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Abstract: In this article, vibration of viscoelastic axially functionally graded (AFG) moving Rayleigh
and Euler–Bernoulli (EB) beams are investigated and compared, aiming at a performance improvement
of translating systems. Additionally, a detailed study is performed to elucidate the influence of
various factors, such as the rotary inertia factor and axial gradation of material on the stability
borders of the system. The material properties of the beam are distributed linearly or exponentially
in the longitudinal direction. The Galerkin procedure and eigenvalue analysis are adopted to
acquire the natural frequencies, dynamic configuration, and instability thresholds of the system.
Furthermore, an exact analytical expression for the critical velocity of the AFG moving Rayleigh
beams is presented. The stability maps and critical velocity contours for various material distributions
are examined. In the case of variable density and elastic modulus, it is demonstrated that linear
and exponential distributions provide a more stable system, respectively. Furthermore, the results
revealed that the decrease of density gradient parameter and the increase of the elastic modulus
gradient parameter enhance the natural frequencies and enlarge the instability threshold of the system.
Hence, the density and elastic modulus gradients play opposite roles in the dynamic behavior of
the system.

Keywords: axially functionally graded materials; Rayleigh beams; axially moving systems; stability
map; critical velocity contour

1. Introduction

Axially moving beams are broadly explored in various engineering industries, such as telescopic
robotic manipulators, band-saw blades, crane hoist cables, high-speed magnetic tapes, and thread lines
in the textile industry. For this reason, numerous researchers have devoted considerable attention to the
accurate mathematical modeling and dynamic behavior of these applicable structures [1–4]. Wickret [5]
analyzed the nonlinear vibrations of pre-tensioned traveling beams and explained the influence of
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initial tension and flexural stiffness on the free vibration response. Ghayesh and Amabili [6] numerically
solved the forced nonlinear vibrations of axially moving beams and extracted the bifurcation points
and steady-state response of the considered system. Chen and Yang [7] inspected the parametric
dynamics of axially moving viscoelastic systems with hybrid supports subjected to a fluctuating axial
velocity. In the mentioned paper, the natural frequencies, mode shapes, and critical velocity of the
system were obtained for different system parameters. Gou and co-workers [8] modeled the coupled
thermo-elastic dynamic of axially moving beams. They deduced that the stability borders of these
systems are highly dependent on the coupled thermo-elastic factor and beam translation speed. Oz
and Pakdemirli [9] considered the vibration mechanism of moving beams with a time-dependent
velocity. Their results disclosed that when the amplitude of velocity fluctuations of the system
ascends, the stability regions expand. Employing the artificial parameter method, Yang et al. [10]
discussed different aspects of the vibrational behavior of moving beams. Additionally, they acquired
the closed-form approximated solutions for the natural frequencies of axially moving beams and
determined the dynamic stability of these systems systemically. Vibrational performance and stability
conditions of accelerating viscoelastic beams surveyed by Chen et al. [11]. They discovered that in the
first subharmonic resonance, decreasing the initial stress and increasing the average axial velocity had
the same influence on the instability threshold of the beam. Kiani [12] focused on the transverse free
vibration instability of nanobeams with axial motion resting on an elastic substrate. He scrutinized the
influence of shear and surface energies on the divergence and flutter boundaries. In contrast to the case
of Euler–Bernoulli beams with axial motion, the literature on the Rayleigh and Timoshenko moving
beams is limited [13–17]. Within this context, Zhou and Chang [18] studied the vibration, stability, and
gyroscopic characteristics of rotating Rayleigh beams. They found that by increasing the rotational
inertia of the beam, the stability is reduced. Dehrouyeh-Semnani et al. [19] carried out a numerical
investigation on the vibration characteristics of axially moving microbeams based on the Timoshenko
beam theory. Their numerical results obtained the size-dependent frequencies and critical velocities of
the system for clamped-clamped and supported boundary conditions.

