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Abstract: We show uniqueness in law for a general class of stochastic differential equations in Rd, d ≥ 2,
with possibly degenerate and/or fully discontinuous locally bounded coefficients among all weak
solutions that spend zero time at the points of degeneracy of the dispersion matrix. Points of degeneracy
have a d-dimensional Lebesgue–Borel measure zero. Weak existence is obtained for a more general, but
not necessarily locally bounded drift coefficient.
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1. Introduction

The question whether a solution to a stochastic differential equation (hereafter SDE) on Rd exists
that is pathwise unique and strong occurs widely in the mathematical literature; for instance, see the
introduction of [1] for a recent detailed, but possibly incomplete development. Sometimes, strong
solutions that are roughly described as weak solutions for a given Brownian motion are required,
for instance, in signal processing, where a noisy signal is implicitly given. Sometimes, it may be impossible
to obtain a strong solution, only weak solutions are important to consider, or only the strong Markov
property of the solution is needed for some reason. Then, uniqueness in law, i.e., the question whether,
given an initial distribution, the distribution of any weak solution no matter on which probability space it
is considered is the same, plays an important role. It might also be that pathwise uniqueness and strong
solution results are just too restrictive, so that one is naturally led to consider weak solutions and their
uniqueness. Here, we consider weak uniqueness of an SDE with respect to all initial conditions x ∈ Rd as
defined, for instance, in [2] (Chapter 5); see also Definition 2 below.

To explain our motivation for this work, fix symmetric matrix C = (cij)1≤i,j≤d of bounded measurable
functions cij, such that, for some λ ≥ 1,

λ−1‖ξ‖2 ≤ 〈C(x)ξ, ξ〉 ≤ λ‖ξ‖2, for all x, ξ ∈ Rd,
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and vector H = (h1, ..., hd) of locally bounded measurable functions. Let

L f =
d

∑
i,j=1

cij

2
∂ij f +

d

∑
i=1

hi∂i f (1)

be the corresponding linear operator and

Xt = x +
∫ t

0

√
C(Xs) dWs +

∫ t

0
H(Xs) ds, t ≥ 0, x ∈ Rd, (2)

be the corresponding Itô-SDE. If the cij are continuous and the hi bounded, then Equation (2) is well-posed,
i.e., there exists a solution and it is unique in law (see [3]). If the hi are bounded, then Equation (2) is
well-posed for d = 2 (see [3] Exercise 7.3.4); however, if d ≥ 3, there exists an example of a measurable
discontinuous C for which uniqueness in law does not hold [4]. Hence, even in the nondegenerate
case, well-posedness for discontinuous coefficients is nontrivial, and one is naturally led to search for
general subclasses in which well-posedness holds. Some of these are given when C is not far from
being continuous, i.e., continuous up to a small set (e.g., a discrete set or a set of α-Hausdorff measure
zero with sufficiently small α; else, see, for instance, introductions of [4,5] for references). Another
special subclass is given when C is a piecewise constant on a decomposition of Rd into a finite union of
polyhedrons [6], and the hi are locally bounded with at most linear growth at infinity. The work in [6]
is one of our sources of motivation for this article. Though we do not perfectly cover the conditions
in [6], we complement them in many ways. In particular, we consider arbitrary decompositions of

Rd into bounded disjoint measurable sets (choose, for instance,
√

1
ψ = ∑∞

i=1 αi1Ai , with Rd = ∪̇∞
i=1 Ai,

(αi)i∈N ⊂ (0, ∞) in Equation (4) below). A further example for a discontinuous C, where well-posedness
holds, can be found in [7]. There, discontinuity is along the common boundary of the upper- and
lower-half spaces. In [5], among others, the problem of uniqueness in law for Equation (2) is related to the
Dirichlet problem for L as in Equation (1), locally on smooth domains. This method was also used in [4]
using Krylov’s previous work. In particular, a shorter proof of the well-posedness results of Bass and
Pardoux [6] and Gao [7] is presented in [5] (Theorems 2.16 and 3.11). However, the most remarkable is the
derivation of well-posedness for a special subclass of processes with degenerate discontinuous C. Though
discontinuity is only along a hyperplane of codimension one, and coefficients are quite regular outside the
hyperplane, it seems to be one of the first examples of a discontinuous degenerate C where well-posedness
still holds ([5] (Example 1.1)). This intriguing example was another source of our motivation. As was
the case for results in [6], we could not perfectly cover [5] (Example 1.1), but we again complement it in
many ways. As a main observation besides the above considerations, it seems that no general subclass
has been presented so far where C is degenerate (or also nondegenerate if d ≥ 3) and fully discontinuous,
but well-posedness holds nonetheless. This is another main goal of this paper, and our method strongly
differs from techniques used in [5,6] and in the past literature. Our techniques involve semigroup theory,
elliptic and parabolic regularity theory, the theory of generalized Dirichlet forms (i.e., the construction of
a Hunt process from a sub-Markovian C0-semigroup of contractions on some L1-space with a weight),
and an adaptation of an idea of Stroock and Varadhan to show uniqueness for the martingale problem
using a Krylov-type estimate. Krylov-type estimates have been widely used to simultaneously obtain a
weak solution and its uniqueness, in particular, pathwise uniqueness. The advantage of our method is that
the weak existence of a solution and uniqueness in law are shown separately of each other using different
techniques. We used local Krylov-type estimates (Theorem 9) to show uniqueness in law. Once uniqueness
in law holds, we could improve the original Krylov estimate, at least for the time-homogeneous case
(see Remark 4). In particular, our method typically implies weak-existence results that are more general
than uniqueness results (see Theorem 8 here and in [1,8]).
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Now, let us describe our results. Let d ≥ 2, and A = (aij)1≤i,j≤d be a symmetric matrix of functions

aij ∈ H1,2d+2
loc (Rd) ∩ C(Rd), such that, for every open ball B ⊂ Rd, there exist constants λB, ΛB > 0 with

λB‖ξ‖2 ≤ 〈A(x)ξ, ξ〉 ≤ ΛB‖ξ‖2, for all ξ ∈ Rd, x ∈ B.

Let ψ ∈ Lq
loc(R

d), with q > 2d + 2, ψ > 0 a.e., such that 1
ψ ∈ L∞

loc(R
d). Here, we assumed that

expression 1
ψ stood for an arbitrary but fixed Borel measurable function satisfying ψ · 1

ψ = 1 a.e.,

and 1
ψ (x) ∈ [0, ∞) for any x ∈ Rd. Let G = (g1, . . . , gd) ∈ L∞

loc(R
d,Rd) be a vector of Borel measurable

functions. Let (σij)1≤i≤d,1≤j≤m, m ∈ N arbitrary but fixed, and be any matrix consisting of continuous
functions, such that A = σσT . Suppose there exists a constant M > 0, such that

−
〈
( 1

ψ A)(x)x, x
〉

‖x‖2 + 1
+

1
2

trace
(
(

1
ψ

A)(x)
)
+
〈
G(x), x

〉
≤ M

(
‖x‖2 + 1

) (
ln(‖x‖2 + 1) + 1

)
(3)

for a.e. x ∈ Rd. The main result of our paper (Theorem 13) was that weak existence and uniqueness in
law, i.e., well-posedness, then holds for stochastic differential equation

Xt = x +
∫ t

0

(√ 1
ψ
· σ
)
(Xs) dWs +

∫ t

0
G(Xs) ds, t ≥ 0, x ∈ Rd. (4)

among all weak solutions (Ω,F , (Ft)t≥0, Xt = (X1
t , . . . , Xd

t ), W = (W1, . . . , Wm),Px), x ∈ Rd, such that∫ ∞

0
1{√ 1

ψ =0
}(Xs)ds = 0 Px-a.s. ∀x ∈ Rd. (5)

Here, the solution and integrals involving the solution in Equation (4) may a priori depend on

Borel versions chosen for
√

1
ψ and G. but Condition (5) is exactly the condition that makes these objects

independent of the chosen Borel versions (cf. Lemma 2).
√

1
ψ may, of course, be fully discontinuous, but if

it takes all its values in (0, ∞); then, Equation (5) is automatically satisfied. However, since ψ ∈ Lq
loc(R

d),

it must be a.e. finite, so that zeros Z of
√

1
ψ have Lebesgue–Borel measure zero. Nonetheless, our main

result comprehends the existence of a whole class of degenerate (on Z) diffusions with fully discontinuous
coefficients for which well-posedness holds. This seems to be new in the literature. For another condition
that implies Equation (5), we refer to Lemma 2. For an explicit example for well-posedness, which reminds
the Engelbert/Schmidt condition for uniqueness in law in dimension one (see [9]), we refer to Example 2.

We derived weak existence of a solution to Equation (4) up to its explosion time under quite more
general conditions on the coefficients, see Theorem 8. In this case, for nonexplosion, one only needs
that Equation (3) holds outside an arbitrarily large open ball (see Remark 3ii). Moreover, Equation (5) is
always satisfied for the weak solution that we construct (see Remark 3), and our weak solution originated
from a Hunt process, not only from a strong Markov process.

