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Abstract: With the flourishing of big data and the 5G era, the amount of data to be transmitted
in the communication process is increasing, and end-to-end communication in traditional social
networks has been unable to meet the current communication needs. Therefore, in order to improve
the success rate of data forwarding, social networks propose that the sender of the message should
reasonably choose the next hop node. However, existing routing and forwarding algorithms do not
take into account nodes that are live in different scenarios, and the applicable next hop node metrics
are also different. These algorithms only consider the forwarding preferences of the nodes during
working hours and do not consider the forwarding preferences of the nodes during non-working
hours. We propose a routing algorithm based on fuzzy decision theory, which aims at a more accurate
decision on selecting the next hop. A routing and forwarding algorithm based on fuzzy decision is
proposed in this paper. This algorithm symmetrical divides scenes in opportunistic social networks
into working time and non-working time according to real human activity. In addition, metrics are
designed symmetrically for these two scenarios. Simulation results demonstrate that, in the best case,
the proposed scheme presents an average delivery ratio of 0.95 and reduces the average end-to-end
delay and average overhead compared with the epidemic routing algorithm, the EIMSTalgorithm,
the ICMT algorithm, and the FCNSalgorithm.

Keywords: opportunistic networks; routing algorithm; fuzzy control system; fuzzy inference logic

1. Introduction

In recent years, due to the rapid development of 5G networks and big data [1], each of us has
mobile communication devices, such as smartphones and iPads with Bluetooth, WiFi, etc. These
communication devices carried by people have become an integral part of people’s daily lives [2].
In this case, we can consider these mobile devices carried or used by people as nodes in opportunistic
social networks. Because of the significant sociality of human activities, the movement of nodes
conforms to the rules of human social activities, and the strength of the social connection between
nodes can often indicate the level of the possibility of an connection opportunity. Consequently,
the practicality and effectiveness of opportunistic social network routing protocols can be improved by
analyzing the social attributes [3] of nodes.

Therefore, combining the opportunistic network [4] with the mobile social network [5,6] to
form the opportunistic social network [7,8] has both the social characteristics of the social network
and the data forwarding characteristics of the opportunistic network, which is a form of the
social network’s transition to offline materialization. The opportunistic social network adopts a
“storage-carry-forward” [9,10] routing model and proposes that data forwarding can be achieved
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through the “opportunity exchange” [11–13] method. This communication relies on the movement of
nodes and efficient forwarding algorithms, so that some nodes have the opportunity to act as relay
nodes. In other words, the source node needs to find a suitable relay node to send the message to
the destination node [14], and this relay node has a great chance to communicate with the source
node or the destination node. The message is transmitted and shared in a network that lacks a stable
end-to-end connection through this method. It can be seen that in order to improve the efficiency of
routing forwarding and reduce the delay, selecting the appropriate relay node is the key to the routing
and forwarding algorithm.

Recently proposed data forwarding algorithms [15–17] focus on analyzing social characteristics,
including interests, work place, time, social relationships, similarity, etc. Obviously, each social factor
may play a different role in the successful data transmission process. In order to select a more suitable
relay node, different social attributes need to be selected in different scenarios as a measure of relay
node selection. However, the existing algorithms in opportunistic social networks only consider
the selection of the best next hop node in a single scenario and do not fully consider the social
characteristics of human mobility. The above situation has led to problems such as reducing data
forwarding efficiency and greatly increasing the network load, transmission delay, and node energy
consumption. In order to solve this problem, it is necessary to find an effective method for selecting
the best next hop node under the environment of big data and 5G. There are many excellent strategies
for selecting the next hop node in the existing algorithms. Since opportunistic social networks are
closely related to social life, another problem arises. This problem is how to integrate human mobility
characteristics into complex routing algorithms and propose effective solutions for selecting next
hop nodes. Because there are many reasons that cause human movement [18,19], the behavior of a
node has a large number of attributes. Selecting one or more representative attributes as the basis for
selecting the next hop node is a solution to existing routing algorithms. Therefore, it is reasonable
for different algorithms to choose different attributes in different application scenarios. In real social
scenarios, humans move for different reasons at different periods of time. How does one choose the
attributes that are suitable for the scenario on the premise of considering the actual motion situation?
Finally, choosing the best next hop node according to different attributes is a problem to be solved.

To solve these urgent issues, an effective transmission strategy based on a fuzzy control
system [20,21] is proposed in this work, which is known as a fuzzy control routing-forwarding
algorithm. We comprehensively considered the possible behavior patterns of nodes. As shown
in Figure 1, Tom’s life is regular. He takes a bus from 7:30 to 8:30, works between 8:30 and 17:00, takes
a break from 17:00 to 19:00, and comes back home at the end of the day. Different social characteristics
are exhibited at different time periods. Consequently, we innovatively divided the background of
the routing algorithm into working time and non-working time. In working times, this paper takes
advantage of the Degree of Intimacy (DI) and Separating Time (ST) as the metrics. In non-working
time, this paper uses the Sensitivity of Interest (IS) and the Sensitivity of Age (AS) as the metrics.
Through reasonable weight adjustments and fuzzy decision-supporting system, the optimum next hop
is obtained in this paper. In a nutshell, this algorithm is a novel routing-forwarding method, which
completely considers the real-life scenarios. The contributions of this paper are listed as follows:

1. By comprehensively analyzing the characteristics of nodes in the opportunistic social network,
the idea of dividing daily scenarios into working time and non-working time is established.