Preventing instability and unwanted vibration is a crucial requirement in the engineering design
of axially moving continua. Heretofore, engineers have suggested various active and passive vibration
control methods to annihilate the excessive vibrations of axially moving structures [20,21]. For instance,
Li et al. [22] addressed the active nonlinear dynamic control of axially moving strings using boundary
velocity feedback. They showed that the vibrations of the string could be effectively dampened through
negative linear velocity feedback at either the upstream or downstream of the system. Zhang et al. [23]
attended the passive and adaptive vibration attenuation of axially moving beams attached to nonlinear
energy sinks. Their results indicated that the performance of the nonlinear absorbers could be
appropriately promoted by adjusting the mass parameter. In all the studies mentioned above,
the constituent materials of the moving systems are homogenous and isotropic. During recent years,
with the aid of modulating materials properties, engineers improved the mechanical behavior of the
moving systems [24–26]. In this sense, employing the multiple scales method, the nonlinear forced
vibration of axially moving sandwich viscoelastic beams was studied by Li et al. [27]. They obtained
the dynamic response and instability boundaries of the considered beam for various values of the core
layer thickness and initial tension. Ghayesh [28] concentrated on the dynamic behavior of the moving
laminated composite beams and determined the critical velocity, natural frequencies, and mode shapes
of the considered system. Lv et al. [29] numerically and analytically inspected the nonlinear lateral
dynamics of viscoelastic sandwich beams with varying axial motion and tension. They concluded that
applying higher initial tension in the system diminishes the natural frequencies.

To eliminate the structural limitations, researchers introduced novel composite materials known
as functionally graded (FG) materials. FG materials are fabricated by smooth and continuous variations
of two or more constituent materials in a preferred direction from one surface to another [30–33].
Compared to the conventional isotropic and laminated materials, FG materials are utilized broadly in
the complex engineering applications due to their supreme mechanical characteristics such as lower
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stress concentration, higher corrosion, and fracture resistance [34,35]. Although FG materials have
great potential in the design and development of advanced axially moving components, there are
limited studies in this area. In this regard, Piovan and Sampaio [36] carried out the vibration analysis of
sliding beams made of FG materials during deploying and retrieving. They supposed that the material
characteristics of the system alter according to a power-law function. Furthermore, they evaluated
the influence of the acceleration and material constituents on the dynamic response of the system.
Sui et al. [37] assessed the lateral dynamics of FG Timoshenko beams with axial motion. They determined
the critical velocity and natural frequencies of the considered beam in terms of the length to thickness
ratio and FG power index. Kiani [38] presented an analytical study on the transverse and longitudinal
vibrations of FG nanobeams within the framework of nonlocal Rayleigh theory. He described
the influence of scale parameter and power FG index on the instability threshold of the system.
Recently, Yan et al. [39] accomplished the nonlinear vibration of FG beams with axial motion by
considering the influence of geometric nonlinearity and axial force. They reported the conditions of
occurrence of subharmonic resonance in the system by utilizing the direct multiscale method.

Based on the authors’ knowledge, the previous studies performed on the dynamics of axially
moving FG beams considered the gradation of mechanical characteristics of the system along the
thickness direction. Despite the importance of metrical gradation through the axial direction,
dynamic analysis of moving AFG Rayleigh beams has not been described in the literature. Motivated by
this issue, in the current study, the stability enhancement of supported axially moving Rayleigh and
EB beams utilizing AFG materials is comprehensively investigated numerically and analytically.
Additionally, an in-depth clarification of the effect of various essential parameters such as rotary
inertia factor and axial grading of materials on the dynamic features of the axially moving beams, as
well as their physical interpretations are presented. It is supposed that the material characteristics of
the moving beam are varying exponentially or linearly in the longitudinal direction. The dynamic
equation of the considered system is derived from Hamilton’s principle. Then, the reduced-order
equation of the system is obtained by implementing Galerkin method, and an eigenvalue problem
is carried out. The instability regions of axially moving AFG beam are detected. To confirm the
accuracy of the used approach, a comparison study with the available results in the literature is
conducted. Time response, natural frequencies, and critical velocity of the considered system are
acquired numerically. Additionally, an exact analytical expression is obtained for the critical divergence
velocity of AFG moving Rayleigh beams. Finally, the influence of key factors on the vibrational
response and instability boundaries of the system are elucidated.