The techniques that we used for weak existence are as follows. First, any solution to Equation (4)
determines the same (up to a.e. uniqueness of the coefficients) second-order partial differential operator
L on C∞

0 (Rd),

L f =
d

∑
i,j=1

1
ψ aij

2
∂ij f +

d

∑
i=1

gi∂i f , f ∈ C∞
0 (Rd).
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In Theorem 4, we found a measure µ := ρψ dx with some nice regularity of ρ, which is an
infinitesimally invariant measure for (L, C∞

0 (Rd)), i.e.,

∫
Rd

L f dµ =
∫
Rd

( d

∑
i,j=1

1
ψ aij

2
∂ij f +

d

∑
i=1

gi∂i f
)

dµ = 0, ∀ f ∈ C∞
0 (Rd). (6)

Then, using the existence of a density to the infinitesimally invariant measure, we adapted the
method from Stannat [10] to our case and constructed a sub-Markovian C0-semigroup of contractions
(Tt)t≥0 on each Ls(Rd, µ), s ≥ 1 of which the generator extended (L, C∞

0 (Rd)), i.e., we found a suitable
functional analytic frame (see Theorem 3 that further induced a generalized Dirichlet form; see (19)) to
describe a potential infinitesimal generator of a weak solution to Equation (4). This is done in Section 4,
where we also derive, with the help of the results about general regularity properties from Section 3, the
regularity properties of (Tt)t≥0 and its resolvent (see Section 4.3). Then, crucially using the existence of a
Hunt process for a.e. starting point related to (Tt)t≥0 in Proposition 3 (which follows similarly to [11]
(Theorem 6)) this leads to a transition function of a Hunt process that not only weakly solves (4), but also
has a transition function with such nice regularity that many presumably optimal classical conditions for
properties of a solution to Equation (4) carry over to our situation. We mention, for instance, nonexplosion
Condition (3) and moment inequalities (see Remark 2). However, irreducibility and classical ergodic
properties, as in [1], could also be studied in this framework by further investigating the influence of 1

ψ

on properties of the transition function. Similarly to the results of [1], the only point where Krylov-type
estimates were used in our method was when it came up to uniqueness. Here, because of the possible

degeneracy of
√

1
ψ , we needed Condition (5) to derive a Krylov-type estimate that held for any weak

solution to Condition (4) (see Theorem 9 which straightforwardly followed from the original Krylov
estimate [12] (2. Theorem (2), p. 52)). Again, our constructed transition function had such a nice regularity
that a time-dependent drift-eliminating Itô-formula held for function g(x, t) := PT−t f (x), f ∈ C∞

0 (Rd).
In fact, it held for any weak solution to Condition (4), so that for all these, the one-dimensional and,
hence, all finite-dimensional marginals coincided (cf. Theorem 12). This latter technique goes back to an
idea of Stroock/Varadhan ([3]), and we used the treatise of this technique as presented in [2] (Chapter 5).

2. Article Structure and Notations

The main parts of this article are Sections 4 and 5. Section 4 contains the analytic results, and Section 5
contains the probabilistic results. Section 3 also contains auxiliary analytical results that are important on
their own. Section 3 could be skipped in a first reading, so the reader may directly start with Section 4.
The proofs for all statements of this article and further auxiliary statements were collected in Appendix A.

Throughout, we used the same notations as in [1,8], and d ≥ 2. Additionally, for an open-set U
in Rd and a measure µ on Rd, let Lq(U,Rd, µ) := {F = ( f1, . . . , fd) : U → Rd | fi ∈ Lq(U, µ), 1 ≤ i ≤ d},
equipped with the norm, ‖F‖Lq(U,Rd ,µ) := ‖‖F‖‖Lq(U,µ), F ∈ Lq(U,Rd, µ). If µ = dx, we write Lq(U),

Lq(U,Rd) for Lq(U, dx), Lq(U,Rd, dx) respectively, and even ‖F‖Lq(U) for ‖F‖Lq(U,Rd). Denote by Ck(U),
k ∈ N∪ {0}, the usual space of k-times continuously differentiable functions in U, such that the partial
derivatives of an order less or equal to k extend continuously to U (as defined, for instance, in [13]).
In particular, C(U) := C0(U) is the space of continuous functions on U with supnorm ‖ · ‖C(U) and

C∞(U) :=
⋂

k∈N Ck(U). If I is an open interval in R and p, q ∈ [1, ∞], we denoted by Lp,q(U× I) the space
of all Borel measurable functions f on U × I for which

‖ f ‖Lp,q(U×I) := ‖‖ f (·, ·)‖Lp(U)‖Lq(I) < ∞,
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and let supp( f ) := supp(| f |dxdt). For a locally integrable function g on U × I and i ∈ {1, . . . , d},
we denoted by ∂ig the i-th weak spatial derivative on U × I, by ∇g := (∂1g, . . . , ∂dg) the weak spatial
gradient of g, by∇2g := (∂ijg)1≤i,j≤d the weak spatial Hessian matrix, and by ∂tg the weak time derivative
on U × I, provided these existed. For p, q ∈ [1, ∞], let W2,1

p,q(U × I) be the set of all locally integrable
functions g : U × I → R such that ∂tg, ∂ig, ∂i∂jg ∈ Lp,q(U × I) for all 1 ≤ i, j ≤ d. Let W2,1

p (U × I) :=
W2,1

p,p(U × I).

3. New Regularity Results

In this section, we develop some new regularity estimates (Theorems 1 and 2). Theorem 1 was
used to obtain the semigroup regularity in Theorem 6, and Theorem 2 was used to obtain the resolvent
regularity in Theorem 5.

3.1. Regularity Estimate for Linear Parabolic Equations with Weight in Time Derivative Term

Throughout this subsection, we assume the following condition:

(I) U × (0, T) is a bounded open set in Rd ×R, T > 0, A = (aij)1≤i,j≤d is a (possibly nonsymmetric)
matrix of functions on U that is uniformly strictly elliptic and bounded, i.e., there exist constants
λ > 0, M > 0, such that, for all ξ = (ξ1, . . . , ξd) ∈ Rd, x ∈ U, it holds

d

∑
i,j=1

aij(x)ξiξ j ≥ λ‖ξ‖2, max
1≤i,j≤d

|aij(x)| ≤ M,

B ∈ Lp(U,Rd) with p > d, ψ ∈ Lq(U), q ∈ [2∨ p
2 , p), and there exists c0 > 0, such that c0 ≤ ψ on U,

and finally
u ∈ H1,2(U × (0, T)) ∩ L∞(U × (0, T)).

Assuming Condition (I), we considered a divergence form linear parabolic equation with a singular
weight in the time derivative term as follows∫∫

U×(0,T)
(u∂t ϕ)ψdxdt =

∫∫
U×(0,T)

〈
A∇u,∇ϕ

〉
+ 〈B,∇u〉ϕ dxdt, (7)

which is supposed to hold for all ϕ ∈ C∞
0 (U × (0, T)).

Let (x̄, t̄) be an arbitrary but fixed point in U × (0, T), and Rx̄(r) be the open cube in Rd of edge
length r > 0 centered at x̄. Define Q(r) := Rx̄(r)× (t̄− r2, t̄).

Theorem 1. Suppose that Q(3r) ⊂ U × (0, T). Under the assumption (I) and (7), we have

‖u‖L∞(Q(r)) ≤ C‖u‖
L

2p
p−2 ,2

(Q(2r))
, (8)

where C > 0 is a constant depending only on r, λ, M and ‖B‖Lp(Rx̄(3r)).

3.2. Elliptic Hölder Regularity and Estimate

The following theorem is an adaptation of [14] (Théorème 7.2) using [15] (Theorem 1.7.4). It might
already exist in the literature, but we could not find any reference for it, and we therefore provide a proof
(in Appendix A).
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Theorem 2. Let U be a bounded open ball in Rd. Let A =
(
aij
)

1≤i,j≤d be as in (I). Assume B ∈ Lp(U,Rd),

c ∈ Lq(U), f ∈ Lq̃(U) for some p > d, q, q̃ > d
2 . If u ∈ H1,2(U) satisfies∫

U
〈A∇u,∇ϕ〉+ (〈B,∇u〉+ cu) ϕ dx =

∫
U

f ϕ dx, for all ϕ ∈ C∞
0 (U), (9)

then for any open ball U1 in Rd with U1 ⊂ U, we have u ∈ C0,γ(U1) and

‖u‖C0,γ(U1)
≤ C

(
‖u‖L1(U) + ‖ f ‖Lq̃(U)

)
,

where γ ∈ (0, 1) and C > 0 are constants which are independent of u and f .

