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Abstract: This paper deals with the N policy M/G/1 queue with working breakdowns.
The supplementary variable and probability generating function techniques are implemented
to develop the steady-state results. The stability condition of a stable queue, as well as several
system performance measures, are also derived. A two-stage optimization method is employed to
determine the optimal threshold N and the optimal joint values of two mean service rates until the
stability constraint is satisfied. To demonstrate the effectiveness of two-stage optimization method,
some numerical results are presented. Finally, we carry out sensitivity analysis for the expected cost
function with numerical illustrations.

Keywords: N policy M/G/1 queue; sensitivity analysis; supplementary variable technique; two-stage
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1. Introduction

This paper investigates optimization analysis of the N-policy M/G/1 queue with working
breakdowns. The N-policy introduced by Yadin and Naor [1] is used to turn a server on when
the total number of customers in the system reaches a threshold N (N ≥ 1), and to turn a server
off when there are no customers in the system. There is extensive literature on the N-policy queue,
which has been studied by many researchers (see a recent survey by Jayachitra and Albert [2] and
the references cited therein). In many practical situations, servers break down at any time while in
operation; however, they still work at a lower service rate rather than completely stopping service
during the breakdown period. This is called a working breakdown, as first introduced by Kalidass
and Kasturi [3]. Based on the matrix analytic method, Liou [4] found the steady-state probabilities of
the number of customers in the M/M/1 queue with working breakdowns and impatient customers.
Kim and Lee [5] analyzed the M/G/1 queue with disasters and working breakdowns, and derived the
system size distribution and the sojourn time distribution, respectively.

The N-policy, T-policy, and the Min (N, T)-policy M/G/1 queues with unreliable servers were
proposed by Wang and Ke [6]. For the T-policy, the server takes a “vacation” of a fixed length T if
there are no customers in the system. When the vacation ends, the server returns from vacation and
works as long as there is at least one customer in the system. Otherwise, it takes another vacation of
fixed length T until at least one customer is present in the system. Moreover, the Min (N, T) policy
means that the server starts working if either the condition of the N-policy or the T-policy is satisfied.
For these three queues, they showed the steady-state probability that the server is busy, which is equal
to the traffic intensity. Wang [7] developed the exact steady-state solutions of the N-policy M/M/1
queue with server breakdowns. The N-policy M/M/1 queue with heterogeneous arrival rates, server
breakdowns, and vacations was analyzed by Ke and Pearn [8]. Wang et al. [9] utilized the principle

Symmetry 2020, 12, 583; doi:10.3390/sym12040583 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/2073-8994/12/4/583?type=check_update&version=1
http://dx.doi.org/10.3390/sym12040583
http://www.mdpi.com/journal/symmetry


Symmetry 2020, 12, 583 2 of 16

of maximum entropy to investigate the N-policy M/G/1 queue with server breakdowns and general
startup times. Using the same approach, Ke and Lin [10] approximated the steady-state probability
distributions of the queue length for the N-policy M[x]/G/1 queue with an unreliable server and a
single vacation. The optimal control of the N-policy M/G/1 queueing system with server breakdowns
and general startup times was examined by Wang et al. [11]. They applied the direct search method
to determine the optimal threshold N at the minimum cost. Jain and Bhargava [12] performed cost
analysis of the N-policy for the machine repair problem with mixed standbys and an unreliable server.
An N-policy MX/M/1 queueing system with server startup and breakdowns was analyzed by Vemuri
et al. [13], where service was in two phases. Singh et al. [14] focused on the investigation of the N-policy
queue with an unreliable server, state-dependent arrival rates, two phases of service, and m phases
of repair. Moreover, Yang and Ke [15] applied the supplementary variable technique to analyze the
(p, N)-policy M/G/1 queue with an unreliable server and a single vacation. Chen and Wang [16] address
the sensitivity analyses of a retrial machine repair problem with warm standby units and a single
server under the N-policy.

Over the years, there has been extensive literature on N-policy queues with server
breakdowns, in which the server stops working completely during the breakdown period.
However, there are no studies investigating the N-policy queue with working breakdowns.
This queueing model accommodates many real-world systems, such as computer systems, assembly
systems, and manufacturing systems. Thus, it motivates us to focus on the analysis of the N-policy
M/G/1 queue with working breakdowns. The purpose of this paper is three-fold.

(1) We derive several system performance measures, as well as the stability condition of this
queueing model;

(2) We establish a cost model to find the optimal threshold N, the optimal service rate during the
normal period, and the optimal service rate during the working breakdown period under the
stability condition;

(3) We apply the two-stage optimization method to search for the minimum expected cost. Numerical
examples are given to illustrate the effectiveness of the two-stage optimization method. Moreover,
a sensitivity analysis is also performed.