2. Mathematical Modeling

In Figure 1, a viscoelastic AFG moving beam is depicted. It is supposed that the beam with simply
supported boundary conditions moves with a constant velocity V and is subjected to axial tension
load P. Length, cross-sectional area. as well as moment of inertia of the beam are denoted by L, A,
and I, respectively.
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The density, ρ(x), and elastic modulus, E(x), of the beam vary along the axial direction linearly or
exponentially as follows:

ρ(x) = ρ0g(x) (1)

E(x) = E0 f (x) (2)

where:

g(x) = 1 +
x
L

(
αρ − 1

)
or g(x) = e

x ln (αρ)
L (3)

f (x) = 1 +
x
L
(αE − 1) or f (x) = e

x ln (αE)
L (4)

in which αρ and αE represent the density and elastic modulus gradient parameters, respectively.
They can be declared as follows:

αρ =
ρL

ρ0
(5)

αE =
EL

E0
(6)

It is found that at x = 0, E = E0, and ρ = ρ0. Furthermore, E = EL and ρ = ρL at x = L. The potential
and kinetic energies of the system can be expressed as [5,18,40]:

U =
1
2

∫ L

0

(
P(w′(x, t))2 + M(w′′ (x, t))2

)
dx (7)

T = 1
2

∫ L
0 ρ(x)A

(
V2 +

( .
w(x, t) + Vw′(x, t)

)2
)
dx

+ 1
2

∫ L
0 ρ(x)I

( .
w′ (x, t) + Vw′′ (x, t)

)2
dx

(8)

in which prime and overdot indicate spatial and temporal derivatives, respectively. Additionally,
w(x, t) presents the lateral displacement of the system, and M is the bending moment and can be
calculated by as follows [41]:

M = −E(x)Iw′′ (x, t) + ζ
(
I

.
w′′ (x, t) + VIw′′′ (x, t)

)
(9)

where ζ is the viscoelastic coefficient.
According to Hamilton’s principle, one can write [42,43]:

δ

∫ t2

t1

(T −U)dt = 0 (10)

By substituting Equations (7)–(9) into Equation (10), the dynamic equation of motion of the
considered system can be acquired as:

ρ(x)A
( ..
w + 2V

.
w′ + V2w′′

)
+ ρ′(x)A

(
V

.
w + V2w′

)
− ρ(x)I

( ..
w′′ + V

.
w′′′

)
−ρ′(x)I

( ..
w′ + V

.
w′′

)
−V

(
ρ(x)I

( .
w′′′ + Vw′′′′

)
+ 2ρ′(x)I

( .
w′′ + Vw′′′

)
+ρ′′ (x)I

( .
w′ + Vw′′

)
) − Pw′′ + E(x)Iw′′′′ + 2E′(x)Iw′′′

+E′′ (x)Iw′′ + ζI
( .
w′′′′ + Vw′′′′′

)
= 0

(11)

To obtain the dimensionless dynamic equation of the system, the subsequent dimensionless
variables are introduced:

ξ =
x
L

, η =
w
L

, τ =
t
T

(12)
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where:

T =

√
ρ0AL2

P
(13)

Substituting the dimensionless parameters of Equations (12) and (13) into Equation (11) leads to
the subsequent dimensionless dynamic equation:

g(ξ)
( ..
η+ 2v

.
η
′
+ v2η′′

)
+ λ(ξ)

(
v

.
η+ v2η′

)
−β

(
g(ξ)

( ..
η′′ + v

.
η′′′

)
+ λ(ξ)

( ..
η
′
+ v

.
η′′

)
+v

(
g(ξ)

( .
η′′′ + vη′′′′

)
+ 2λ(ξ)

( .
η′′ + vη′′′

)
+ θ(ξ)

( .
η
′
+ vη′′

))
) − η′′

+v2
f ( f (ξ)η′′′′ + 2γ(ξ)η′′′ + χ(ξ)η′′ ) + µ

( .
η′′′′ + vη′′′′′

)
= 0

(14)

in which the overdot and prime denote the differentiation with respect to the dimensionless coordinates.
Additionally, the dimensionless parameters in Equation (14) are defined as:

v = V
√
ρ0A

P , k f =
√

E0I
PL2 , β = I

AL2 , f (ξ) = f (x), µ = ζI
PL3

√
P
ρ0A

λ(ξ) = g′(x)L, θ(ξ) = g′′ (x)L2, γ(ξ) = f ′(x)L, χ(ξ) = f ′′ (x)L2
(15)

It should be mentioned that β and kf are the rotary inertia factor and the flexural stiffness of the
considered system, respectively. It is worth noting that the governing equation of the system reduces
to that of AFG moving EB beam by setting β = 0. Furthermore, if the viscoelastic coefficient of the
system is supposed to be zero (µ = 0), the dynamic equation degenerates to that of a moving elastic
AFG Rayleigh beam.