4. L1-Generator and Its Strong Feller Semigroup

In this section, we precisely describe the potential infinitesimal generator, its semigroup and
resolvent, of a weak solution to Condition (4) in a suitable functional analytic frame, originally due
to Stannat (Theorem 3 and (19)). Subsequently, using the regularity results from Section 3, we derived
regularity properties for the resolvent and semigroup (Theorems 5 and 6). One key tool for this method is
the existence of an infinitesimally invariant measure with nice density (Theorem 4).

4.1. Framework

Let ρ ∈ H1,2
loc (R

d)∩ L∞
loc(R

d), ψ ∈ L1
loc(R

d) be a.e. strictly positive functions satisfying 1
ρ , 1

ψ ∈ L∞
loc(R

d).

Here, we assumed that expressions 1
ρ , 1

ψ , denoted any Borel measurable functions satisfying ρ · 1
ρ = 1

and ψ · 1
ψ = 1 a.e., respectively (later, especially in Section 5 it is important which measurable Borel

version 1
ψ we choose, but for the moment it does not matter). Set µ := ρψ dx. If U is any open subset of

Rd; then, bilinear form
∫

U〈∇u,∇v〉dx, u, v ∈ C∞
0 (U) is closable in L2(U, µ) by [16] (Subsection II.2a)).

Define Ĥ1,2
0 (U, µ) as the closure of C∞

0 (U) in L2(U, µ) with respect to norm
(∫

U ‖∇u‖2dx +
∫

U u2dµ
)1/2.

Thus u ∈ Ĥ1,2
0 (U, µ), if and only if there exists (un)n≥1 ⊂ C∞

0 (U) such that

lim
n→∞

un = u in L2(U, µ), lim
n,m→∞

∫
U
‖∇(un − um)‖2dx = 0; (10)

moreover, Ĥ1,2
0 (U, µ) is a Hilbert space with inner product

〈u, v〉Ĥ1,2
0 (U,µ) = lim

n→∞

∫
U
〈∇un,∇vn〉dx +

∫
U

uv dµ,

where (un)n≥1, (vn)n≥1 ⊂ C∞
0 (U) are arbitrary sequences that satisfy Equation (10).

If u ∈ Ĥ1,2
0 (V, µ) for some bounded open subset V of Rd, then u ∈ H1,2

0 (V) ∩ L2(V, µ) and there
exists (un)n≥1 ⊂ C∞

0 (V), such that

lim
n→∞

un = u in H1,2
0 (V) and in L2(V, µ).

Consider a symmetric matrix of functions A = (aij)1≤i,j≤d satisfying

aij = aji ∈ H1,2
loc (R

d), 1 ≤ i, j ≤ d,
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and assume A is locally uniformly strictly elliptic, i.e., for every open ball B, there exist constants
λB, ΛB > 0, such that

λB‖ξ‖2 ≤ 〈A(x)ξ, ξ〉 ≤ ΛB‖ξ‖2, for all ξ ∈ Rd, x ∈ B. (11)

Define Â := 1
ψ A. By [16] (Subsection II.2b)), the symmetric bilinear form

E0( f , g) :=
1
2

∫
Rd
〈Â∇ f ,∇g〉dµ, f , g ∈ C∞

0 (Rd),

is closable in L2(Rd, µ), and its closure (E0, D(E0)) is a symmetric Dirichlet form in L2(Rd, µ) (see [16]
((II. 2.18))). Denote the corresponding generator of (E0, D(E0)) by (L0, D(L0)). Let f ∈ C∞

0 (Rd).
Using integration by parts, for any g ∈ C∞

0 (Rd),

E0( f , g) = −
∫
Rd

(1
2

trace(Â∇2 f ) + 〈 1
2ψ
∇A +

A∇ρ

2ρψ︸ ︷︷ ︸
=:βρ,A,ψ

,∇ f 〉
)

g dµ.

Thus, f ∈ D(L0). This implies C∞
0 (Rd) ⊂ D(L0) and

L0 f =
1
2

trace(Â∇2 f ) + 〈βρ,A,ψ,∇ f 〉 ∈ L2(Rd, µ). (12)

Let (T0
t )t>0 be the sub-Markovian C0-semigroup of contractions on L2(Rd, µ) associated with

(L0, D(L0)). It is well-known that T0
t |L1(Rd ,µ)∩L∞(Rd ,µ) can be uniquely extended to a sub-Markovian

C0-semigroup of contractions (T0
t )t>0 on L1(Rd, µ).

Now, let B ∈ L2
loc(R

d,Rd, µ) be weakly divergence-free with respect to µ, i.e.,∫
Rd
〈B,∇u〉dµ = 0, for all u ∈ C∞

0 (Rd). (13)

Assume
ρψB ∈ L2

loc(R
d,Rd). (14)

By routine arguments, Equation (13) extends to all u ∈ Ĥ1,2
0 (Rd, µ)0,b, and∫

Rd
〈B,∇u〉vdµ = −

∫
Rd
〈B,∇v〉udµ, for all u, v ∈ Ĥ1,2

0 (Rd, µ)0,b.

Define Lu := L0u + 〈B,∇u〉, u ∈ D(L0)0,b. Then, (L, D(L0)0,b) is an extension of

1
2

trace(Â∇2u) + 〈βρ,A,ψ + B,∇u〉, u ∈ C∞
0 (Rd).

For any bounded open subset V of Rd,

E0,V( f , g) :=
1
2

∫
V
〈Â∇ f ,∇g〉dµ, f , g ∈ C∞

0 (V).

is also closable on L2(V, µ) by [16] (Subsection II.2b)). Denote by (E0,V , D(E0,V)) the closure of
(E0,V , C∞

0 (V)) in L2(V, µ). Using (11) and 0 < infV ρ ≤ supV ρ < ∞, it is clear that D(E0,V) = Ĥ1,2
0 (V, µ)
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since the norms ‖ · ‖D(E0,V) and ‖ · ‖Ĥ1,2
0 (V,µ) are equivalent. Denote by (L0,V , D(L0,V)) the generator of

(E0,V , D(E0,V)).

4.2. L1-Generator

In this section, we use all notations and assumptions from Section 4.1.
The technique of [10] (Chapter 1) to obtain a closed extension of a densely defined diffusion operator

and, subsequently, a generalized Dirichlet form carried nearly one by one over to our situation; only a
small structural difference occurred. Since we considered a degenerate diffusion matrix in the definition
of the underlying symmetric Dirichlet form via a function ψ that also acts on the µ-divergence free
antisymmetric part of drift (see Equation (13)), we considered local convergence in space Ĥ1,2

0 (V, µ) and
imposed Assumption (14) on the antisymmetric part, while [10] (Chapter 1) dealt with local convergence
in space H1,2

0 (V, µ). As a first step, the following proposition was derived in a nearly identical manner
to [10] (Proposition 1.1). We therefore omitted the proof.

Proposition 1. Let V be a bounded open subset of Rd.

(i) Operator (LV , D(L0,V)b) on L1(V, µ) defined by

LVu := L0,Vu + 〈B,∇u〉, u ∈ D(L0,V)b

is dissipative, and hence closable on L1(V, µ). Closure (LV , D(LV
)) generates a sub-Markovian C0-semigroup

of contractions (TV
t )t>0 on L1(V, µ).

(ii) D(LV
)b ⊂ Ĥ1,2

0 (V, µ) and

E0,V(u, v)−
∫

V
〈B,∇u〉 vdµ =

∫
V

LVu · vdµ, for all u ∈ D(LV
)b, v ∈ Ĥ1,2

0 (V, µ)b. (15)

Now, let V be a bounded open subset of Rd. Denote by (GV
α )α>0 the resolvent associated with

(LV , D(LV
)) on L1(V, µ). Then, (GV

α )α>0 could be extended to L1(Rd, µ) by

GV
α f :=

{
GV

α ( f 1V) on V
0 on Rd \V,

f ∈ L1(Rd, µ), (16)

Let g ∈ L1(Rd, µ)b. Then GV
α (g1V) ∈ D(LV

)b ⊂ Ĥ1,2
0 (V, µ), hence GV

α g ∈ Ĥ1,2
0 (V, µ).

If u ∈ D(E0,V), then by definition it holds u ∈ D(E0) and E0,V(u, u) = E0(u, u). Therefore, we
obtained

E0(GVn
α g, GVn

α g) = E0,Vn
(
GVn

α (g1Vn), GVn
α (g1Vn)

)
. (17)

By means of Proposition 1, the following Theorem 3 was also derived in a nearly identical manner
to [10] (Theorem 1.5).

Theorem 3. There exists a closed extension (L, D(L)) of Lu := L0u + 〈B,∇u〉, u ∈ D(L0)0,b on L1(Rd, µ)

satisfying the following properties:

(a) (L, D(L)) generates a sub-Markovian C0-semigroup of contractions (Tt)t>0 on L1(Rd, µ).
(b) Let (Un)n≥1 be a family of bounded open subsets of Rd satisfying Un ⊂ Un+1 and Rd =

⋃
n≥1 Un. Then

limn→∞ GUn
α f = (α− L)−1 f in L1(Rd, µ), for all f ∈ L1(Rd, µ) and α > 0.
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(c) D(L)b ⊂ D(E0) and for all u ∈ D(L)b, v ∈ Ĥ1,2
0 (Rd, µ)0,b it holds

E0(u, u) ≤ −
∫
Rd

Lu · udµ, and E0(u, v)−
∫
Rd
〈B,∇u〉vdµ = −

∫
Rd

Lu · vdµ.