2. According to the features of the two scenarios, this article proposes four unique features to assess
the sociality of nodes. In working time, our paper utilizes two social factors, which are the Degree
of Intimacy (DI) and Separating Time (ST). In non-working time, we exploit two social factors,
which are the Sensitivity of Interest (IS) and the Sensitivity of Age (AS).

3. To evaluate the impact of each social characteristic on the transmission process in the opportunistic
social network synthetically, we make use of the idea of a fuzzy decision-supporting system with
the analytic hierarchy process and with selecting optimal next hop nodes.
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4. Taking advantage of the simulation tool ONE, we acquired the results of the experiment, which
demonstrated the significance of the MSFC algorithm to enhance the ability of routing-forwarding
and to reduce the overhead ratio.

The rest of this paper is structured as follows. In Section 2, we describe and analyze the related
works. The model of this algorithm is proposed and analyzed in Section 3, In Section 4, the complexity
analysis of the system model is provided. The simulation results are presented in Section 5. The last
section concludes the paper.

2. Related Work

In recent years, research on routing algorithms has become a hot issue in opportunistic social
networks. In order to adapt the proposed algorithm to different application scenarios, researchers
have tried different algorithms and methods to improve the delivery ratio and reduce the overhead.
In the opportunistic social network, routing algorithms can be roughly divided into two categories:
the socially-ignorant routing algorithm and the social-based routing algorithm. We will introduce the
two categories of routing algorithms related to our work in detail.

2.1. The Proposed Socially-Ignorant Routing Algorithm

In existing socially-ignorant routing algorithms, transmission strategies are proposed to improve
the forwarding success rate of the opportunistic network. The epidemic algorithm [22] is a flooding
routing algorithm that takes the source node as the pathogen and other nodes in the network as
vulnerable populations. Its disadvantage is that the demand for network resources is too large.
The spray and wait algorithm [23] is divided into two phases: spray and wait. In the spray phase,
the source node injects a fixed number of message copies into the network and then enters the wait
phase. If the message copy is not delivered to the target node, the node carrying the message completes
the message delivery by direct delivery [24].

To improve the delivery ratio and reduce the end-to-end delay and the network overhead, some
complex mathematical methods have been applied in opportunistic transmission models, such as
decision tree, Markov chains, probability prediction, etc. Sharma et al. [25] proposed a machine
leaning-based protocol for improving the effective of opportunistic routings. This algorithm makes use
of the method of decision tree and neural networks to predict the successful ratio of packet deliveries.
J.Wu [26] proposed a message cache management and data transmission algorithm, which designed a
node recognition method for assessment probability and reconstructed the cache space. This work
improved the forwarding rate while causing a small routing overhead, but this was not for our scenario.

2.2. The Proposed Social-Based Routing Algorithm

Existing social-based routing algorithms make full use of social contact patterns to design efficient
data forwarding strategies for opportunistic social network. ETNS [27] was proposed, which is an
effective transmission strategy based on node socialization to divide nodes in the network into several
different communities. By considering nodes’ global trust, the author can judge the behavior of nodes
in the communities and establish a community reduction strategy to decrease the number of inefficient
nodes. PIS [18] integrates three social features, namely physical proximity, user interests, and the social
relationship, of users’ daily routines into a unified distance function, so as to select optimal relay nodes
for data forwarding. FCNS [28] makes use of mobile and social similarities to predict the transmission
preference of nodes. GSI [29] fully exploits the geographical information, social features, and user
interests to enhance transmission performance. FSF [30] assesses the friendship strength among the
pair of nodes, then it determines the individual selfishness of the relay node.

In addition, many mathematical methods exist such as graph theory, fuzzy inference logic,
information entropy. J.Wu [31] proposed an Efficient Data Packet Iteration and Transmission (EDPIT)
algorithm, which selects data packets via iteration. This article made full use of information entropy to
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solve an actual question. FPRDM [32] uses an intelligent fuzzy decision-making system to reduce the
average end-to-end delay. Although these papers all have made corresponding contributions to the
opportunistic social networks, there is still room for improvement.

Different from the previously stated data forwarding strategies in opportunistic social networks,
our work fully considers the applicable attributes of working time and non-working time, respectively,
assigns corresponding weights to each attribute through a large number of experiments, and makes
decisions using a fuzzy control system. Our proposed algorithm can choose more optimum next hop
nodes and reduce the average end-to-end delay.

3. Model Design

In the opportunistic social network, the most traditional routing algorithms only consider a
single scenario. When we analyzed the routing-forwarding algorithm to select the next hop node, we
comprehensively considered the possible behavior patterns of nodes, and the innovative proposal
divided the background of the routing algorithm into working time and non-working time according to
the actual situation of human movement. In working time, people obtain certain regular things, which
are fixed to be performed in each time period. For example, as shown in Figure 1, people generally
take the bus at 8 o’clock, go to work at 9 o’clock, eat at 12 o’clock, etc. However, working time is totally
different from non-working time, when the problem becomes a probability for people’s travel. People
can freely choose the travel time and travel destination according to their own interests, preferences,
etc. The nodes in this article are communication devices that people carry, such as mobile phones,
iPods, and Bluetooth devices. Since these devices are used by human beings, it can be considered that
these nodes have human attributes. The proposed model in this paper comprehensively considers
the scenarios and situations in which nodes can communicate and divides people’s communication
into working time and non-working time, respectively. In working times, we take advantage of the
DI and ST as the metrics for selecting the optimum next hop node. In non-working time, the IS
and the AS as the metrics are used by this paper for selecting the optimum next hop node. These
metrics for two scenes are selected by combining actual scenarios and analyzing a large amount of
data. In non-working hours, we chose sensitivity of interest and sensitivity of age as measurement
indicators. We found that people prefer to do something that they are interested in and there is a
significant difference in the proportion of people of different ages who like things and make friends.
In working time, we chose the degree of intimacy and separating time as metrics. We found that
people’s lives are more regular during working hours. The ability to communicate frequently proves
that the two are either at work or good friends, and if their separating time is short, they must be
friends. In the following content, the mathematical meaning of the four indicators will be explained
in detail.
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3.1. Working Time