2. Model Descriptions

We consider the N-policy M/G/1 queue with working breakdowns. It is assumed that customers
arrive following a Poisson process with parameter λ. We assume that the service times in the normal
and working breakdown states are independent and identically distributed (i.i.d.) random variables
that obey arbitrary distribution functions B1(x) and B2(x), respectively, with respective mean service
rates µ1 and µ2. The Laplace–Stieltjes transforms of B1(x) and B2(x) are denoted by B∗1(θ) and B∗2(θ),
respectively. The server can serve only one customer at a time. Meanwhile, arriving customers form
a single waiting line based on the first-come, first-served (FCFS) discipline. The server may suffer
from failure at any time with Poisson breakdown rate α when it is turned on and working. Whenever
the server fails, it is immediately repaired at a repair rate β, and repair times are assumed to be
exponentially distributed. Arriving customers that find the server busy immediately join the queue
until the server is available. During the server breakdown period, customers continue to enter the
system according to a Poisson process. Once the server recovers to a normal state, it immediately
serves a customer with a fast service rate µ1. Otherwise, the failed server would be repaired and
then turned off when no customers are in the system. Moreover, we assume that various stochastic
processes involved in this queueing system are independent of each other.

Practical Justification of the Model

Cloud computing is the latest major computing paradigm, which shifts the deployment of
computing infrastructure (such as CPU, network, and storage) from end users to the cloud data center.
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Computing infrastructure is virtualized in cloud computing, and therefore all cloud services are
provided by virtual machines (VM), virtual networks, and virtual storage. Cloud service providers
offer a VM for each cloud service request, and each VM consists of a kernel program and a root file
system, with at least 5 GB disk space. As more cloud users arrive, the simultaneous disk access
becomes the performance bottleneck in cloud computing. To guarantee the availability and reliability
of cloud services, cloud providers usually establish distributed storage to improve storage efficiency.
A practical situation related to the distributed storage system is presented for illustrative purposes.
Consider a data center built and managed by the CloudStack cloud computing management system
providing a platform as a service (PaaS). To increase the disk access bandwidth, a Ceph distributed
storage cluster is integrated into the CloudStack cloud environment. Figure 1 depicts the system
architecture of this data center. The Ceph storage cluster consists of one Ceph monitor (MON), which
maintains a copy of the cluster map, and four Ceph object store daemons (OSD), which store data as
objects on a storage node.

To decrease the power consumption, the Ceph storage cluster is off at the outset. Assume that the
arrival of PaaS request follows the exponential distribution with parameter λ. Upon the arrival of a
request, the CloudStack will deploy a VM with a root file system stored in the local disk. The Ceph
storage cluster will be turned on when the number of PaaS requests exceeds the predefined threshold
(N), and therefore CloudStack allocates root file systems in the Ceph storage cluster. Also, the Ceph
storage cluster operates at an exponentially distributed full-speed disk access rate µ1 when four OSDs
are working properly, while it operates at an exponentially distributed lower speed disk access rate µ2

if some of the OSDs fail, with exponentially distributed failure rate α. The system manager requires an
exponentially distributed repair time with mean 1/β to replace a failed OSD with a new one. The Ceph
storage cluster will be shut off when none of VMs use its disk space.
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Figure 1. A cloud data center provides a platform as a service (PaaS) via CloudStack.VM, virtual
machine; OSD, object store daemon; MON, monitor.

3. Steady-State Results

Let C(t) be the server status at time t. Then, we get (i) C(t) = 0 if the server is turned off;
(ii) C(t) = 1 if the server is turned on and working; and (iii) C(t) = 2 if the server is turned on but
subject to working breakdowns.

Here, we let the supplementary variable ζ be the remaining service time for the customer in
service. Then, the state of the system at time t is given by K(t) ≡ number of customers in the system;
X(t) ≡ remaining service time when the server is turned on and working; Y(t) ≡ remaining service
time when the server is turned on but subject to working breakdowns; and ζ(t)≡ remaining service
time for the customer being served.
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Let

ζ(t) =


0,

X(t),
0,

Y(t),

C(t) = 0, 0 ≤ K(t) ≤ N − 1,
C(t) = 1, K(t) ≥ 1,
C(t) = 2, K(t) = 0,
C(t) = 2, K(t) ≥ 1.