4.3. Existence of Infinitesimally Invariant Measure and Strong Feller Properties

Here, we state some conditions that were used as our assumptions.

(A1) p > d is fixed, and A = (aij)1≤i,j≤d is a symmetric matrix of functions that are locally uniformly

strictly elliptic on Rd, such that aij ∈ H1,p
loc (R

d) ∩ C(Rd) for all 1 ≤ i, j ≤ d. ψ ∈ L1
loc(R

d) is a
positive function, such that 1

ψ ∈ L∞
loc(R

d) and G is a Borel measurable vector field on Rd satisfying

ψG ∈ Lp
loc(R

d,Rd).
(A2) ψ ∈ Lq

loc(R
d) with q ∈ ( d

2 , ∞]. Fix s ∈ ( d
2 , ∞) such that 1

q +
1
s < 2

d .

(A3) q ∈ [ p
2 ∨ 2, ∞].

Theorem 4. Under Assumption (A1), there exists ρ ∈ H1,p
loc (R

d) ∩ C(Rd) satisfying ρ(x) > 0 for all x ∈ Rd

such that ∫
Rd
〈G− βρ,A,ψ,∇ϕ〉ρψdx = 0, for all ϕ ∈ C∞

0 (Rd), (18)

or equivalently, (6) holds. Moreover, ρψ B ∈ Lp
loc(R

d,Rd), where B := G− βρ,A,ψ.

From now on, we assume that Condition (A1) holds and fix A, ψ, ρ, B as in Theorem 4. Then, A, ψ,
ρ, B satisfy all assumptions of Section 4.1. As in Section 4.1 µ := ρψ dx, Â := 1

ψ A.

By Theorem 3, there existed a closed extension (L, D(L)) of

L f = L0 f + 〈B,∇ f 〉, f ∈ D(L0)0,b,

on L1(Rd, µ) that generates a sub-Markovian C0-semigroup of contractions (Tt)t>0 on L1(Rd, µ).
Restricting (Tt)t>0 to L1(Rd, µ)b, it is well-known by Riesz–Thorin interpolation that (Tt)t>0 could
be extended to a sub-Markovian C0-semigroup of contractions (Tt)t>0 on each Lr(Rd, µ), r ∈ [1, ∞).
Denote by (Lr, D(Lr)) the corresponding closed generator with graph norm

‖ f ‖D(Lr) := ‖ f ‖Lr(Rd ,µ) + ‖Lr f ‖Lr(Rd ,µ),

and by (Gα)α>0 the corresponding resolvent. (Tt)t>0 and (Gα)α>0 can also be uniquely defined on
L∞(Rd, µ), but are no longer strongly continuous there.

For f ∈ C∞
0 (Rd), we have

L f = L0 f + 〈B,∇ f 〉 = 1
2

trace(Â∇2 f ) + 〈G,∇ f 〉.

Define

L∗ f : = L0 f − 〈B,∇ f 〉 = 1
2

trace(Â∇2 f ) + 〈G∗,∇ f 〉,

with
G∗ := (g∗1 , . . . , g∗d) = 2βρ,A,ψ −G = βρ,A,ψ − B ∈ L2

loc(R
d,Rd, µ).
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Denote by (L∗r , D(L∗r )) operators corresponding to L∗ for the cogenerator on Lr(Rd, µ), r ∈ [1, ∞),
(T∗t )t>0 for the cosemigroup, (G∗α)α>0 for the coresolvent. As in ([10], Section 3), we obtained a
corresponding bilinear form with domain D(L2)× L2(Rd, µ) ∪ L2(Rd, µ)× D(L∗2) by

E( f , g) :=

{
−
∫
Rd L2 f · g dµ for f ∈ D(L2), g ∈ L2(Rd, µ),

−
∫
Rd f · L∗2 g dµ for f ∈ L2(Rd, µ), g ∈ D(L∗2).

(19)

E is called the generalized Dirichlet form associated with (L2, D(L2)).

Theorem 5. Assume Conditions (A1) and (A2), and let f ∈ ∪r∈[s,∞]Lr(Rd, µ). Then, Gα f has a locally
Hölder continuous µ-version Rα f on Rd. Furthermore for any open balls B, B′ satisfying B ⊂ B′, we have
the following estimate:

‖Rα f ‖C0,γ(B) ≤ c2

(
‖ f ‖Ls(B′ ,µ) + ‖Gα f ‖L1(B′ ,µ)

)
, (20)

where c2 > 0, γ ∈ (0, 1) are constants that are independent of f .

Let f ∈ D(Lr) for some r ∈ [s, ∞). Then f = G1(1− Lr) f ; hence, by Theorem 5, f has a locally
Hölder continuous µ-version on Rd and

‖ f ‖C0,γ(B) ≤ c3‖ f ‖D(Lr),

where c3 > 0, γ ∈ (0, 1) are constants independent of f . In particular, Tt f ∈ D(Lr) and Tt f hence has a
continuous µ-version, say Pt f , with

‖Pt f ‖C0,γ(B) ≤ c3‖Pt f ‖D(Lr). (21)

c3 is independent of t ≥ 0 and f . The following lemma is quite important later to show the
joint continuity of P·g(·) for g ∈ ∪

ν∈[ 2p
p−2 ,∞]

Lν(Rd, µ). Due to Equation (21), it can be proven as

in [1] (Lemma 4.13).

Lemma 1. Assume Conditions (A1), (A2). For any f ∈ ⋃r∈[s,∞) D(Lr), map

(x, t) 7→ Pt f (x)

is continuous on Rd × [0, ∞).

Theorem 6. Assume Conditions (A1), (A2), and (A3), and let f ∈ ⋃
ν∈[ 2p

p−2 ,∞]
Lν(Rd, µ), t > 0. Then, Tt f has

a continuous µ-version Pt f on Rd, and P· f (·) is continuous on Rd × (0, ∞). For any bounded open set U, V
in Rd with U ⊂ V and 0 < τ3 < τ1 < τ2 < τ4, i.e., [τ1, τ2] ⊂ (τ3, τ4), we have the following estimate for all
f ∈ ∪

ν∈[ 2p
p−2 ,∞]

Lν(Rd, µ):

‖P· f (·)‖C(U×[τ1,τ2])
≤ C1‖P· f (·)‖

L
2p

p−2 ,2
(V×(τ3,τ4))

, (22)

where C1 is a constant that depends on U × [τ1, τ2], V × (τ3, τ4), but is independent of f .

By Theorems 5 and 6, exactly as in [1] (Remark 3.7), we obtained resolvent kernels and resolvent
kernel densities Rα(x, dy), rα(x, y), corresponding to resolvent (Rα)α>0, as well as transition kernels and
transition-kernel densities Pt(x, dy), pt(x, y), corresponding to transition function (Pt)t≥0.
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Proposition 2. Assume Conditions (A1), (A2), and (A3), and let t, α > 0. Then, it holds that

(i) Gαg has a locally Hölder continuous µ-version

Rαg =
∫
Rd

g(y)Rα(·, dy) =
∫
Rd

g(y)rα(·, y)µ(dy), ∀g ∈
⋃

r∈[s,∞]

Lr(Rd, µ). (23)

In particular, Equation (23) extends by linearity to all g ∈ Ls(Rd, µ) + L∞(Rd, µ), i.e., (Rα)α>0 is
L[s,∞](Rd, µ)-strong Feller.

(ii) Tt f has a continuous µ-version

Pt f =
∫
Rd

f (y)Pt(·, dy) =
∫
Rd

f (y)pt(·, y)µ(dy), ∀ f ∈
⋃

ν∈[ 2p
p−2 ,∞]

Lν(Rd, µ). (24)

In particular,Equation (24) extends by linearity to all f ∈ L
2p

p−2 (Rd, µ) + L∞(Rd, µ), i.e., (Pt)t>0 is

L[
2p

p−2 ,∞]
(Rd, µ)-strong Feller.

Finally, for any α > 0, x ∈ Rd, g ∈ Ls(Rd, µ) + L∞(Rd, µ)

Rαg(x) =
∫ ∞

0
e−αtPtg(x) dt.

5. Well-Posedness

With the help of the regularity results, Theorems 5 and 6 of Section 4, and the mere existence of
a Hunt process for a.e. starting point (Proposition 3), we constructed a weak solution to Equation (4)
(Theorems 7 and 8). Then, using a local Krylov-type estimate and Itô-formula (Theorems 9 and 10),
uniqueness in law was derived for weak solutions to Equation (4) that spend zero time at the points of
degeneracy of the dispersion matrix (Theorems 12 and 13). The method to derive uniqueness in law is an
adaptation of the Stroock and Varadhan method ([3]) via the martingale problem.