In working time, the degree of intimacy and the separating time together as measures of this
period are used by this paper. The degree of intimacy is an expression of trust between nodes.
Its strength is related to the number of connections established between nodes. The more connections
are established, the higher the degree of intimacy between nodes. The separating time indicates the
time difference between the two nodes’ encounters. The shorter the separating time, the closer the
relationship between nodes. It is worth noting that the successful selection of the global optimal next
hop node requires a common consideration of intimacy and separating time in the network.

3.1.1. Degree of Intimacy

The degree of intimacy between nodes can be roughly divided into two types: one is a direct
communication node pair, and the other is an indirect communication node pair. The number

of encounters of nodes i and j of direct communication at time t is expressed as nocij(t) =
n
∑

i=1
1.

The number of times that nodes i and k of indirect communication meet at time t is expressed as
nocik(t). The number of times k and j meet at time t is expressed as nocjk(t). The above situation is
equivalent to i and j exchanging message. Through the above analysis, the intimacy function of nodes
i and j at time t can be computed by the following formula, where µ is a constant integer and the
threshold of the number of node encounters:

DI(t) = β×
min(µ, nocij(t))

µ
+ (1− β)×

min(µ, ∑
k∈Nij(t)

min
(

nocik(t), nocjk(t)
)
)

µ
(1)

The first part of the above formula indicates the direct encounter strength of the node. If the
direct encounter times between nodes i and j are larger than µ, then the strength of the two nodes is
equal to one, which proves that the relationship between the two nodes is more intimate. The second
part of the above formula represents the indirect encounter strength of the node. The more common
friends they have, the closer they will be. Nij(t) is defined as a collection of encountering nodes. β is the
weight proven by a large number of experiments, indicating the impact of direct encounter strength
and indirect encounter strength on the calculation of the degree of intimacy.

3.1.2. Separating Time

The separating time indicates that the nodes move in the network, and the two nodes enter
each other’s communication area. That is to say, the two nodes can establish a connection and start
communication. When the distance between two nodes is greater than the radius of the communication
area, the communication between the two nodes is considered to be broken, and then, they meet again.
In this paper, the separating time of two nodes is defined as the time interval between two identical
nodes encountering one another. A shorter separating time means a more intimate relationship
between the two nodes.

Separating_Time(i, j) =
∣∣∣Tnextmeet − Tf irstmeet

∣∣∣ (2)

where Tnextmeet is recorded the moment of the next meeting event and Tnextmeet is recorded the moment
of this meeting event.

3.2. Non-Working Time

In non-working hours, the nodes in the opportunistic social network are considered to be mobile
devices carried by people in this paper. Therefore, these mobile devices carried by people reflect the
characteristics of human beings. Because of the same interests and similar ages, people will be more
likely to communicate. Consequently, to judge the next hop node, we have taken full advantage of
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the metrics, which are the sensitivity of interest and the sensitivity of age. Compared with the node
attributes used in the traditional routing algorithm, the attributes used by this algorithm can effectively
avoid the inaccuracy of the result caused by the incomplete access of the node message.

3.2.1. Sensitivity of Interest

In non-working hours, people’s travel is more casual and unconstrained, so one of the reasons
for people to travel may be interests. Therefore, the two nodes with the same interest are more likely
to meet the two nodes with different interests. As we can see, interests lead to the motion of nodes.
However, it is impossible that the movement of a node depends entirely on interests, so the probability
that a node moves due to interests is called the sensitivity of interest in this paper. When people use
mobile devices, our interests can be easily obtained and analyzed from our related operations. The
node’s sensitivity of interest is an M*1 probability vector Pi = [pi1, . . . , piM]T , where AT represents the
transpose of a matrix. pij indicates the probability that node i will move because of the jth interest.
Indeed, pij is used to compare the sensitivity of nodes to different interests. Hence, without loss of

generality, we technically define
M
∑

j=1
pij = 1 for ∀i, and Pi can be considered as a discrete probabilistic

distribution. The weight of interest j occupying node i is defined as:

Wij =
pij

m
∑

i=1
pij

(3)

Node i’s sensitivity to all interests is defined as:

pi =
M

∑
j=1

Wij·Pi (4)

When selecting the next hop node, the interest sensitivity of all neighbor nodes around the source
node i is calculated in turn, and the difference of interest sensitivity between the node i and the
neighbor node j is compared. Select one or more nodes with the smallest difference as the next hop
node to improve the message forwarding success rate. The difference is defined as: P̄ = |pi − pd|

3.2.2. Sensitivity of Age

The sensitivity of age is indicated as a similar trajectory and travel time due to age. For example,
the young like to play in the afternoon. However, older people may like to go to the park in the
morning or go to a square dance at night. Based on this theory, our paper draws a comprehensive
consideration of age, time, and communication area, all of which affect the movement trajectory of
nodes. Consequently, the sensitivity of age can be computed by the following formula:

AS(i, j) =
Ā× C(r, l(i))

t̄
(5)

where Ā = |ai − aj
∣∣ is defined as a constant, and the age of node i is expressed as ai. The closer the

age, the greater the possibility of communication. The time interval between two nodes is described as
t̄ = |ti − tj

∣∣. In C(r, l(i)), r represents the set of locations representing the communication area in the
opportunistic social network; if r = l(i), C(r, l(i)) = 1; if not, C(r, l(i)) = 0.