Then,
{
(C(t), K(t), ζ(t)), t ≥ 0

}
is a continuous time Markov chain. Let us define

P0,n(t) = Prob
{
C(t) = 0, K(t) = n

}
, 0 ≤ n ≤ N − 1

P1,n(x, t)dx = Prob
{
C(t) = 1, K(t) = n, x ≤ ζ(t) ≤ x + dx

}
, n ≥ 1, x > 0,

P2,0(t) = Prob
{
C(t) = 2, K(t) = 0

}
P2,n(x, t)dx = Prob

{
C(t) = 2, K(t) = n, x ≤ ζ(t) ≤ x + dx

}
, n ≥ 1, x > 0,

In a steady state, we define the limiting probabilities P0,n = lim
t→∞

P0,n(t) for 0 ≤ n ≤ N − 1;

P2,0 = lim
t→∞

P2,0(t); and Pi,n(x) = lim
t→∞

Pi,n(x, t) for i = 1, 2, x > 0, n ≥ 1.

3.1. Steady-State Probability Equations

Using the arguments of Cox [17], the Kolmogorov forward equations for this queueing model
under the stability condition are given by

λP0,0 =

∫
∞

0
P1,1(x)µ1(x)dx + βP2,0, (1)

λP0,n = λP0,n−1, 1 ≤ n ≤ N − 1, (2)

(λ+ β)P2,0 =

∫
∞

0
P2,1(x)µ2(x)dx, (3)

d
dx

P1,n(x) = −[λ+ α+ µ1(x)]P1,n(x) + (1− δ1,n)λP1,n−1(x), n ≥ 1, (4)

d
dx

P2,n(x) = −[λ+ β+ µ2(x)]P2,n(x) + (1− δ1,n)λP2,n−1(x), n ≥ 1, (5)

The above equations are solved under the following boundary conditions at x > 0.

P1,n(0) =
∫
∞

0
P1,n+1(x)µ1(x)dx + β

∫
∞

0
P2,n(x)µ1(x)dx + δN,nλP0,N−1, n ≥ 1, (6)

P2,n(0) =
∫
∞

0
P2,n+1(x)µ2(x)dx + α

∫
∞

0
P1,n(x)dx + δ1,nλP2,0, n ≥ 1, (7)

where

δn,i =

{
1 i f i = n
0 i f i , n

3.2. Probability Generating Function

The probability generating function (p.g.f.) technique is used to derive analytic solutions P0,0 and
P2,0 in neat closed-form expressions. The respective probability generating functions of P0,n, P1,n, and
P2,n are defined as follows:

G0(z) =
N−1∑
n=0

znP0,n , |z|≤ 1,
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G1(x, z) =
∞∑

n=1

znP1,n(x) , |z|≤ 1,

G2(x, z) =
∞∑

n=1

znP2,n(x) , |z|≤ 1.

We express G0(z) in terms of P0,0 as

G0(z) = P0,0

N−1∑
n=0

zn = P0,0
1− zN

1− z
= P0,0 θN(z), (8)

where

θN(z) =
1− zN

1− z

Equation (4) is multiplied by zn (n = 1, 2, . . .), and then the equations are added term by term.
We finally get

∂
∂x

G1(x, z) = −[λ(1− z) + α+ µ1(x)]G1(x, z). (9)

Similarly, Equation (5) is multiplied by zn (n = 1, 2, . . .), and then the equations are added term
by term. We finally obtain

∂
∂x

G2(x, z) = −[λ(1− z) + β+ µ2(x)]G2(x, z). (10)

Equations (6) and (7) are multiplied by zn (n = 1, 2, . . .), and then the equations are added term
by term. We finally get

λP0,0z + zG1(0, z) = βP2,0z + λP0,0zN+1 +

∫
∞

0
G1(x, z)µ1(x)dx + βz

∫
∞

0
G2(x, z)dx, (11)

and

(λ+ β)P2,0z + zG2(0, z) = λP2,0z2 +

∫
∞

0
G2(x, z)µ2(x)dx + αz

∫
∞

0
G1(x, z)dx. (12)

Solving Equations (9) and (10) yields

G1(x, z) = G1(0, z)e−[λ(1−z)+α]x[1− B1(x)], (13)

and
G2(x, z) = G2(0, z)e−[λ(1−z)+β]x[1− B2(x)]. (14)

Substituting Equations (13) and (14) into Equations (11) and (12) yields

[z− B∗1(λ(1− z) + α)]G1(0, z) − βz
1− B∗2(λ(1− z) + β)

λ(1− z) + β
G2(0, z) = λz(zN

− 1)P0,0 + βzP2,0, (15)

And

− αz
1− B∗1(λ(1− z) + α)