3. Discretization Technique

With the aim of discretizing the dynamic equation of the system, the lateral displacement of the
beam is considered as [44–46]:

η(ξ, τ) =
n∑

r=1

ϕr(ξ)qr(τ) (16)

in which qr, n, and ϕr are dimensionless generalized coordinate, the number of basic functions,
and acceptable mode shape for the transverse displacement of the system, respectively. The normalized
mode shapes of a simply supported beam are given by [47]:

ϕr(ξ) =
√

2 sin(rπξ) (17)

By applying the Galerkin discretization procedure, one can obtain the discretized form of the
dynamic equation of the system as follows:

M
..
q(τ) + C

.
q(τ) + Kq(τ) = 0 (18)

where q, M, C, and K are the vector of generalized coordinates, mass, damping, and stiffness matrices,
respectively, and are given by:

q = [q1, q2, . . . , qn]
T (19)

Msr =

∫ 1

0
(g(ξ)φs(ξ)φr(ξ) − β(g(ξ)φs(ξ)φ

′′

r (ξ) + λ(ξ)φs(ξ)φ
′′

r (ξ)))dξ (20)

Csr = v
∫ 1

0 (2g(ξ)φs(ξ)φ′r(ξ) + λ(ξ)φs(ξ)φr(ξ)

−β(2g(ξ)φs(ξ)φ
′′′′

r (ξ) + 3λ(ξ)φs(ξ)φ
′′

r (ξ) + θ(ξ)φs(ξ)φ′r(ξ)))dξ

+µ
∫ 1

0 φs(ξ)φ
′′′′

r (ξ)dx

(21)
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Ksr = v2
∫ 1

0 (g(ξ)φs(ξ)φ
′′

r (ξ) + λ(ξ)φs(ξ)φ′r(ξ)

−β(g(ξ)φs(ξ)φ
′′′′

r (ξ) + 2λ(ξ)φs(ξ)φ
′′′

r (ξ) + θ(ξ)φs(ξ)φ
′′

r (ξ)))dξ

+k2
f

∫ 1
0 ( f (ξ)φs(ξ)φ

′′′′

r (ξ) + 2γ(ξ)φs(ξ)φ
′′′

r (ξ)

+χ(ξ)φs(ξ)φ
′′

r (ξ))dξ+ µv
∫ 1

0 φs(ξ)φ
′′′′′

r (ξ)dξ−
∫ 1

0 φs(ξ)φ
′′

r (ξ)dξ

(22)

4. Stability Examination

The second-order differential equations of Equation (18) can be reduced to the following first-order
ones as:

B
.
Z(τ) + EZ(τ) = 0 (23)

where:

B =

[
0 M

M C

]
, E =

[
−M 0

0 K

]
, Z(τ) =

[
q(τ)
.
q(τ)

]
(24)

Assuming Z(τ) = Aeiωτ yields the following eigenvalue problem:

DA− iωI = 0 (25)

where I indicates the unity matrix and D = −B−1E. Moreover, ω is the complex-valued natural
frequency of the AFG moving Rayleigh beams and can be determined in terms of different key factors
such as rotary inertia factor, flexural stiffness, and density and elastic modulus gradient parameters.
The stability of the AFG moving Rayleigh beams is profoundly affected by the sign of imaginary and
real parts of the natural frequency. Imaginary and real parts of the natural frequency are related to
damping and the frequency of oscillation of the system, respectively. When the real part of one of
the frequency branches becomes zero while its imaginary part is negative (Re(ω) = 0, Im(ω) < 0),
the instability via a pitch-fork bifurcation occurs in the system. The minimum velocity at which the
divergence instability happens is recognized as the critical velocity. Furthermore, when the imaginary
part of at least one of the frequency branches is negative while its real part is positive (Real(ω) > 0,
Image(ω) < 0), the system experiences flutter instability via a Hopf bifurcation [9].

5. Results and Discussion

Firstly, in the case of isotropic system, the results are acquired and compared with the literature.
Then, the effect of density and elastic modulus gradations separately and simultaneously on the
vibrational frequencies, the dynamic response, and the stability regions of AFG moving Rayleigh
and EB simply supported beams are explored and highlighted. It should be mentioned that the
dynamic response of the system can be determined numerically by employing the fourth-order
Runge–Kutta technique.

5.1. Model Verification

To examine the correctness of the present solution, the real part of the fundamental frequency of
an isotropic moving EB simply supported beam under a compressive load versus dimensionless axial
velocity is plotted in Figure 2 for various values of flexural stiffness. As revealed in this figure, the results
of the current investigation are in good agreement with those presented by Oz and Pakdemirli [9].
According to Figure 2, by increasing kf, the fundamental frequency of the isotropic system rises.