C(r, l(i)) =

{
1 if r =l(i)
0 r 6= l(i)

(6)
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3.3. Making Complete Use of the Fuzzy Decision Support System

The fuzzy decision-making system is a new adaptive technology based on fuzzy inference and
mathematics, which has emerged as a decision support system in recent years. This system is expected
to be used to provide more accurate decisions for route selection and data transmission in 5G networks
and big data. Because the relationships between nodes and their social attributes are ambiguous and
uncertain, we use fuzzy control decision-making methods to calculate the forwarding preferences of
nodes. The fuzzy decision system consists of three components, including the fuzzifier, fuzzy inference,
and defuzzifier. In the following sections, the specific implementation of each part of the fuzzy decision
support system is described in detail.

3.3.1. The Fuzzifier

In the domain U, the fuzzy subset Ã is essentially a function of U → [0, 1]. Consequently,
the primary task of dealing with a fuzzy situation in practice is to determine membership functions
Ã (u). There are three main methods for determining the membership function: the fuzzy statistical
method, the tripartite method, and the Delphi method. The tripartite method is an experimental
method that uses the idea of random intervals to study fuzziness, which is consistent with the analysis
of specific application scenarios in this paper. Therefore, the tripartite method is used to determine the
membership function.

In working time, the factor set is U = {u1, u2} , where u1, u2 respectively represent the DI and
the ST. The judgment set is V = {v1, v2, v3} , where v1, v2, v3 respectively represent low, medium,
and high. In non-working hours, the factor set is U = {u1, u2} , where u1, u2 respectively represent IS
and AS; the evaluation set is V = {v1, v2, v3} , where v1, v2, v3 respectively mean three different levels
of membership subsets (low, medium, and high). Obviously, we can define the same membership
function to calculate the degree of membership between nodes in the above two scenarios.

A common function is defined as a parent function for fuzzification of working time and
non-working time. We define a generic function as:

C̃F(i, j, t) =

{
DI(i, j, t)×WDI + ST(i, j, t)×WST t = 1;
IS(i, j, t)×WIS + AS(i, j, t)×WAS t = 0;

(7)

In this general function, t is set as the label to identify whether the node is in working time or
non-working time. When t is equal to one, nodes i and j live in the working time, Otherwise, when t is
equal to zero, nodes i and j live in the non-working time. In the above formula, W can be adjusted
according to the experiment. Finally, the weight of the working time is WDI = WST = 0.5, and the
weight of the non-working time is WIS = WAS = 0.5. After standardizing C̃F(i, j, t), the input value of
the fuzzy system is obtained.

CF(i, j, t) = tanh(C̃F(i, j, t)) =
eC̃F(i,j,t) − eC̃F(i,j,t)

eC̃F(i,j,t) + eC̃F(i,j,t)
(8)

According to the tripartite method and the attribute setting in this article, we define
Alow, Amedium, Ahigh ∈ F(R), and (U, V) is a random vector and U, V the boundary values of
membership function f (u, v) and satisfying the condition of P{U <= V} = 1. However, ∀u, v ∈
R, (u, v) have the ability to determine the mapping relationship:

f (u, v) : R→
{

Alow(CF(i, j, t)), Amedium(CF(i, j, t)), Ahigh (CF(i, j, t))} (9)
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On the basis of the theory of ∀CF(i, j, t) ∈ R, (u, v), the equation could be expanded as:

f (u, v)(CF(i, j, t)) =


Alow(CF(i, j, t)), CF(i, j, t) ≤ u
Amedium(CF(i, j, t)), u <CF(i, j, t) ≤ v
Ahigh(CF(i, j, t)), CF(i, j, t) > v

(10)

As demonstrated in Figure 2A–C, when the Common Function changes over time, low, medium
and high membership functions present different curves and the codomain is always between 0 and 1.
According to the actual application scenarios and a large number of literature references, obeying the
normal distribution is set, and u(ξ1, η1

2), v(ξ2, η2
2).

Alow(CF(i, j, t)) =
∫ +∞

CF(i,j,t) Pu(x)dx = 1−
∫ CF(i,j,t)
−∞ Pv(x)dx = 1− ϕ(CF(i,j,t)−ξ1

η1
)

Amedium(CF(i, j, t)) = 1−
∫ +∞

CF(i,j,t) Pu(x)dx−
∫ +∞

CF(i,j,t) Pv(x)dx = ϕ(CF(i,j,t)−ξ1
η1

)− ϕ(CF(i,j,t)−ξ2
η2

)

Ahigh(CF(i, j, t)) =
∫ CF(i,j,t)
−∞ Pv(x)dx = ϕ(CF(i,j,t)−ξ2

η2
)

(11)

In the above formula, ϕ(x) is described as ϕ(x) =
∫ x
−∞

1√
2π

exp(− 1
2 t2)dt, which is the standard

normal distribution function. In this fuzzification process, according to the membership function set
by artificial experience and data training, the situation divides the opportunistic social network into
working time and non-working time and assigns three different membership functions to each case.
Both critical and metric parameters can be adjusted to optimal values through multiple data trainings
and parameter adjustments.
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when the Common Function changes over time, low, medium and high membership functions present
different curves and the codomain is always between 0 and 1.
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3.3.2. The Model of Fuzzy Inference

As shown in Figure 3, based on the actual situation, the fuzzy rules of working time and
non-working time are designed by using “IF-THEN” rules. When t is equal to one, node pairs
live in the working time, Otherwise, when t is equal to zero, node pairs live in the non-working time.
According to the fuzzy rules we designed and the degree of membership of the node pairs, the nodes
during working hours and non-working hours are divided into three states, which are active state,
normal state, and lazy state. The establishment of fuzzy rules is described in detail by the following.
The fuzzy rules in working hours are described as:

• If the membership degree is high and the communication frequencies of nodes i and j are
considered to be at a high level, then the nodes i and j are defined to be in the active state.