λ(1− z) + α
G1(0, z) + [z− B∗2(λ(1− z) + β)]G2(0, z) = [λ(z− 1) − β]zP2,0. (16)
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We define the following notations:

B∗1 ≡ B∗1[λ(1− z) + α],
B∗2 ≡ B∗2[λ(1− z) + β],
θα(z) ≡ [λ(1− z) + α]
θβ(z) ≡ [λ(1− z) + β)]

Using Cramer’s rule to solve Equations (15) and (16), we obtain the expressions for

G1(0, z) =
z (z− 1)θα(z)θβ(z)

[
λθN(z) (z− B∗2)P0,0 + βB∗2 P2,0

]
(z− B∗1) (z− B∗2)θα(z)θβ(z) − α β z2 (1− B∗1) (1− B∗2)

, (17)

and

G2(0, z) =
zθβ(z)

{
αλ z (1− B∗1) (z

N
− 1)P0,0 +

[
α β z (1− B∗1) − (z− B∗1)θα(z)θβ(z)

]
P2,0

}
(z− B∗1) (z− B∗2)θα(z)θβ(z) − α β z2 (1− B∗1) (1− B∗2)

. (18)

Substituting Equations (17) and (18) into Equations (13) and (14), we obtain

G1(z) =
z(z− 1)θβ(z)(1− B∗1)

[
λθN(z)(z− B∗2)P0,0 + βB∗2P2,0

]
(z− B∗1) (z− B∗2)θα(z)θβ(z) − αβz2 (1− B∗1) (1− B∗2)

, (19)

and

G2(z) =
z(1− B∗2)

{
αλz(1− B∗1)(z

N
− 1)P0,0 +

[
αβz(1− B∗1) − (z− B∗1)θα(z)θβ(z)

]
P2,0

}
(z− B∗1) (z− B∗2)θα(z)θβ(z) − α β z2 (1− B∗1) (1− B∗2)

. (20)

The denominator of G1(z) has one of its roots (say) z = r1 between 0 and 1. Since G1(z) ≥ 0, for
0 ≤ z ≤ 1, the numerator of G1(z) must vanish at z = r1. Therefore

P2,0 =
λθN(r1)

{
B∗2[λ(1− r1) + β] − r1

}
βB∗2[λ(1− r1) + β]

P0,0, (21)

where

θN(r1) =
1− r1

N

1− r1
.

It should be noted that when N = 1 and B∗2(s) =
µ2

s+µ2
, the expression in Equation (21) for P2,0 is

identical to the existing result in the literature (see Kalidass and Kasturi [3]).
Let G(z) be the p.g.f. of the number of customers in the system; thus

G(z) = P2,0 + G0(z) + G1(z) + G2(z) (22)

Substituting Equations (8), (19), and (20) into Equation (22), the expression for G(z) is given by

G(z) = P2,0 + G0(z) + G1(z) + G2(z) = P2,0 + P0,0θN(z) +
N1(z)
D(z)

+
N2(z)
D(z)

,

where

G1(z) =
N1(z)
D(z)

, (23)

G2(z) =
N2(z)
D(z)

, (24)
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D(z) = (z− B∗1)(z− B∗2)θα(z)θβ(z) − αβz2(1− B∗1)(1− B∗2), (25)

N1(z) = z(z− 1)θβ(z)(1− B∗1)
[
λθN(z)(z− B∗2)P0,0 + βB∗2P2,0

]
, (26)

N2(z) = z(1− B∗2)αλz(1− B∗1)(z
N
− 1)P0,0

+ z(1− B∗2)
[
αβz(1− B∗1) − (z− B∗1)θα(z)θβ(z)

]
P2,0.

(27)

Thus, P0,0 can be obtained by using the normalizing condition G(1) = 1. That is,

lim
z→1

G(z) = 1

However, since the denominator and numerator are both 0, we apply L’Hospital’s rule and
find that

1 = lim
z→1

G(z) =G(1) = P2,0 + G0(1) + G1(1) + G2(1),

where
G0(1) = NP0,0,

G1(1) = −
Nβλ[1−B∗1(α)] [1−B∗2(β)]P0,0+β

2B∗2(β)[1−B∗1(α)]P2,0

θλ−[θλ+αβ] [B∗1(α)+B∗2(β)]+[θλ+2αβ] [B∗1(α)B∗2(β)]
,

G2(1) = −
N αλ [1−B∗1(α)] [1−B∗2(β)]P0,0+

{
θλ [1−B∗1(α)]−α βB∗1(α)

}
[1−B∗2(β)]P2,0

θλ−[θλ+αβ] [B∗1(α)+B∗2(β)]+[θλ+2αβ] [B∗1(α)B∗2(β)]
.