In Figure 3, the real part of the three vibrational frequencies of isotropic moving simply supported
Rayleigh beam under tension load is displayed. The obtained outcomes are in a close agreement with the
results obtained by Chang et al. [18]. It should be noted that, to obtain the presented results in Figures 2
and 3, nine terms in Equation (16) are considered. To this end, due to the accuracy of the acquired
results, applying nine vibrational bending modes is reasonable for the subsequent computations.
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5.2. Effect of Elastic Modulus Variation

In Figure 4a,b, real and imaginary parts of the first two vibrational frequencies of the system
versus the axial velocity are displayed, respectively, for the exponential and linear variations of elastic
modulus when kf = 0.5. As it is obvious, the vibrational frequencies of the considered system are
purely real when the axial velocity is zero. Afterward, by increasing the velocity, the real part of
the vibrational frequencies of the system declines gradually, while their imaginary part is still equal
to zero. At the critical axial velocity (vd), the real part of system frequencies vanished, and the
system loses its stability and consequently undergoes the divergence phenomenon. The induced
divergence instability in moving structures due to ascending the axial velocity is analogous to that of
buckling in classical beams under the compression load [48]. By further increasing the axial velocity,



Symmetry 2020, 12, 586 8 of 22

the fundamental frequency of the considered structure becomes purely imaginary, while the second
natural frequency declines monotonically. Due to gyroscopic effects in the system, at higher velocities,
the beam regains its stability again. In other words, the initiation and termination of divergence
instability are correlated to the vanishing of real and imaginary parts of the fundamental vibrational
frequency, respectively. Eventually, real parts of the two vibrational frequencies merge into each
other via a Paidoussis coupled-mode flutter bifurcation while their imaginary parts divide into two
branches with negative and positive values. This phenomenon is related to the flutter instability in the
system, and the corresponding velocity is known as the flutter velocity (vf). In fact, in addition to the
velocities lower than critical divergence velocity (v < vd), a narrow range of axial velocity (between the
termination point of the divergence instability and the initiation of flutter instability) exists in which
the system is stable at this operational velocity range. It is worth mentioning that the system is no
longer stable beyond the critical flutter velocity. As a result, the moving beam experiences a stability
evolution of “stable – first mode divergence – stable – coupled-mode flutter”.

According to Figure 4a, the real part of system frequencies ascends by increasing the elastic
modulus gradient parameter, especially frequencies of the higher modes. Additionally, increasing
αE leads to ascending the critical divergence and flutter velocities of axially AFG moving EB beams.
In other words, it is feasible to hinder the occurrence of undesirable divergence phenomenon by
increasing the elastic modulus gradient in moving structures. Since αE has an increasing role in the
stiffness matrix; hence, any increment in αE leads to a stiffer system and also wider stability regions. In
other words, increasing αE induces the stiffness-hardening effect in the system. Another important
feature in Figure 4a,b is that the velocity bandwidth corresponding to the divergence and flutter
phenomena in the system (vd < v < vf) would be expanded slightly by increasing αE. Moreover, based
on these figures, compared with the exponential variation of elastic modulus, the linear variation
leads to a more stable system. As demonstrated in Figure 4b, the damping ratio of the system is
higher for αE > 1 and linear variation of elastic modulus. Accordingly, it is possible to determine the
instability thresholds and vibrational behavior of the system by fine-tuning of the elastic modulus
gradient parameter.
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To better understand the dynamic behavior of the considered structure, the time history of the first
generalized coordinate of the system in various velocities are displayed in Figure 5 for kf = 0.5, β = 0,
αρ = 1, and αE = 2. Unit static displacement and zero initial velocity for the first mode (q1(0) = 0 and
.
q1(0) = 0) are considered for the initial conditions of the system. According to Figure 4a, for v = 1,
Real(ω) > 0 and Image(ω) = 0; hence, the system is dynamically stable and generates stable harmonic
oscillations. By increasing v, the effective stiffness of the system declines due to the centrifugal force
effects. For v = 2.5, the real part of the fundamental frequency of the considered system equals zero,
and the beam undergoes instability. In this condition, the dynamic response of the system dramatically
grows without oscillation, and the static instability occurs in the system. Increasing the velocity to v = 4
leads to vanishing the imaginary part of frequency, and the beam regains its stability. As the velocity
increases, when v = 5, the real part of the frequency grows, while the imaginary part of the vibrational
frequency becomes zero. As a result, the oscillation amplitude of the system amplified exponentially
by the time. In this case, unlike the divergence instability, the AFG moving beam experiences the
flutter instability with growing oscillation. Therefore, the flutter instability is more dangerous than the
divergence instability for axially moving structures.