5.1. Weak Existence

The following assumption in particular is necessary to obtain a Hunt process with transition function
(Pt)t≥0 (and consequently a weak solution to the corresponding SDE for every starting point). It is first
used in Theorem 7 below.

(A4) G ∈ Ls
loc(R

d,Rd, µ), where s is as in (A2).

Condition (A4) is not necessary to get a Hunt process (and consequently a weak solution to the
corresponding SDE for merely quasi-every starting point) as in the following proposition.

Proposition 3. Assume Conditions (A1), (A2), and (A3). Then, there exists a Hunt process

M̃ = (Ω̃, F̃ , (F̃ )t≥0, (X̃t)t≥0, (P̃x)x∈Rd∪{∆})

with life time ζ̃ := inf{t ≥ 0 | X̃t = ∆} and cemetery ∆, such that E is (strictly properly) associated with M̃ and
for strictly E -q.e. x ∈ Rd,

P̃x
({

ω ∈ Ω̃ | X̃·(ω) ∈ C
(
[0, ∞),Rd

∆
)
, X̃t(ω) = ∆, ∀t ≥ ζ(ω)

})
= 1.
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Remark 1. (i) Assume Conditions (A1), (A2), (A3), and G ∈ L
sq

q−1
loc (Rd,Rd). Then, for any bounded open

subset V of Rd, it holds that ∫
V
‖G‖sdµ ≤ ‖G‖s

L
sq

q−1 (V)
‖ρψ‖Lq(V);

hence, Condition (A4) is satisfied.
(ii) Two simple examples where Conditions (A1), (A2), (A3), and (A4) are satisfied are given as follows: for the

first example, let A, ψ satisfy the assumptions of (A1), ψ ∈ Lp
loc(R

d), s = dp
2p−d + ε, and G ∈ L∞

loc(R
d,Rd);

for the second, let A, ψ satisfy the assumptions of (A1), ψ ∈ L2p
loc(R

d), s = 2pd
4p−d + ε and G ∈ L2p

loc(R
d,Rd).

In both cases, ε > 0 can be chosen to be arbitrarily small.

Analogously to [1] (Theorem 3.12), we obtained

Theorem 7. Under Assumptions (A1), (A2), (A3), (A4), there exists a Hunt process

M = (Ω,F , (Ft)t≥0, (Xt)t≥0, (Px)x∈Rd∪{∆})

with state space Rd and life time

ζ = inf{t ≥ 0 |Xt = ∆} = inf{t ≥ 0 |Xt /∈ Rd},

having transition function (Pt)t≥0 as the transition semigroup, such that M has continuous sample paths in the
one-point compactification Rd

∆ of Rd with cemetery ∆ as point at infinity, i.e., for any x ∈ Rd,

Px
({

ω ∈ Ω | X·(ω) ∈ C
(
[0, ∞),Rd

∆
)
, Xt(ω) = ∆, ∀t ≥ ζ(ω)

})
= 1.

Remark 2. The analogous results to [1] (Lemma 3.14, Lemma 3.15, Proposition 3.16, Proposition 3.17,
Theorem 3.19) hold in the situation of this paper. One of the main differences is that q = dp

d+p > d
2 of [1] is

replaced by s > d
2 of (A2). A Krylov-type estimate for M of Theorem 7 especially holds as stated in Equation (25)

right below. Let g ∈ Lr(Rd, µ) for some r ∈ [s, ∞] be given. Then, for any ball B, there exists a constant CB,r,
depending in particular on B and r, such that for all t ≥ 0,

sup
x∈B

Ex

[∫ t

0
|g|(Xs) ds

]
< etCB,r‖g‖Lr(Rd ,µ). (25)

The derivation of Equation (25) is based on Theorem 5, of which the proof uses the elliptic Hölder estimate of
Theorem 2. This differs from the proof of the Krylov-type estimates in [1,8] that are based on an elliptic H1,p-estimate.
Finally, one can get the analogous conservativeness and moment inequalities to [1] (Theorem 4.2, Theorem 4.4(i))
in this paper.

The following theorem can be proved exactly as in [1] (Theorem 3.19).

Theorem 8. Assume Conditions (A1), (A2), (A3), and (A4) are satisfied. Consider Hunt process M from
Theorem 7 with co-ordinates Xt = (X1

t , . . . , Xd
t ). Let (σij)1≤i≤d,1≤j≤m, m ∈ N arbitrary but fixed, be any

locally uniformly strictly elliptic matrix consisting of continuous functions for all 1 ≤ i ≤ d, 1 ≤ j ≤ m, such that
A = σσT , i.e.,

aij(x) =
m

∑
k=1

σik(x)σjk(x), ∀x ∈ Rd, 1 ≤ i, j ≤ d.
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Set

σ̂ =

√
1
ψ
· σ , i.e., σ̂ij =

√
1
ψ
· σij, 1 ≤ i ≤ d, 1 ≤ j ≤ m.

(Recall that expression 1
ψ denotes an arbitrary Borel measurable function satisfying ψ · 1

ψ = 1 a.e.).

Then, on a standard extension of (Ω,F , (Ft)t≥0,Px), x ∈ Rd, which we denote for notational convenience
again by (Ω,F , (Ft)t≥0,Px), x ∈ Rd, there exists a standard m-dimensional Brownian motion W =

(W1, . . . , Wm) starting from zero, such that Px-a.s. for any x = (x1, . . . , xd) ∈ Rd, i = 1, . . . , d

Xi
t = xi +

m

∑
j=1

∫ t

0
σ̂ij(Xs) dW j

s +
∫ t

0
gi(Xs) ds, 0 ≤ t < ζ, (26)

in short

Xt = x +
∫ t

0
σ̂(Xs) dWs +

∫ t

0
G(Xs) ds, 0 ≤ t < ζ.

If Equation (3) holds a.e. outside an arbitrarily large compact set, then Px(ζ = ∞) = 1 for all x ∈ Rd

(cf. [1] (Theorem 4.2)).

Example 1. Given p > d, let A = (aij)1≤i,j≤d be a symmetric matrix of functions on Rd that is locally uniformly

strictly elliptic and aij ∈ H1,p
loc (R

d) ∩ C(Rd) for all 1 ≤ i, j ≤ d. Given m ∈ N, let σ = (σij)1≤i≤d,1≤j≤m be a
matrix of functions satisfying σij ∈ C(Rd) for all 1 ≤ i ≤ d, 1 ≤ j ≤ m, such that A = σσT . Let φ ∈ L∞

loc(R
d)

be such that for any open ball B, there exist strictly positive constants cB, CB such that

cB ≤ φ(x) ≤ CB for every x ∈ B.

Let 1
ψ (x) := ‖x‖α

φ(x) , x ∈ Rd, for some α > 0 and consider following conditions.

(a) αp < d, G ∈ L∞(Bε(0),Rd) ∩ Lp
loc(R

d \ Bε(0),Rd) for some ε > 0,
(b) 2αp < d, G ∈ L2p(Bε(0),Rd) ∩ Lp

loc(R
d \ Bε(0),Rd) for some ε > 0,

(c) α · ( p
2 ∨ 2) < d, G ≡ 0 on Bε(0) and G ∈ Ls

loc(R
d \ Bε(0),Rd) for some ε > 0, where s > d so that

( p
2 ∨ 2)−1 + 1

s < 2
d .

Any of Conditions (a), (b), or (c) imply Assumptions (A1), (A2), (A3), and (A4). Indeed, for an arbitrary
ε > 0 take q = p, s = pd

2p−d + ε in the case of Condition (a), q = 2p, s = 2pd
4p−d + ε in the case of Condition (b),

and q = p
2 ∨ 2, s > d defined by Condition (c) in the case of Condition (c). Assuming Condition (a), (b), or (c),

Hunt process M as in Theorem 8 solves weakly Px-a.s. for any x ∈ Rd,

Xt = x +
∫ t

0
‖Xs‖α/2 · σ√

φ
(Xs) dWs +

∫ t

0
G(Xs) ds, 0 ≤ t < ζ (27)

and is nonexplosive if Equation (3) holds a.e. outside an arbitrarily large compact set.