Hence, P0,0 can be written as

P0,0 =
θλ

[
1− B∗1(α)

] [
1− B∗2(β)

]
+ α βθB∗1B∗2

N α βθB∗1B∗2
− θλ θN(r1)B∗2(β)

[
1− B∗1(α)

] [
1− r1

B∗2(λ(1−r1)+β)

] (28)

where
θλ = λ (α+ β), θB∗1B∗2

= [2B∗1(α)B∗2(β) − B∗1(α) − B∗2(β)].

We first mention that when N = 1, then B∗1(s) =
µ1

s+µ1
and B∗2(s) =

µ2
s+µ2

, the expression in Equation
(28) for P0,0, which corresponds to the existing result in the literature (see Kalidass and Kasturi [3]).
In particular, if we set µ2 = 0, then we get P2,0 = 0 and B∗2(s) ≡ 0. Therefore, we have

P0,0 =
[λ (α+ β) + αβ]B∗1(α) − λ (α+ β)

NαβB∗1(α)
.

Next, it is important to mention that if we put B∗1(s) =
µ1

s+µ1
, then we obtain

P0,0 =
µ1β− λ (α+ β)

Nµ1β
,

which coincides with the existing result in the literature (see Wang [7]).

3.3. Stability Condition

The condition for a stable queueing system is given by Equation (28), since

0 < P0,0 < 1

After some routine manipulations, we can get

λ(α+ β) [ 1− B∗1(α) ] [ 1− B∗2(β) ]

α β [B∗1(α) + B∗2(β) − 2B∗1(α)B∗2(β) ]
< 1 (29)
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which is called the stability condition.
Substituting N = 1, B∗1(s) =

µ1
s+µ1

, and B∗2(s) =
µ2

s+µ2
into Equation (29), and by performing the

algebraic manipulations, we have λ < βµ1+αµ2
α+β ; that is, the system is stable if λ(α+β)

βµ1+αµ2
< 1, which is

identical to the existing stability condition in the literature (see Kalidass and Kasturi [3]).

4. System Performance Measures

4.1. Computations for PI, PB, and PD

In steady state, let PI
≡ the probability that the server is turned off; PB

≡ the probability that the
server is turned on and working; and PD

≡ the probability that the server is turned on but subject to
working breakdowns.

Thus, we get
PI= G0(1), PB= G0(1), and PD= P2,0 + G2(1).

It is apparent from Equation (2) that

PI = NP0,0. (30)

From Equations (19) and (20), we have

βPD = αPB. (31)

Since
PB + PD = 1− PI = 1−NP0,0, (32)

Then from Equation (31) we get

PD =
α

α+ β
(1−NP0,0) (33)

PB =
β

α+ β
(1−NP0,0). (34)

4.2. Computations for E[I], E[B], E[D], and E[C]

The idle period, the busy period, the partial breakdown period, and the busy cycle are defined in
the following:

(1) Idle period I: the length of time during which the server is turned off or is removed from
the system;

(2) Busy period B: the length of time during which the server is turned on and in operation and
customers are being served;

(3) Partial breakdown period D: the length of time during which the server is broken down and
customers are being served;

(4) Busy cycle C: the length of time from the beginning of an idle period to the beginning of the next
idle period.

The expected lengths of the idle period, busy period, partial breakdowns period, and the busy
cycle are denoted by E[I], E[B], E[D], and E[C], respectively. Since the busy cycle is equal to the sum of
the idle period, the busy period, and the breakdown period, we obtain

E[C] = E[I] + E[B] + E[D]
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Due to the memoryless property of the Poisson process, the length of idle period is equivalent to
the sum of N exponential random variables, each with mean 1/λ. Thus, the expected length of the idle
period is given by

E[I] =
N
λ

The long-run fraction of time the server is idle, busy, and in working breakdown states is given by

E[I]
E[C]

= PI = NP0,0 (35)

E[B]
E[C]

= PB =
β

α+ β
(1−NP0,0) (36)

E[D]

E[C]
= PD =

α
α+ β

(1−NP0,0) (37)

Thus, we obtain

E[C] =
1

λP0,0
(38)

E[B] =
β

λP0,0(α+ β)
(1−NP0,0) (39)

E[D] =
α

λP0,0(α+ β)
(1−NP0,0) (40)

4.3. Computations for E[N0], E[N1], E[N2], and E[Ns]

Let us define that E[N0] ≡ the expected number of customers in the system when the server is
turned off; E[N1] ≡ the expected number of customers in the system when the server is turned on and
working; E[N2] ≡ the expected number of customers in the system when the server is turned on but
subject to working breakdown; E[Ns] ≡ the expected number of customers in the system.