To better understand the stable configuration of the system, stability maps of the system in
vd–kf and vd–αE planes are drawn in Figure 6a,b, respectively. The indicated curves in the stability
maps separated the stable and unstable regions, in which, above of each curve, the structure is in the
divergence condition. The critical divergence velocity of the system in Figure 4 is consistent with
Figure 6. According to Figure 6a, the greater the flexural stiffness, the more stable the system becomes.
Therefore, one can conclude that increasing the flexural stiffness parameter has a stabilizing effect
on the axially moving systems. Additionally, by increasing αE, the stability regions of the system
expanded. Based on Figure 6a, the linear variation of elastic modulus expands the stability regions of
the system more than the exponential one. Moreover, the effect of the elastic modulus gradient is more
prominent at higher values of kf, and the stability borders separate from each other.
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According to Figure 6b, compared with the conventional isotropic axially moving beam (αE = 1),
the AFG system is more stable when αE > 1 and ascending αE promotes the stability of the system. It is
evident that the critical divergence velocity of the system increases by kf, which can be attributed to
the stabilizing effects of the flexural stiffness. By approaching the value of elastic modulus gradient
parameter to one (isotropic condition), the stability boundaries of the system are close to each other for
linear and exponential distributions, and these boundaries separate from each other by increasing or
decreasing of αE. Additionally, except at αE = 1, the system is more stable for the linear distribution of
elastic modulus in comparison with the exponential one.

5.3. Effect of Density Variation

To study the influence of the density gradient parameter on the system dynamics, the evolution
of real and imaginary parts of two vibrational frequencies versus the axial velocity is demonstrated
in Figure 7a,b for various values of αρ. The influence of αρ is more tangible in the vibrational
frequencies of higher modes. As displayed, the natural frequencies of the system have a descending
trend by increasing the density gradient parameter. Hence, the influence of αρ and αE variations on
the vibrational behavior of the system are opposite to each other. Furthermore, the stability region
of the system shrinks by ascending the density gradient parameter. Moreover, in contrast to the
case of variable elastic modulus scrutinized in the former section, in the case of variable density,
the critical divergence and flutter velocities of the exponential distribution is higher than that of the
linear distribution.
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The density gradient parameter is contributed in the mass, damping, and stiffness matrices, which
associated with mass-addition effect, gyroscopic effect, and stiffness-hardening effect, respectively.
According to Figure 7a,b, one can conclude that the mass-addition effect is dominant in the system.
Another important feature in the frequency diagrams of AFG moving beams is that compared with the
case of elastic modulus grading, the system experiences a wider range of vibrational frequencies in
the case of density gradation. For this reason, from the perspective of designing, the case of density
variation is more effective in avoiding the resonance phenomenon. By scrutinizing Figures 4 and 7,
it can be observed that axially grading the materials changes the critical velocities of the system, while
it does not alter the order and the type of the system bifurcation series. Accordingly, one can conclude
that the quantitative values of natural frequencies and critical velocities are strictly dependent on axial
grading of materials, but the qualitative stability of the system does not vary by the axial gradation of
materials. Based on Figures 4 and 7, it can be mentioned that the vibrational behavior of the axially
moving systems is highly dependent on the αρ and αE, as well as the type of their distributions.

To better describe the dynamic behavior of AFG moving beams, the stability maps in vd–αρ and
vd–β planes are plotted in Figure 8a,b, respectively. As demonstrated in Figure 8a, the AFG moving
beam is more stable for αρ < 1 in comparison with the isotropic one. It is crucial to mention that the
stability borders of exponential and linear distributions approach to each other for the density gradient
parameters close to one (i.e., the isotropic case). Moreover, the critical velocity of the structure is higher
for the exponential distribution of density in comparison with the linear one, especially for the higher
and lower values of αρ. In other words, the difference between the stability borders of linear and
exponential distributions can be magnified by selecting a higher or lower density gradient.
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Figure 8. Critical divergence velocity of an AFG Rayleigh beam against (a) density gradation parameter
and (b) rotary inertia factor for kf = 0.5 and αE = 1, µ = 0.