• If the membership degree is medium and the communication frequencies of nodes i and j are
considered to be at a medium level, then nodes i and j are defined to be in the normal state.

• If the membership degree is low and the communication frequencies of nodes i and j are considered
to be low, then nodes i and j are defined to be in the lazy state.

The fuzzy rules in non-working hours are described as:

• If the membership degree is high and the communication frequencies of nodes i and j are
considered to be at a high level, then the nodes i and j are defined to be in the active state.

• If the membership degree is medium and the communication frequencies of nodes i and j are
considered to be at a medium level, then nodes i and j are defined to be in the normal state.

• If the membership degree is low and the communication frequencies of nodes i and j are considered
to be low, then nodes i and j are defined to be in the lazy state.

where i is a source node and j is the collective name of the neighbor node.

Figure 3. Fuzzy rule.

For the above rules, the article is described in the form of “IF A THEN B” as follows:
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• If f (u, v)(CF(i, j, t))=Ahigh(CF(i, j, t), then it is considered to be in the active state.
• If f (u, v)(CF(i, j, t))=Amedium(CF(i, j, t), then it is considered to be in the normal state.
• If f (u, v)(CF(i, j, t))=Alow(CF(i, j, t), then it is considered to be in the lazy state.

where t = 0 indicates that the node pairs are in the non-working time, while t = 1 indicates that the
node pair are in the non-working time.

3.3.3. The Components of the Defuzzifier

Regardless of whether the node pair is in the working time or non-working time, the source
node i and the neighboring node can calculate the corresponding membership degree through the
membership function, so it can be inferred that each node needs to maintain a fuzzy vector Vij. One
interesting thing we find about the node i and its neighbor nodes is that their vector expression of the
membership degree can be expressed as:

Vij=



f (u, v)(CF(i, 1, t))
f (u, v)(CF(i, 2, t))

...
f (u, v)(CF(i, j, t))

...
f (u, v)(CF(i, n, t))


(12)

From the perspective of the entire network, the vector has become a matrix, the scale of which is
n× n.

Mij =



0 f (u, v)(CF(2, 1, t)) · · · f (u, v)(CF(i, 1, t)) · · · f (u, v)(CF(n, 1, t))
f (u, v)(CF(1, 2, t)) 0 · · · f (u, v)(CF(i, 2, t)) · · · f (u, v)(CF(n, 2, t))

...
...

. . .
...

...
...

f (u, v)(CF(1, j, t)) f (u, v)(CF(2, j, t)) · · · 0 · · · f (u, v)(CF(n, j, t))
...

...
...

...
. . .

...
f (u, v)(CF(1, n, t)) f (u, v)(CF(2, n, t)) · · · f (u, v)(CF(i, n, t)) · · · 0


(13)

Each row of the matrix indicates that node i and n nodes in the network calculate the membership
degree, and three fuzzy sets of high level, medium level. and low level corresponding to node i and
each node are respectively obtained. There is a total of n rows and n columns. The diagonal line
indicates the degree of membership of node i and itself, which is set to zero.

The element Ai with the highest degree of membership is selected from each row of the matrix as
the output value by the principle of maximum membership, which can be represented as:

Ai(x) =
n
∨

i=1
f (u, v)(CF(i, 1, t)) (14)

The above formula can also be expressed as:

Ai(x) = Max ( f (u, v)(CF(1, 1, t)), f (u, v)(CF(2, 1, t)), · · · , f (u, v)(CF(i, 1, t)), · · · , f (u, v)(CF(n, 1, t))) (15)
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In order to reduce node energy consumption and release storage space, we obtain a vector after
compression matrix transposition according to the maximum value selected in each row, such as:

Vij
T=



Amedium(CF(i, 1, t))
Ahigh(CF(i, 2, t))

...
Alow(CF(i, j, t))

...
Ahigh(CF(i, n, t))


(16)

For the node with a high degree of membership in the vector, we think that the node pairs have
high activity. Obviously, the jth node can be selected as the next hop node. For instance, when a node
forwards a message, it will select the node with the highest similarity with itself as the next hop node
in the network. In this way, the forwarding success rate is the highest.

Vij=



0
Ahigh(CF(i, 2, t))

...
0
...

Ahigh(CF(i, n, t))


(17)

In order to reduce the network load and improve the forwarding efficiency, the degree of
membership of the node that belongs to node j in low and medium activity can be defined as zero.
For example, in the Vij vector, when j = 2 and n, the membership of the node pair is high, so the next
hop node set is [2, n].

4. Complexity Analysis

In a nutshell, an effective fuzzy control routing-forwarding algorithm is proposed in this paper.
We comprehensively considered the possible behavior patterns of nodes and innovatively divided the
background of the routing algorithm into working time and non-working time in the opportunistic
social network. At the same time, in order to enhance the understanding and readability of our whole
algorithm, the detailed steps of the MSFC algorithm are listed as follows:

Step 1: Firstly, we should judge whether the source node i is in working time or non-working
time. Secondly, we should determine whether the neighbor node j of source node iis in working
time or non-working time. Finally, the neighbor nodes are divided into two sets: List_worktime and
List_noworktime.

