heating/cooling of this central block.
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The behavior of average Nu with various Da, nanoadditives’ concentrations and internal solid
block materials is presented in Figure 8. The mean Nu increased with Da. For high considered Da (10−2),
a rise in the internal solid block material’s heat conductivity resulted in a reduction in the mean Nu.
Such behavior is explained by a stronger interaction between the cold nanosuspension and hot wall in
the bottom part. It should be noted also that with an increase in the solid block’s heat conductivity, the
transition for two zones of Da, namely, (10−3, 10−2) and (10−2, 10−1), became inconspicuous. A rise in
the concentration of nano-sized particles characterized a diminution of average Nu and this reduction
became great for high Da. Additionally, a rise in the nanoadditives’ concentration for low Darcy
numbers (10−4,10−3) of the considered internal solid block materials did not have a strong influence on
average Nu.
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Figure 9 demonstrates the influence of all the considered parameters on the mean Nu. A rise in
the solid block material’s thermal conductivity for Da < 0.005 resulted in an increase in the mean Nu.
While for Da > 0.005, one could find non-linear behavior, for Da > 0.05, one could find the opposite
situation. The thermal transference strength increased with Da, and such a rise was strong in the case
of internal solid blocks with low thermal conductivities. The addition of nanoadditives suppressed the
convective energy transport.
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5. Conclusions

The thermogravitational energy transference of hybrid water-based nanosuspension in a porous
chamber with an internal thermal-conducting block has been scrutinized computationally. Transport
equations based on the single-phase nanofluid approach and Brinkman porous model were worked out
using the finite difference technique. The impacts of the Darcy number, nanoadditives concentration
and internal solid block material on the liquid motion structure and heat transference patterns were
investigated. The obtained results show that: (1) a rise in Da accelerates the convective circulation
and energy transport; (2) the addition of nano-sized solid particles suppresses the flow strength and
thermal transference intensity; (3) a growth in the internal solid block material’s thermal conductivity
intensifies the thermal transmission for Da < 0.005, but for Da > 0.05, an increase in the considered heat
conductivity reduces the energy transference intensity.
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