According to Figure 8a,b, since increasing the rotary inertia factor displaces the stability boundaries
toward smaller velocities, EB theory predicts less stability for the axially moving structures in
comparison with Rayleigh beam theory. Additionally, for any constant values of β, the stability regions
of the system shrink by increasing αρ. Generally, compared with the stability maps in vd–kf and vd–αE

planes analyzed in the former section, it can be declared that the stability maps in vd–β and vd–αρ are
overall descending with increasing β and αρ. This implies that increasing β and αρ can destabilize the
system and leads to the decrement of the critical divergence velocity of the structure. It should be
mentioned that the indicated stability borders in Figures 7 and 8 are in agreement. Based on Figures 7
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and 8, the critical velocity of the structure is substantially dependent on αρ. This dependency is more
pronounced for the higher and lower values of αρ.

5.4. Effect of Simultaneous Elastic Modulus and Density Variations

According to previous sections, it can be concluded that the variations of elastic modulus and
density along the axial direction of the structure have remarkable effects on the vibrations of axially
moving beams. Additionally, it is demonstrated that mitigating the excessive oscillations is feasible by
adjusting αE and αρ, separately. Based on Figures 4–8, variations of elastic modulus and density along
the longitudinal direction of the beam have opposite effects on the stability of the system. As a result,
these parameters can provide additional degrees of freedom to modify the dynamic characteristics
of axially moving structures. In other words, it is possible to significantly improve the performance
of axially moving systems by simultaneous fine-tuning αE and αρ. Therefore, determining the role of
simultaneous gradation of the material properties on the stability of the moving structures is of great
significance. In this section, stability characteristics of the system are explored by considering the coupled
variation of density and elastic modulus through the axial direction (simultaneous mass-addition and
stiffness-hardening effects). Additionally, the exact analytical expression is presented for critical
divergence velocity. Furthermore, a comparison is carried out between different solution procedures.

When the system experiences the divergence phenomenon, the effective stiffness of the system
equals zero. In other words, at the divergence threshold, the lowest vibrational frequency of the
structure becomes zero. Consequently, the critical velocity of the system is related to the first mode
and obtained by reducing Equation (16) to the following equation:

M11
..
q1(τ) + C11

.
q1(τ) + K11q1(τ) = 0 (26)

in which the subscript one represents the first natural mode. Considering linear variations for material
properties of the system leads to the following equation:

K11 = π2
(
β
(
αρ + 1

)
v2

d − (αE + 1)k2
f

)
+ v2

d

(
αρ + 1

)
− 2 (27)

Equation (27) confirms that the critical velocity of the AFG moving system is dependent on the
β, αE, αρ, as well as kf of the system. To better inspect the stability of the two-dimensional contour
plot for the critical divergence velocity in αE–αρ and kf–β planes are drawn in Figure 9a,b, respectively.
As shown in Figure 9a, the critical divergence velocity of the system enhances by increasing the αE

and decreasing αρ and vice versa. As illustrated in Figure 9b, the critical divergence velocity of the
system increases by decreasing the rotatory inertia factor and increasing the dimensionless flexural
stiffness and vice versa. Additionally, it can be deduced that the influence of the flexural stiffness
and the rotary inertia factor on the stability of the system is opposite to each other. In other words,
contrary to the effect of αρ and β, increasing the elastic modulus gradient parameter and dimensionless
flexural stiffness enhance the buckling strength of the system. Accordingly, simultaneously selecting
larger values of αE and kf as well as choosing smaller values of β and αρ leads to a more stable system
and, consequently, improves the performance of the axially moving structures.