The expressions for E[N0], E[N1], E[N2], and E[Ns] are obtained as follows:

E[N0] = G′0(1) =
d
dz

G0(z)|z=1 ,

E[N1] = G′1(1) =
d
dz

G1(z)|z=1 ,

E[N2] = G′2(1) =
d
dz

G2(z)|z=1 ,

E[Ns] = G′(1) =
d
dz

G(z)|z=1 .

To determine the expression for E[N0], we compute G′0(1) = d
dz G0(z)|z=1 in Equation (8). Then,

we obtain

E[N0] = G′0(1)=
N(N − 1)P0,0

2
(41)

To find E[N1], we compute G′1(1) in Equation (23) by using L’Hôspital’s rule twice to obtain

E[N1] = G′1(1) =
N′′ 1(1)D′(1) −N′1(1)D′′ (1)

2 [D′(1)]2
(42)

where the values of D′(1), D′′ (1), N′1(1), and N′′ 1(1) can be obtained from Equations (25) and (26).
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Again, to find E[N2], we compute G′2(1) in Equation (24) by using L’Hôspital’s rule twice to get

E[N2] = G′2(1) =
N′′ 2(1)D′(1) −N′2(1)D′′ (1)

2 [D′(1)]2
(43)

where the values of D′(1), D′′ (1), N′2(1), and N′′ 2(1) can be obtained from Equations (25) and (27).

5. Cost Optimization Analysis

We establish the steady-state expected cost function per unit time for the N policy M/G/1 queue
server with working breakdowns, in which N, µ1, and µ2 are decision variables. We note that N is a
discrete variable with a natural number, and µ1 and µ2 are continuous variables with positive numbers.
Our objective is to determine the optimum value of (N,µ1, µ2) (e.g., (N∗,µ∗1, µ∗2)), so as to minimize
this function.

5.1. Cost Function

We select the following cost elements, where Ch ≡ holding cost per unit time for each customer
present in the system; C f ≡ cost per unit time to keep the server off; C0 ≡ cost per unit time to keep the
server on; Cb ≡ breakdown cost per unit time for a broken server; Cs ≡ startup cost for turning the
server on plus shut-down cost for turning the server off; C1 ≡ fixed cost for a fast service rate; and C2 ≡

fixed cost for a slow service rate.
Using these cost elements listed above, the total expected cost function per unit time is defined as

F(N,µ1,µ2) = ChE[Ns] + C f PI + C0PB + CbPD + Cs
1

E[C]
+ C1µ1 + C2µ2. (44)

The cost minimization problem can be presented mathematically as

Minimize
N,µ1,µ2

F(N,µ1,µ2)

subject to
θλ

[
1− B∗1(α)

] [
1− B∗2(β)

]
−α βθB∗1B∗2

< 1.

Suppose that the cost parameters in Equation (44) are linear in the expected number of the indicated
quantity. Due to the fact N is a discrete quantity, µ1 and µ2 are continuous quantities, and the highly
non-linear and complex nature of the optimization problem, it would have been extremely difficult to
develop the optimum solution (N∗, µ∗1, µ∗2) symbolically. Furthermore, we should explicitly indicate
that the solution really gives the minimum value. The results of extensive numerical experiments show
that the cost function is truly convex and that the solution actually gives a minimum. The two-stage
optimization method combines the direct search method and the quasi-Newton method, which first
find the major discrete adjustment quantity N, and then determine the minor continuous adjustment
quantities µ1 and µ2; that is, we use the two-stage optimization method with (N,µ1,µ2) as its initial
values to determine the optimal value of (N,µ1,µ2), which we denote as (N∗, µ∗1, µ∗2).

5.2. Direct Search Method

Since N is a discrete variable, successive values of N are directly substituted for the cost function
until the minimum value of F(N,µ1,µ2), for example F(N∗,µ1,µ2), is achieved. We choose the service
time distribution to be E2 (two-stage Erlang distribution). The following numerical results are provided
by using the following cost parameters

Ch =$60, C f =$80, Co =$300, Cb =$600, Cs =$320, C1 =$20, C2 = $10.
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The cost minimization problem can be expressed mathematically as

F(N∗, µ1, µ2) = Minimize
N

F(N, µ1, µ2)

subject to:
λ(α+ β)(α+ 4µ1)(β+ 4µ2)

4[ (αµ2)
2 + (βµ1)

2 + 4µ1µ2(αµ2 + βµ1) ]
< 1

At first, we provide a numerical example to determine the optimal value N∗ by using the direct
search method. We fix α = 0.2, β = 0.3, (µ1,µ2) =(2.5, 2.0), vary N from 1 to 10, and select different
values of λ= 0.4, 1.0, 2.0.