5.2. Uniqueness in Law

Consider

(A4)′: (A1) holds with p = 2d + 2, (A2) holds with some q ∈ (2d + 2, ∞], s ∈ ( d
2 , ∞) is fixed, such that

1
q +

1
s < 2

d , and G ∈ L∞
loc(R

d,Rd).
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Definition 1. Suppose Assumptions (A1), (A2), (A3), and (A4) hold (for instance, if (A4)′ holds). Let expression
1
ψ denote an arbitrary but fixed Borel measurable function satisfying ψ · 1

ψ = 1 a.e. and 1
ψ (x) ∈ [0, ∞) for any

x ∈ Rd. Let
M̃ = (Ω̃, F̃ , (F̃t)t≥0, (X̃t)t≥0, (W̃t)t≥0, (P̃x)x∈Rd)

be such that for any x = (x1, . . . , xd) ∈ Rd

(i) (Ω̃, F̃ , (F̃t)t≥0, P̃x) is a filtered probability space, satisfying the usual conditions,

(ii) (X̃t = (X̃1
t , . . . , X̃d

t ))t≥0 is an (F̃t)t≥0-adapted continuous Rd-valued stochastic process,

(iii) (W̃t = (W̃1
t , . . . , W̃m

t ))t≥0 is a standard m-dimensional ((F̃t)t≥0, P̃x)-Brownian motion starting from zero,

(iv) for the (real-valued) Borel measurable functions σ̂ij, gi, 1
ψ , σ̂ij =

√
1
ψ σij, with σ is as in Theorem 8, it holds

P̃x

( ∫ t

0

(
σ̂2

ij(X̃s) + |gi(X̃s)|
)
ds < ∞

)
= 1, 1 ≤ i ≤ d, 1 ≤ j ≤ m, t ∈ [0, ∞),

and for any 1 ≤ i ≤ d,

X̃i
t = xi +

m

∑
j=1

∫ t

0
σ̂ij(X̃s) dW̃ j

s +
∫ t

0
gi(X̃s) ds, 0 ≤ t < ∞, P̃x-a.s.,

in short

X̃t = x +
∫ t

0
σ̂(X̃s)dW̃s +

∫ t

0
G(X̃s)ds, 0 ≤ t < ∞, P̃x-a.s. (28)

Then, M̃ is called a weak solution to Equation (28). In this case, (t, ω̃) 7→ σ̂(X̃t(ω̃)) and (t, ω̃) 7→ G(X̃t(ω̃))

are progressively measurable with respect to (F̃t)t≥0, and

D̃R := inf{t ≥ 0 | X̃t ∈ Rd \ BR} ↗ ∞ P̃x-a.s. for any x ∈ Rd.

Remark 3. (i) In Definition 1, the (real-valued) Borel measurable functions σ̂ij, gi, 1
ψ are fixed. In particular, the

solution and the integrals involving the solution in Equation (28) may depend on the versions that we choose.
When we fix the Borel measurable version 1

ψ with 1
ψ (x) ∈ [0, ∞) for all x ∈ Rd, as in Definition 1, we always

consider corresponding extended Borel measurable function ψ defined by

ψ(x) :=
1

1
ψ (x)

, if
1
ψ
(x) ∈ (0, ∞), ψ(x) := ∞, if

1
ψ
(x) = 0.pt

Thus, the choice of the special version for ψ depends on the previously chosen Borel measurable version 1
ψ .

(ii) If M of Theorem 8 is nonexplosive (has infinite lifetime for any starting point), then it is a weak solution
to Equation (28). Thus, a weak solution to Equation (28) exists just under Assumptions (A1), (A2), (A3),
and (A4), and a suitable growth condition (cf. Remark 2) on the coefficients. For this special weak solution, we
know that integrals involving the solution do not depend on the chosen Borel versions. This follows similarly
to [1] (Lemma 3.14(i)).

Theorem 9 (Local Krylov-type estimate). Assume (A4)′, and let M̃ be a weak solution to Equation (28). Let

ZM̃(ω̃) := {t ≥ 0 |
√

1
ψ
(X̃t(ω̃)) = 0}
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and
Λ(ZM̃) :=

{
ω̃ ∈ Ω̃ | dt

(
ZM̃(ω̃)

)
= 0

}
.

Assume that

P̃x(Λ(ZM̃)) = 1 for all x ∈ Rd. (29)

Let x ∈ Rd, T > 0, R > 0 and f ∈ L2d+2,d+1(BR × (0, T)). Then, there exists a constant C > 0 that is
independent of f such that

Ẽx

[∫ T∧D̃R

0
f (X̃s, s)ds

]
≤ C‖ f ‖L2d+2,d+1(BR×(0,T)),

where Ẽx is the expectation w.r.t. P̃x.

Using Theorem 9 and Equation (25), the proof of the following lemma is straightforward.

Lemma 2. Let M̃ be a weak solution to Equation (28). Then, either of the following conditions implies
Equation (29):

(i) 1
ψ (x) ∈ (0, ∞) for all x ∈ Rd.

(ii) For each n ∈ N, T > 0 and x ∈ Rd it holds

Ẽx

[∫ T

0
1Bn ψ(X̃s)ds

]
< ∞,

where ψ denotes the extended Borel measurable version as explained in Remark 3(i). Moreover, Equation (5) is
equivalent to Equation (29).

In particular, if the weak solution that is constructed in Theorem 8 is nonexplosive, then Condition (ii) always
holds for this solution and (29) implies in general that integrals of the form

∫ t
0 f (X̃s, s)ds are, whenever they are

well-defined, independent of the particular Borel version that is chosen for f .

Theorem 10 (Local Itô-formula). Assume (A4)′ and let M̃ be a weak solution to (28) such that (29) holds. Let
R0 > 0, T > 0. Let u ∈ W2,1

2d+2(BR0 × (0, T)) ∩ C(BR0 × [0, T]) be such that ‖∇u‖ ∈ L4d+4(BR0 × (0, T)).
Let R > 0 with R < R0. Then P̃x-a.s. for any x ∈ Rd,

u(X̃T∧D̃R
, T ∧ D̃R)− u(x, 0) =

∫ T∧D̃R

0
∇u(X̃s, s)σ̂(X̃s)dW̃s +

∫ T∧D̃R

0
(∂tu + Lu)(X̃s, s)ds,

where Lu := 1
2 trace(Â∇2u) + 〈G,∇u〉.

Theorem 11. Assume (A4)′ and let f ∈ C∞
0 (Rd). Then there exists

u f ∈ Cb

(
Rd × [0, ∞)

)
∩
( ⋂

r>0
W2,1

2d+2,∞(Br × (0, ∞))
)

satisfying u f (x, 0) = f (x) for all x ∈ Rd such that

∂tu f ∈ L∞(Rd × (0, ∞)), ∂iu f ∈
⋂
r>0

L∞(Br × (0, ∞)) for all 1 ≤ i ≤ d,



Symmetry 2020, 12, 570 16 of 33

and
∂tu f =

1
2

trace(Â∇2u f ) + 〈G,∇u f 〉 a.e. on Rd × (0, ∞).

Definition 2. We say that uniqueness in law holds for Equation (28) if, for any two weak solutions,

M = (Ω,F , (Ft)t≥0, (Xt)t≥0, (Wt)t≥0, (Px)x∈Rd)

and
M̃ = (Ω̃, F̃ , (F̃t)t≥0, (X̃t)t≥0, (W̃t)t≥0, (P̃x)x∈Rd)

of (28) it holds Px ◦ X−1 = P̃x ◦ X̃−1 for all x ∈ Rd. We say that the stochastic differential Equation (28) is
well-posed if there exists a weak solution to it, and uniqueness in law holds.

Theorem 12. Assume Condition (A4)′. Consider two arbitrarily given weak solutions to Equation (28), M =

(Ω,F , (Ft)t≥0, (Xt)t≥0, (Wt)t≥0, (Px)x∈Rd) and M̃ = (Ω̃, F̃ , (F̃t)t≥0, (X̃t)t≥0, (W̃t)t≥0, (P̃x)x∈Rd). Suppose

Px(Λ(ZM)) = P̃x(Λ(ZM̃)) = 1, for all x ∈ Rd. (30)

Then, Px ◦ X−1 = P̃x ◦ X̃−1 for all x ∈ Rd. In particular, under Assumption (A4)′, any weak solution to
Equation (28) is a strong Markov process.

Combining Theorem 12, Remark 2, and Theorem 8, we obtain the following result.

Theorem 13. Assume Condition (A4)′, and suppose that M of Theorem 8 is nonexplosive. (This is, for instance,
the case if (3) holds; see Theorem 8.) Then, Hunt process M forms a unique solution (in law) to Equation (28)
that satisfies Px(Λ(ZM)) = 1, for all x ∈ Rd. Moreover, under the same conditions as in [1] (Theorem 4.4),
but replacing A, σ there with 1

ψ A,
√

1
ψ σ, respectively, the moment inequalities of the mentioned theorem also hold

for our M here.

Remark 4. Once uniqueness in law holds for Equation (28), any weak solution to Equation (28) satisfies the
improved (time-homogeneous) Krylov-type estimate (25). We illustrate this with respect to each other extreme cases.
For the first case, suppose that Assumption (A4)′ holds with q = 2d + 2 + ε for some small ε > 0. Then, we may
choose s = 2

3 d and s0 := sq
q−1 = 2

3 d · 2d+2+ε
2d+1+ε satisfies s0 < 4

5 d, actually s0 = 4
5 d− δ for small δ > 0; for any

bounded open set V, any ball B ⊂ Rd, and g ∈ Ls0(Rd)0 with supp(g) ⊂ V, we have by Equation (25) for any
x ∈ B

Ex

[∫ T

0
g(Xs)ds

]
≤ CB,s,t ‖g‖Ls(Rd ,µ)

≤ CB,s,t ‖ρψ‖1/s
Lq(V)

(∫
V
|g|

sq
q−1 dx

) q−1
sq

= CB,s,t ‖ρψ‖1/s
Lq(V)
‖g‖Ls0 (V).