Step 2: This article defines a common function, which includes a label t. When t is equal to one,
nodes i and j live in the working time. Otherwise, when t is equal to zero, nodes i and j live in the
non-working time. When nodes i and j live in the working time, calculate the degree of intimacy and
separating time; when the nodes i and j live in the non-working time, calculate the node sensitivity of
interest and the sensitivity of age.

Step 3: According to the fuzzy decision control system, each node evaluates the membership
degree of CFwith other nodes, determines the level of the transmission preference, and stores it in an
n× n matrix, which is known as Mij.

Step 4: The dimension of Mij is reduced to a vector, and the node with a high degree of
membership is selected. That is to say, this node is considered to be in the active state, and the
active node is selected as the optimum next hop node.
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Algorithm 1 and Figure 4 are proposed to make the MSFC algorithm more rigorous and intuitive.
Specifically, in the process of determining the membership degree, each node pair has a commotion
function corresponding to three different levels (low, medium, high) that contain n membership
degrees values, which presents a time complexity of O(n). Ultimately, the time complexity of the
process of finding the optimum next hop node is O(n). As a consequence, the overall time complexity
of the fuzzy control routing-forwarding algorithm can be computed as O(n + n) = O(n).

Algorithm 1: Multi-scenario routing algorithm based on fuzzy control theory.
Input: all nodes in the opportunistic social network;
Output: the optimal next hop nodes;
1. Begin
2. Defining a common function C̃F(i, j, t);
3. For each node
4. Judge the time of node i and node j;
5. If node i and j live in the working time
6. Calculate IS and AS;
7. Give different weights for two metrics;
8. Get C̃F(i, j, 1);
9. Else
10. Calculate DI and ST;
11. Give different weight for two metrics;
12. Get C̃F(i, j, 0);
13. CF(i, j, t) = tanh(C̃F(i, j, t));
14. End if
15. End for
16. For (i = 1; i <= n; i ++) do
17. If CF(i, j, t) ≤ u
18. Calculate Alow(CF(i, j, t));
19. Else if u <CF(i, j, t) ≤ v
20. Calculate Amedium(CF(i, j, t));
21. Else
22. Calculate Ahigh(CF(i, j, t));
23. End if
24. Give the state of the node based on “IF-THEN” rules;
25. Get the nodes’ state level matrix Mij;

26. Ai(x) =
n
∨

i=1
f (u, v)(CF(i, 1, t));

27. Calculate Ai(x) based on the maximum membership principle for each row;
28. End for
29. Select the node that has high activity as the next hop node;
30. End
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Figure 4. The process of selecting the best next hop node.

5. Simulations

The simulations adopted the Opportunistic Network Environment (ONE) to evaluate the
experimental performance of the routing algorithm proposed in this article. To be specific, it was
compared with four other algorithms, three of which were the latest routing algorithms, one of
which was a traditional algorithm in opportunistic social networks: EIMST(effective information
transmission based on socialization nodes) [33], ICMT (Information Cache Management and data
Transmission algorithm) [26], FCNS(fuzzy routing-forwarding algorithm) [28], and epidemic [22].
EIMST attempts to achieve an effective information transmission based on socialization nodes. ICMT
makes use of memory management and node collaboration to achieve an effective data transmission.
However, FCNS is a fuzzy routing-forwarding algorithm exploiting comprehensive node similarity in
opportunistic social network.

5.1. Simulation Parameters

After analyzing the suitable scenario of the algorithm, the parameters were set as follows:
The communication area was 2500 m × 3600 m, and the simulation time was 12 h. Five-hundred nodes
were involved, and all nodes were distributed in the area at random. The maximum transmission
area of each node was 20 m2, and the nodes’ speed was defined as 1–25 m/s. The initial energy for
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every node was 100 J, and every node always consumed 0.25 J during the process of storage, carry,
and forward. The cache space of every node was set to 10, 15, 20, 25, 30, 35, and 40 Mb, and the initial
value was 10 Mb. In order to enhance the readability of the above simulation information, the detailed
information is shown in Table 1. In our experiment, the effective data transmission algorithm depended
on social relationship attributes having the best performance when WDI = WST = 0.5 during the
working time and WIS = WAS = 0.5 during the non-working time, β = 0.6.

Table 1. The experimental setting of the simulation environment.

Simulation Parameters Values

Simulator Opportunistic Network Environment (ONE)
Mobility model Shortest path map-based movement
Communication area 2500 m×3600 m
Nodes’ speed 1–25 m/s
Simulation time 12 h
Initial energy 100 J
Transmit range 20 m2

Nodes’ buffer 10, 15, 20, 25, 30, 35, and 40 MB

5.2. Evaluation Metrics

Our routing algorithm was compared with the above routings algorithm to assess its performance
in the same simulation environment. In addition, this study mainly focused on the following
metrics [33]:

• Delivery ratio: This measurement metric refers to the probability of choosing a suitable node as
the next hop node, which is expressed as:

Dnode = Dreceive/Dsend (18)

where Dreceive is the number of received messages by surrounding neighbor nodes and Dsend is
the number of forwarded messages by nodes.