Table 1 and Figure 2 depict the various values of λ on (i) the expected cost F(N, µ1, µ2) and (ii) the
optimal threshold N. We should note that a minimum expected cost (a) of $ 316.37 is achieved at N∗ = 2
for λ= 0.4, (b) of $ 468.16 is achieved at N∗ = 3 for λ= 1.0, and (c) of $ 921.24 is achieved at N∗ = 2 for
λ= 2.0. If the function F(N, µ1, µ2) is unimodal, a single relative minimum exists. To find N∗, we have
to show the existence of convexity or unimodality of F(N, µ1, µ2). Figure 2 demonstrates the curve
representing the expected cost function, and it shows that the expected cost function is convex.
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Table 1. The expected cost F(N, µ1, µ2) for various values of λ, α, and β.

N
1 2 3 4 5 6 7 8 9 10

λ

0.4 339.12 316.37 326.74 345.78 368.51 393.24 419.20 446.00 473.39 501.23

1.0 522.29 469.43 468.16 480.59 498.97 520.59 544.23 569.24 595.22 621.92

2.0 926.11 921.24 936.73 958.26 982.65 1008.68 1035.73 1063.46 1091.67 1120.23

5.3. Two-Stage Optimization Method

We initialize (N, µ1, µ2) and use the two-stage optimization method to search (N∗, µ∗1, µ∗2) until the
minimum value of F(N, µ1, µ2) (i.e., F(N∗, µ∗1, µ∗2)) is achieved and the stability constraint is satisfied.

The cost minimization problem can be illustrated mathematically as

F(N∗, µ∗1, µ∗2) = Minimize
µ1,µ2

F(N∗, µ1, µ2)
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subject to:
λ(α+ β)(α+ 4µ1)(β+ 4µ2)

4[ (αµ2)
2 + (βµ1)

2 + 4µ1µ2(αµ2 + βµ1) ]
< 1.

The steps of the two-stage optimization method are depicted as follows.

Step 1. Set n = 0, and xn = [µ1,µ2]
T.

Step 2. Set the initial trial solution for xn, convergence tolerance ε > 0, inverse Hessian approximation
H0, ∇F0 = ∇F(N, x0) = [∂F/∂µ1, ∂F/∂µ2]

T∣∣∣
x0

, and initialize N∗n by the direct search method.

Step 3. Compute Dn = −Hn∇Fn.
Step 4. η = 1, κ = 0.1, c = 0.0001, η = κη; repeat until F(xn + ηDn) ≤ F(xn) + cη∇FT

nDn

(the Wolfe conditions).
Step 5. Find the new trial solution xn+1 = xn + ηnDn, and N∗n+1 according to xn+1, where ηn is calculated

from a line search method to satisfy the Wolfe conditions (see Nocedal and Wright [18]); that is,

ηn = η,
Sn = xn+1 − xn, yn = ∇Fn+1 −∇Fn, σn = 1/yT

n Sn,
Hn+1 = (I − σnSnyT

n )Hn(I − σnynST
n ) + σnSnST

n .

Step 6. Set n = n + 1 and repeat Steps 3-5 if
∣∣∣∂F/∂µ1

∣∣∣> ε1 ,
∣∣∣∂F/∂µ2

∣∣∣> ε2 , or ‖xn+1 − xn‖ > ε3, where ε1,
ε2, and ε3 are the tolerances; otherwise, go to Step 7.

Step 7. Find the minimum value F(N∗, x∗n), where x∗n = (µ∗1,µ∗2).

We select N∗ =2, λ = 0.4, α = 0.2, β = 0.3, vary the values ofµ1 from 1.0 to 10.0, and vary the values
of µ2 from 1.0 to 20.0. The numerical results of F(N∗, µ1, µ2 ) are depicted in Figure 3. Figure 3 reveals
that: (1) the expected cost function F(N∗, µ1, µ2 ) is convex in µ1 and µ2; (2) F(N∗, µ∗1, µ∗2) = 310.704
at (µ∗1, µ∗2 ) = (3.061, 0.904).
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We also perform a sensitivity analysis for the cost function, along with changes in the designated
values of the system parameters. Table 2 reveals that: (i) F(N∗, µ∗1, µ∗2) increases as λ or α increases;
(ii) F(N∗, µ∗1, µ∗2) increases as β decreases; (iii) both µ∗1 and µ∗2 increase as λ or α increases; (iv) both µ∗1
and µ∗2 increase as β decreases. From Table 2, it is important to note that (i) N∗ increases as λ increases;
(ii) N∗ does not change, even though α varies from 0.2 to 0.3; and (iii) N∗ does not change, even though
β varies from 0.3 to 0.5. Intuitively, this seems too insensitive to changes in α and β.
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Table 2. The two-stage optimization method in searching the optimal solution F(N∗, µ∗1, µ∗2) for various
values of (λ,α, β).