In Figure 10a–d), the instability thresholds of the system when the elastic modulus and density
gradient parameters are equal (αE = αρ = α) are demonstrated, and the validity of the analytical
expressions are examined. According to these figures, the critical divergence velocities acquired by the
numerical approaches are in a close agreement with those acquired analytically. As seen in Figure 10a,
increasing the material gradient parameter, α, leads to a slight decrease in the critical divergence
velocity of the structure. Therefore, compared with the stability maps in previous sections (Figures 6
and 8), it can be inferred that the density gradation (mass-addition effect) shows a dominant role in the
stability of the system, and elastic modulus gradation (stiffness-hardening effect) has less effect on the
vibrational behavior of the structure. It should be mentioned that compared with previous sections, as
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density and elastic modulus vary simultaneously, stability borders are closer to each other and are less
sensitive to the axial material gradation when the effect of flexural stiffness is highlighted. According
to Figure 10b, the stability regions of the system shrink by increasing the gradient parameter, and the
curves have a descending trend. Moreover, in the higher values of dimensionless flexural stiffness,
variation in the gradient parameter has a minor influence on the instability threshold of AFG moving
beam; this point can be helpful at the design stage. As depicted in Figure 10c,d, the stability regions
shrink by increasing the gradient parameter and rotary inertia factor. Compared with the isotropic
case, when α < 1, the axially moving beam is more stable. Furthermore, at sufficiently high gradient
parameter, the divergence velocity of the structure experiences small changes.
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The critical velocity of the system in the three-dimensional space of α, β, and kf is plotted in
Figure 11. It is detected that the instability threshold of moving beams is entirely dependent on the
axial material gradation, dimensionless flexural stiffness, and rotary inertia factor. As it is obvious,
the variation of the material gradient parameter and the rotary inertia factor have the same effects
on the stability boundaries, and by increasing each of these parameters, the divergence strength of
the system diminishes. While ascending the flexural stiffness enhances the stability of the structure.
Consequently, in the simultaneous presence of higher values of dimensionless flexural stiffness, lower
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values of the material gradient, and rotary inertia factor, the performance of axially moving systems
would be improved. Therefore, these parameters could be introduced as the key factors for the
vibration control of moving continua. Generally, AFG moving beams are more flexible to adjust their
vibrational behavior in comparison with isotropic ones. As a result, it can be claimed that, compared
with isotropic materials, AFG ones have a better performance in axially moving structures.
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5.5. Effect of Viscoelastic Material

Finally, to explore the influence of viscoelastic materials on the dynamics of the moving beam,
real and imaginary parts of the two vibrational frequencies of the system are plotted versus the velocity
in Figure 12a,b, respectively, for µ = 0.001. The critical divergence velocity of the structure does not
change by ascending the viscosity coefficient. This point can be verified by the analytical solution
presented in the previous section. Since the viscoelastic structure is non-conservative, the vibrational
frequencies are complex before the buckling, especially the frequency of higher modes. According to
Figure 12b, imaginary parts of the frequency curves lose their symmetry toward the x-axis when the
system is viscoelastic. Additionally, it can be understood that the viscoelastic structure experiences
the stability evolution of “stable-first mode flutter-second mode divergence”. As a result, it can be
established that compared with the isotropic and axially graded systems, utilizing viscoelastic materials
change the stability evolution of the axially moving continua. Generally, it can be stated that the
qualitative stability of the beams with axial motion is dependent on the effect of viscoelastic materials,
while, axial gradation of materials plays a significant role in determining quantitative values of the
critical velocity and the natural frequencies of the structure.
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Figure 12. (a) Real and (b) imaginary parts of two vibrational frequencies of a viscoelastic moving
beam for kf = 0.5, αE = αρ = 1, β = 0, µ = 0.001.

6. Conclusions

In this study, structural dynamics and possible vibrational instabilities of AFG moving beams
are investigated analytically and numerically in detail. Linear and exponential distributions for
the axial grading of material properties are considered for the system. By applying the Galerkin
discretizing technique and eigenvalue analysis, the natural frequencies, dynamic response, divergence
and flutter instability boundaries of the system are obtained for coupled effects of beam velocity,
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dimensionless flexural stiffness, viscosity coefficient, and axial material gradation. Closed-form
mathematical expression is derived for the critical divergence velocity of the system. Stability maps
and two-dimensional contour plots of critical divergence velocity are plotted for Rayleigh and EB
beams. The main outcomes of the current study may be narrated as follows:

• Increasing the density/elastic modulus gradient parameter has a destabilizing/stabilizing effect on
axially moving beams. Compared with isotropic axially moving beams, the system is more stable
when density/elastic modulus decreases/increases along the axial direction.

• In the case of density/elastic modulus variation, exponential/linear distribution leads to a more
stable system.

• In the case of simultaneous axial variation of elastic modulus and density, the effect of density
gradation on the vibrational configuration of the system is dominant.

• The higher flexural stiffness, and the lower rotary inertia factor, the more stable the structure
becomes. Moreover, the influence of axial material gradation on the stability boundaries of the
system is more tangible at higher and lower values of flexural stiffness and rotary inertia factor.

• Compared with isotropic and moving axially graded beams, utilizing the viscoelastic material
changes the stability evolution of the system.

It is demonstrated that compared with isotropic moving beams, axially moving beams present a
better performance by designating appropriate viscoelastic AFG materials.
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