• Average end-to-end delay: This parameter comprehensively evaluates the delay caused by routing
selections, relay nodes’ waiting delay, and transmission delay. The average end-to-end delay can
be described as:

Edel = Esum/N (19)

where Esum is the total delay of message forwarding from source nodes to destinations and N is
the number of nodes that successfully acquired the message in the communication area.

• Overhead on average: This parameter represents the network overhead for successfully passing
messages between a pair of nodes, which could be formalized as:

Onode =
Nto − Nsu

Nto
(20)

where Nto is the total time of data transmission and Nsu represents the total time of successful
message forwarding between nodes.

• Energy surplus: this parameter records the energy surplus of the node during transmission.

5.3. Simulation Result Analysis

5.3.1. The Influence of the Moving Model on the MSFC Algorithm

This section mainly discusses and analyzes the performance of the MSFC algorithm in different
mobile models. The simulation employed different mobile models to demonstrate the performance of
the MSFC algorithm. We respectively selected the mobile models of Random Walk (RW), Random Way
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Point (RWP), and Shortest Path Map-Based Movement (SPMBM) to evaluate the message transmission
efficiency. The delivery ratio of the MSFC algorithm in different mobile models is depicted in Figure 5.
The MSFC algorithm worked best when using SPMBM as a mobile model. When the simulation time
reached 12 h, the delivery ratio of MSFC could reach 95%. However, for the other two models, when
the simulation time was 12 h, the delivery ratio of RWP was 0.9, and the delivery ratio of RW was 0.84.
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Figure 5. Delivery ratio and time for MSFC in different models. Random Walk (RW), Random Way
Point (RWP), and Shortest Path Map-Based Movement (SPMBM)

Next, Figure 6 shows the average end-to-end delay of the MSFC algorithm in different models.
As can be seen from the result, the MSFC algorithm had the lowest average end-to-end delay, when
this algorithm selected SPMBM as the mobile model. Consequently, when the simulation time reached
12 h, the average end-to-end delay of the MSFC algorithm was 35. However, for the other two models,
when the simulation time was 12 h, the average end-to-end delay of RWP was 66, and the average
end-to-end delay of RW was 46.
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Figure 6. Average end-to-end delay and time for MSFC in different models.
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Next, the average overhead of the MSFC algorithm is demonstrated in Figure 7 in different mobile
models. With the increasing of simulation time, the average overhead decreased at the same time.
Moreover, when the mobile model of the MSFC algorithm was SPMBM, the average overhead of the
network was the lowest.
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Figure 7. Average overhead and time for MSFC in different models.

The impact of the simulation time and mobile model on the energy consumption is exhibited in
Figure 8. Regardless of the simulation time, the MSFC algorithm had the lowest energy consumption
when the mobile model was SPMBM.

0 5 10 15
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110

 MSFC-SPMBM
 MSFC-RWP
 MSFC-RW

time (h)

en
er

gy
 c

on
su

m
pt

io
n 

(J
)

Figure 8. Energy consumption and time for MSFC in different models.
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5.4. Analysis of the Experimental Result

This section mainly performs a comparison and analysis between the five different algorithms.
People’s demand for data forwarding is increasing under the environment of big data and 5G. It is
crucial to improve the delivery ratio to choose the appropriate relay node in opportunistic social
networks. However, in process with a large amount of data forwarding, the node’s cache space will
also affect the node’s delivery ratio. Consequently, in this experiment, we rationally set the cache space
as a variable to study the forwarding performance of each algorithm. All in all, the nodes had a larger
cache space, and all algorithms had a higher delivery ratio. This was because nodes could handle more
complex computing tasks and stored more information in opportunistic social networks.

Firstly, as Figure 9 shows, the delivery ratio of the EIMST algorithm was always lower than
the ICMT and FCNS algorithms. This was because the EIMST algorithm did not establish a good
cache management strategy and only considered the cooperation of nodes in the process of message
forwarding. Consequently, no matter how the node’s cache space changed, the average delivery ratio
of EIMST was maintained at about 0.8. The delivery ratio of the traditional routing algorithm epidemic
was generally lower than several other algorithms. This was because the epidemic routing algorithm
did not select the appropriate next hop node. It sent the message of the source node to all nodes that
had met the node like spreading a virus. Therefore, a large number of message copies were stored in
the node, occupying the node’s limited cache space and consuming a large amount of node resources.
The ICMT and FCNS algorithms used data management and fuzzy control theory to make more
accurate judgments during data forwarding. However, these algorithms still forwarded information to
some unrelated nodes, occupying network resources and bandwidth. Compared with the other four
algorithms, the MSFC algorithm had a transfer efficiency of 0.95 when the cache was 40 M. The main
reason was that the MSFC algorithm comprehensively analyzed and divided the real human social
scene into working hours and non-working hours. Additionally, the two scenarios had their own
metrics. In the process of data packet forwarding, first select the one that is in the same state as the
others. The nodes were then selected from the candidate node set as a node with a high state, making
the selected node greatly suitable as the next hop node.
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Figure 9. Delivery ratio with various cache spaces.
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Secondly, the next figure exhibits the comparison results between the five different algorithms
in terms of average end-to-end delay. As shown in Figure 10, the average end-to-end delay of every
algorithm increased as the nodes’ cache increased. To be specific, epidemic’s maximum delay could
reach 530 because the algorithm generated a large number of message copies in opportunistic social
networks, and this method dramatically increased routing and message forwarding delays. The EMIST
algorithm and the ICMT algorithm had lower delays than the epidemic algorithm, because both
algorithms effectively controlled the number of message copies. In addition, the EIMST algorithm
implemented community division and information management, while the ICMT algorithm effectively
utilized the cooperation mechanism between nodes to utilize the cache space of the nodes reasonably
in order to reduce the delay in the message forwarding process. The average end-to-end delay of the
FCNS algorithm was also significantly lower than the traditional algorithm, because the algorithm
took advantage of the similarity of nodes to make message forwarding decisions, and the forwarding
preference played a crucial role in the message forwarding process. The average end-to-end delay of
the MSFC algorithm was the lowest among different node caches compared to several other algorithms,
which further showed that the fuzzy control theory of the MSFC algorithm was better than the FCNS
algorithm. The average transmission delay of the MSFC algorithm was stably maintained at about
35, because the algorithm took into account the fuzzy data forwarding relationship between nodes
through different indicators of working status.
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Figure 10. Average end-to-end delay with various cache spaces.