(λ,α, β) (0.4,0.2,0.3) (1.0,0.2,0.3) (2.0,0.2,0.3) (1.0,0.25,0.3) (1.0,0.3,0.3) (0.4,0.2,0.4) (0.4,0.2,0.5)

N∗ 2 3 4 3 3 2 2

µ∗1 3.061 4.277 5.313 4.336 4.387 2.944 2.889

µ∗2 0.904 2.037 3.831 2.231 2.388 0.765 0.600

F∗ 310.70 448.78 591.93 458.86 467.79 302.07 296.21

Note: F∗ ≡ F(N∗, µ∗1, µ∗2).

5.4. Sensitivity Analysis for the Expected Cost Function

In this section, we fulfill a sensitivity analysis for the cost function with respect to changes in
designated values of the system parameters. To analyze the influences of various system parameters
on the cost function, we use a graphical analysis of the following five cases. We fix the following
cost parameters:

Ch =$60, C f =$80, Co =$300, Cb =$600, Cs =$320, C1 =$20, C2 = $10

to study the listed below five cases:

Case 1: µ1 = 1.0, µ2 = 0.8, α = 0.2, β = 3.0; select different values of N = 1, 3, 9, and vary λ from 0.6
to 0.8.
Case 2: λ = 0.6, µ2 = 0.8, α = 0.2, β = 3.0; choose different values of N = 1, 3, 9, and vary µ1 from 1.0
to 2.0.
Case 3: λ = 0.6, µ1 = 1.0, α = 0.2, β = 3.0; select different values of N =1, 3, 9, and vary µ2 from 0.8
to 2.0.
Case 4: λ = 0.6, µ1 = 1.0, µ2 = 0.8, β = 3.0; select different values of N = 1, 3, 9, and vary α from 0.2
to 0.5.
Case 5: λ = 0.6, µ1 = 1.0, µ2 = 0.8, α = 0.2; choose different values of N = 1, 3, 9, and vary β from 3.0
to 5.0.

Figures 4–8 show the sensitivity performance of the expected cost with respect to λ, µ1, µ2, α, and
β for various values of N =1, 3, 9. We should note that the sign of sensitivity reveals the monotonicity
of the expected cost by changing the values of system parameters. Figure 4 reveals that (i) ∂F/∂λ is
positive, which means that incremental change of λ increases the expected cost; (ii) ∂F/∂λ increases
as λ increases for all N; and (iii) as λ is fixed, ∂F/∂λ becomes larger as N increases. It appears from
Figure 5 that (i) ∂F/∂µ1 is negative, which means that incremental change of µ1 decreases the expected
cost; and (ii)∂F/∂µ1 increases as µ1 increases for all N. Figure 6 shows that (i) ∂F/∂µ2 is negative,
which means that incremental change of µ2 decreases the expected cost; (ii) ∂F/∂µ2 increases as µ2

increases; and (iii) as µ2 is fixed, ∂F/∂µ2 becomes larger as N decreases. Moreover, ∂F/∂µ2 has a
smaller increasing shape than ∂F/∂µ1. We observe from Figure 7 that (i) ∂F/∂α is positive; (ii) ∂F/∂α
increases as α increases for all N; (iii) as α is fixed, ∂F/∂α increases as N increases. It can be seen in
Figure 8 that (i) ∂F/∂β is negative; (ii) ∂F/∂β increases as β increases; and (iii) as β is fixed, ∂F/∂β
decreases as N increases.
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Figure 8. Sensitivity analysis of F with respect to β for different N (λ = 0.6, µ1 = 1.0, µ2 = 0.8, α = 0.2).

6. Conclusions

This paper studied the N policy M/G/1 queue with working breakdowns. Steady-state probabilities
were obtained by means of the supplementary variable and probability generating function techniques.
The expected cost function per unit time was established to determine the joint optimal values of
(N, µ1, µ2) until the stability constraint is satisfied. More especially, an efficient and useful method
(two-stage optimization method) was utilized to search the optimal joint values of (N, µ1, µ2) that
minimize the cost function. Sensitivity analysis of the cost function has been performed for specific
values of the system parameters λ, µ1, µ2, α, and β, as well as various values of N.
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