On the other hand, if Assumption (A4)′ holds with q = ∞, and 1
ψ is supposed to be locally pointwise bounded

below and above by strictly positive constants, we may choose s = d
2 + ε for arbitrarily small ε > 0, and we obtain

for g ∈ Ls(Rd)0 with supp(g) ⊂ V, V, B and x as above,

Ex

[∫ T

0
g(Xs)ds

]
≤ CB,s,t ‖ρψ‖1/s

L∞(V)
‖g‖Ls(V).
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Example 2. Consider the situation in Example 1 except for Conditions (a), (b), (c). Let p := 2d + 2, and assume
G ∈ L∞

loc(R
d,Rd). Let α ≥ 0 be such that α(2d + 2) < d. Take q ∈ (2d + 2, d

α ). Then A, G, and ψ satisfy
Assumption (A4)′. Therefore, Hunt process M of Theorem 8 solves weakly Px-a.s. for any x ∈ Rd,

Xt = x +
∫ t

0
‖Xs‖α/2 · σ√

φ
(Xs) dWs +

∫ t

0
G(Xs) ds, 0 ≤ t < ζ. (31)

Assume Equation (3). Then ζ = ∞ and by Theorem 13, M is the unique (in law) solution to Equation (31)
that satisfies Px(Λ(ZM)) = 1, for all x ∈ Rd. If we choose the following Borel measurable version of ‖x‖α/2,
namely,

fγ(x) := ‖x‖α/21{x 6=0}(x) + γ1{x=0}(x), x ∈ Rd

where γ is an arbitrary but fixed strictly positive real number, then Px(Λ(ZM̃)) = 1 (here, of course, ZM̃ is defined
w.r.t.

√
1
ψ =

fγ√
φ

) is automatically satisfied by Lemma 2(i) for any weak solution M̃ to

X̃t = x +
∫ t

0

fγ · σ√
φ

(X̃s) dW̃s +
∫ t

0
G(X̃s) ds, t ≥ 0, x ∈ Rd, (32)

Thus, under Equation (3), the SDE (32) is well-posed for any γ > 0, and M of Theorem 8 also solves (32).
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Appendix A. Proofs and Auxiliary Statements

In this section, we collect all proofs of statements given in this article, and the statement of several
auxiliary Lemmas.

The following lemma is a slight modification of [17] (Lemma 6) and involves a weight function ψ.

Lemma A1. Let U be a bounded open subset of Rd and T > 0. Let w ∈ L2(U × (0, T)) be such that
supp(w) ⊂ U × (0, T] and assume ∂tw ∈ L2(U × (0, T)), ψ ∈ L2(U). Then, for a.e. τ ∈ (0, T), it holds∫ τ

0

∫
U

∂tw · ψ dxdt =
∫

U
w|t=τ ψdx.

Proof of Lemma A1. Using an approximation limn→∞ ψn = ψ in L2(U), with ψn ∈ C∞
0 (U), n ≥ 1,

and noting that wψ ∈ L1,2(U × (0, T)) for any ϕ ∈ C∞
0 (U × (0, T)), we obtain∫∫

U×(0,T)
∂t ϕ · wψ dxdt = −

∫∫
U×(0,T)

ϕ · (∂tw · ψ)dxdt.
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Thus, ∂t(wψ) = ∂tw · ψ ∈ L1,2(U × (0, T)). Now let f (t) :=
∫

U w(x, t)ψ(x)dx. Then f (t) is defined
for a.e. t ∈ (0, T) and is in L1((0, T)). Let g ∈ C∞

0
(
(0, T)

)
be given. Then

∫ T

0
∂tg · f dt = −

∫ T

0
g ·
(∫

U
∂tw · ψdx

)
dt.

Thus, ∂t f =
∫

U ∂tw · ψdx ∈ L1((0, T)
)
. Then, by [18] (Theorem 4.20), f has an absolutely continuous

dx-version on (0, T) and by the Fundamental Theorem of Calculus, for a.e τ1, τ ∈ (0, T) it holds∫ τ

τ1

∫
U

∂tw · ψdxdt =
∫ τ

τ1

∂t f dt =
∫ τ

τ1

f ′dt = f (τ)− f (τ1) =
∫

U
(w|t=τ − w|t=τ1)ψdx.

Choosing τ1 near 0, our assertion follows.

Lemma A2. Assume Conditions (I) and (7). Let β ≥ 1 be a constant and η ∈ C∞(U × [0, T]) with supp(η) ⊂
U × (0, T] and η ≥ 0. Then, for a.e. τ ∈ (0, T)

1
β + 1

∫
U

η2(u+)β+1 |t=τ ψdx +
λβ

2

∫ τ

0

∫
U

η2(u+)β−1‖∇u+‖2dxdt

≤
∫ τ

0

∫
U

(‖B‖2

λ
η2 +

4d2M2

λ
‖∇η‖2

)
(u+)β+1dxdt +

2
β + 1

∫ τ

0

∫
U

η|∂tη|(u+)β+1 ψdxdt. (A1)

Proof of Lemma A2. Using integration by parts in the left hand term, Equation (7) is equivalent to

−
∫∫

U×(0,T)
(∂tu) ϕψdxdt =

∫∫
U×(0,T)

〈
A∇u,∇ϕ

〉
+ 〈B,∇u〉ϕdxdt, (A2)

for all ϕ ∈ C∞
0 (U × (0, T)). Using the standard mollification on Rd × R to approximate functions in

A := {v ∈ L∞(U × (0, T)) | ∇v ∈ L2(U × (0, T)), supp(v) ⊂ U × (0, T)}, (A2) extends to

−
∫∫

U×(0,T)
(∂tu) ϕψdxdt =

∫∫
U×(0,T)

〈
A∇u,∇ϕ

〉
+ 〈B,∇u〉ϕdxdt, ∀ϕ ∈ A. (A3)

For t ∈ R, define functions G(t) := (t+)β, H(t) := 1
β+1 (t

+)β+1, where t+ := max(0, t).

Then, by [18] (Theorem 4.4), G′(t) = β(t+)β−11[0,∞)(t) and H′(t) = G(t). Given τ ∈ (0, T), define
ϕ̃ := η2G(u)1(0,τ). Then, by [18] (Theorem 4.4) (or [17] (Lemma 4)),

∇ϕ̃ =

{
η2G′(u)∇u + 2η∇η G(u), 0 < t < τ,

0, τ ≤ t < T.

Thus, ϕ̃ ∈ A and by Assumption (A3), we have

−
∫∫

U×(0,T)
(∂tu) ϕ̃ψdxdt =

∫∫
U×(0,T)

〈
A∇u,∇ϕ̃

〉
+ 〈B,∇u〉ϕ̃dxdt. (A4)

By [18] (Theorem 4.4) (or [17] (Lemma 4)),

∂t(η
2H(u)) = 2η∂tη H(u) + η2G(u)∂tu.
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Thus, by Lemma A1∫∫
U×(0,T)

ϕ̃ (∂tu)ψdxdt =
∫

U
η2H(u) |t=τ ψdx−

∫ τ

0

∫
U

2η∂tη H(u)ψdxdt, (A5)

for a.e. τ ∈ (0, T). By Assumptions (A4) and (A5), we get∫
U

η2H(u) |t=τ ψdxdt +
∫ τ

0

∫
U

〈
A∇u,∇ϕ̃

〉
+ 〈B,∇u〉ϕ̃dxdt

=
∫ τ

0

∫
U

2η ∂tη H(u)ψdxdt, (A6)

for a.e. τ ∈ (0, T). On {ϕ̃ > 0}, it holds that u > 0, so that ∇u = ∇u+. Thus, on {ϕ̃ > 0},〈
A∇u,∇ϕ̃

〉
+ 〈B,∇u〉ϕ̃

≥ η2G′(u)λ ‖∇u+‖2 − 2ηG(u)dM‖∇η‖‖∇u+‖ − η2G(u)‖B‖‖∇u+‖.

Moreover, on {ϕ̃ > 0}, it holds (u+)−β−1 G(u)2 ≤ G′(u). Hence, using Young’s inequality, we
obtain

2ηG(u)dM‖∇η‖‖∇u+‖ ≤ λ

4
η2G′(u)‖∇u+‖2 +

4d2M2

λ
‖∇η‖2 (u+)β+1,

and

η2G(u)‖B‖‖∇u+‖ ≤ λ

4
η2G′(u)‖∇u+‖2 +

1
λ
‖B‖2(u+)β+1η2.