Thirdly, the comparison results between the five different algorithms in the field of average
overhead are demonstrated in Figure 11. The energy surplus of each routing algorithm decreased as
the node’s cache space increased. Specifically, the epidemic algorithm had the least remaining energy,
because the redundant message copy group of the algorithm in the opportunistic social network
consumed much time and many resources in the network. This method sharply consumed energy in
the network. The remaining energy of The EMIST algorithm and ICMT algorithm was higher than
the epidemic algorithm, because both algorithms effectively controlled the number of message copies.
In addition, the EIMST algorithm implemented community division and information management,
while the ICMT algorithm effectively used the cooperation mechanism between nodes to use the node’s
cache space rationally and control the forwarding time to achieve the purpose of reducing network
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energy consumption. The energy consumption of the FCNS algorithm was also significantly lower
than the traditional algorithm. This was because the algorithm used the similarity of the nodes to make
message forwarding decisions. The higher the similarity, the higher the success rate of forwarding of
the nodes, so the less network energy was consumed. The energy consumption of the MSFC algorithm
was the lowest in the cache space of different nodes compared to several other algorithms, which
further showed that the next hop node selection strategy of the MSFC algorithm was better than the
FCNS algorithm, and in all comparisons. In the algorithm, the relay nodes that successfully forwarded
the message from the source node to the destination node were also the least.
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Figure 11. Average overhead with various cache spaces.

Finally, Figure 12 shows the comparison of the remaining energy of the five different algorithms.
The energy surplus of each routing algorithm decreased as the node’s cache space increased. More
specifically, the energy surplus of the epidemic algorithm was the least, because the redundant
message copy group of the algorithm in the opportunistic social network consumed much time
and many resources in the network. This method drastically consumed energy in the network.
The energy surplus of the EMIST algorithm and the ICMT algorithm was higher than the epidemic
algorithm, because both algorithms effectively controlled the number of message copies. In addition,
the EIMST algorithm implemented community division and information management, while the
ICMT algorithm effectively exploited the cooperation mechanism between nodes to use the node’s
cache space reasonably and control the forwarding time to achieve the purpose of reducing network
energy consumption. The energy consumption of the FCNS algorithm was also significantly lower
than the traditional algorithm, because it used the similarity of the nodes to make message forwarding
decisions. The higher the similarity of the nodes, the less network energy was consumed. The energy
consumption of the MSFC algorithm was the lowest in the cache space of different nodes compared
to several other algorithms, which further showed that the next hop node selection strategy of the
MSFC algorithm was better than the FCNS algorithm. In all compared algorithms, the relay nodes that
successfully forwarded the message from the source node to the destination node were also the least.
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Figure 12. Energy surplus with various cache spaces.

In a nutshell, the experimental results showed that the MSFC algorithm effectively reduced
network delay, overhead, and energy consumption and increased the message delivery success ratio
compared with a typical algorithm and several recently proposed routing algorithms. The average
delivery ratio of the MSFC algorithm was 0.95. This algorithm reduced the average end-to-end delay
and average overhead compared with the epidemic routing algorithm, the EIMST algorithm, the ICMT
algorithm, and the FCNS algorithm

6. Conclusions

An effective transmission strategy based on a fuzzy control system was proposed in this work,
which was called a fuzzy control routing-forwarding algorithm. This algorithm comprehensively
considered nodes’ characteristics. Consequently, during the working time, the metrics were the
Degree of Intimacy (DI) and Separating Time (ST). During the non-working time, the metrics were
the Sensitivity of Interest (IS) and the Sensitivity of Age (AS). Unlike other routing algorithms based
on a single scenario, this algorithm synthetically considered the scenarios of working time and
non-working time. When selecting a suitable next hop node from the surrounding neighbors, this
algorithm exploited fuzzy control decision-making methods to calculate the forwarding preferences of
nodes. Supposing that the computing capacity and cache spaces of mobile devices in opportunistic
social networks will be further enhanced, the MSFC algorithm can be applied to the transmission
environment of 5G and big data networks. In future work, we will further improve the performance of
the algorithm, enhance its portability, make it suitable for multiple scenarios, and further improve its
transmission efficiency.
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Abbreviations

The following abbreviations are used in this manuscript:

ONE Opportunistic Networking Environment
FCNS Fuzzy Routing-Forwarding Algorithm Exploiting Comprehensive Node Similarity
MSFC Multi-Scenario Routing Algorithm Based on Fuzzy Control Theory
DI Degree of Intimacy
ST Separating Times
IS Sensitivity of Interest
AS Sensitivity of Age
EIMST Effective Information Transmission Based on Socialization Nodes
ICMT Information Cache Management and Data Transmission Algorithm
FPRDM An Adaptive Control Scheme Based on Intelligent Fuzzy Decision-Making System
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