Therefore, on {ϕ̃ > 0}, it holds that

λ

2
η2G′(u)‖∇u+‖2

≤
〈

A∇u,∇ϕ̃
〉
+ 〈B,∇u〉ϕ̃ +

(‖B‖2

λ
η2 +

4d2M2

λ
‖∇η‖2

)
(u+)β+1. (A7)

Since {ϕ̃ = 0} ∩
(
U × (0, τ)

)
= {η = 0} ∪ {u ≤ 0} and ∇u+ = 0 on {u ≤ 0}, (A7) holds on

U × (0, τ). Combining Assumptions (A7) and (A6), we obtain Assumption (A1).

Proof of Theorem 1. Let η ∈ C∞(Rx̄(r)× [t̄− 9r2, t̄ ]
)

with supp(η) ⊂ Rx̄(r)× (t̄− 9r2, t̄ ] and η ≥ 0.
Then, by Lemma A2, Assumption (A1) holds with U × (0, T) replaced by Q(3r). Using appropriate
scaling arguments (cf. [17] (proof of Theorem 2)), we may assume r = 1

3 . Set v := (u+)γ with γ := β+1
2 .

Then ‖∇v‖2 = γ2(u+)β−1‖∇u+‖2. By Lemma A2, it holds for a.e. τ ∈ (t̄− 1, t̄)

c0

2γ

∫
Rx̄(1)

η2v2 |t=τ dx +
λ

2γ2

∫ τ

t̄−1

∫
Rx̄(1)

η2‖∇v‖2dxdt

≤
∫∫

Q(1)

(‖B‖2

λ
η2 +

4d2M2

λ
‖∇η‖2

)
v2dxdt +

∫∫
Q(1)

η|∂tη|v2 ψdx.
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Let l and l′ be positive numbers satisfying 1
3 < l′ < l ≤ 2

3 . Assume that η ≡ 1 in Q(l′), η ≡ 0 outside
Q(l), 0 ≤ η ≤ 1, and |∂tη|, ‖∇η‖ ≤ 2d(l − l′)−1. Then,

∫∫
Q(1)

(‖B‖2

λ
η2 +

4d2M2

λ
‖∇η‖2

)
v2dxdt

≤ 4d2

λ
(l − l′)−2(‖B‖2

Lp(Rx̄(1)) + 4d2M2)‖v‖2

L
2p

p−2 ,2
(Q(l))

,

and 2q
q−1 ≤

2p
p−2 , it follows that

∫ t̄

t̄−1

∫
R(1)

η|∂tη|v2 ψdx ≤ 2d(l − l′)−2‖ψ‖Lq(Rx̄(1))‖v‖
2

L
2p

p−2 ,2
(Q(l))

.

Thus, we obtain

λ‖η∇v‖2
L2(Q(1)) ≤ 2C1(l − l′)−2γ2‖v‖2

L
2p

p−2 ,2
(Q(l))

and
‖ηv‖2

L2,∞(Q(1)) ≤ 2c−1
0 C1(l − l′)−2γ2‖v‖2

L
2p

p−2 ,2
(Q(l))

,

where C1 = 4d2

λ (‖B‖2
Lp(Rx̄(1))

+ 4d2M2) + 2d‖ψ‖Lq(Rx̄(1)).

Now set θ := 1− d
p and σ := 1 + θ

2 if d = 2, σ := 1 + 2θ
d if d ≥ 3. Set pσ :=

(
σp

p−2

)′
= σp

σp−p+2 ,

qσ := σ′ = σ
σ−1 . Then

d
2pσ

+
1
qσ

< 1 if d = 2,
d

2pσ
+

1
qσ

= 1 if d ≥ 3.

By [17] (Lemma 3),

‖vσ‖2/σ

L
2p

p−2 ,2
(Q(l′))

≤ ‖(ηv)σ‖2/σ

L
2p

p−2 ,2
(Q(1))

= ‖ηv‖2

L
2σp
p−2 ,2σ

(Q(1))
= ‖ηv‖2

L2(pσ)′ ,2(qσ)′ (Q(1))

≤ K
(
‖ηv‖2

L2,∞(Q(1)) + 2‖η∇v‖2
L2(Q(1)) + 8d2(l − l′)−2‖v‖2

L2(Q(l))

)
≤ C2(l − l′)−2γ2‖v‖2

L
2p

p−2 ,2
(Q(l))

, (A8)

where C2 = K(4C1λ−1 + 2C1c−1
0 + 8d2). Now, for m ∈ N ∪ {0}, set l = lm := 3−1(1 + 2−m), l′ = l′m :=

3−1(1 + 2−m−1), ϕm := ‖(u+)σm‖2/σm

L
2p

p−2 ,2
(Q(lm))

. Taking γ = σm and 1/3 < l′ = l′m < l = lm ≤ 2/3 for

m ∈ N∪ {0}, we obtain using Assumption (A8)

ϕm+1 ≤ (36C2)
1

σm (2σ)
2m
σm ϕm. (A9)

Iterating Assumption (A9), we get

ϕm+1 ≤ (36C2)
∑m

i=0
1
σi (2σ)∑m

i=0
2i
σi ϕ0 ≤ (36C2)

σ
σ−1 (2σ)

2σ
(σ−1)2︸ ︷︷ ︸

=:C3

‖u‖2

L
2p

p−2 ,2
(Q(2/3))

.
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Letting m→ ∞, we get

‖u+‖L∞(Q(1/3)) ≤
√

C3‖u‖
L

2p
p−2 ,2

(Q(2/3))
.

Exactly in the same way, but with u replaced by −u, we obtain Equation (8) with C = 2
√

C3.

Lemma A3. Let U be a bounded open ball in Rd. Let f ∈ Lq̃(U) with d
2 < q̃ < d. Then, there exists

F = ( f1, . . . , fd) ∈ H1,q̃(U,Rd) such that divF = f in U and

d

∑
i=1
‖ fi‖H1,q̃(U) ≤ C‖ f ‖Lq̃(U),

where C > 0 only depends on q̃, U. In particular, applying the Sobolev inequality, we get

d

∑
i=1
‖ fi‖

L
dq̃

d−q̃ (U)

≤ C′‖ f ‖Lq̃(U),

where C′ > 0 only depends on q̃, U.

Proof of Lemma A3. By [19] (Theorem 9.15 and Lemma 9.17), there exists u ∈ H2,q̃(U) ∩ H1,q̃
0 (U) such

that ∆u = f in U and
‖u‖H2,q̃(U) ≤ C1‖ f ‖Lq̃(U),

where C1 > 0 is a constant only depending on q̃, U. Let F := ∇u. Then F ∈ H1,q̃(U,Rd) with divF = f in
U and it holds that

d

∑
i=1
‖ fi‖H1,q̃(U) ≤

(
d + d2

) q̃−1
q̃
( d

∑
i=1
‖∂iu‖

q̃
Lq̃(U)

+
d

∑
i=1

d

∑
j=1

∥∥∂j∂iu
∥∥q̃

Lq̃(U)

) 1
q̃

≤ C1

(
d + d2

) q̃−1
q̃ ‖ f ‖Lq̃(U).

Proof of Theorem 2. Without loss of generality, we may assume that d
2 < q̃ < d. Let U2 be an open ball

in Rd satisfying U1 ⊂ U2 ⊂ U2 ⊂ U. By Lemma A3, we can find F = ( f1, . . . , fd) ∈ H1,q̃(U2,Rd) ⊂

L
dq̃

d−q̃ (U2,Rd) such that

divF = f in U2,
d

∑
i=1
‖ fi‖

L
dq̃

d−q̃ (U2)

≤ C1‖ f ‖Lq̃(U2)
,

where C1 > 0 is a constant only depending on q̃ and U2. Then, Equation (9) implies∫
U2

〈A∇u,∇ϕ〉+ (〈B,∇u〉+ cu) ϕ dx =
∫

U2

〈−F,∇ϕ〉 dx for all ϕ ∈ C∞
0 (U2).
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Given x ∈ U1, r > 0 with r < dist(x, U2), set ωx(r) := supBx(r) u− infBx(r) u. By [14] (Théorème 7.2)
and Lemma A3,

ωx(r) ≤ K

(
‖u‖L2(U2)

+
d

∑
i=1
‖ fi‖

L
dq̃

d−q̃ (U2)

)
rγ ≤ K(1 + C′)

(
‖u‖L2(U2)

+ ‖ f ‖Lq̃(U2)

)
rγ,

where γ ∈ (0, 1) and K, C′ > 0 are constants that are independent of x, r, u, F, f . Thus, we have∫
Br(x)
|u(y)− ux,r|2dy ≤ (K′)2

(
‖u‖L2(U2)

+ ‖ f ‖Lq̃(U2)

)2
rd+2γ,

where ux,r := 1
|Br(x)|

∫
Br(x) u(y) dy and (K′)2 := K2 · πd/2

Γ( d
2 +1)

(1 + C′)2. Finally

by [20] (Theorem 3.1), [15] (Theorem 1.7.4) (the VMO condition and symmetry of A = (aij)1≤i,j≤d are not
needed in [15] (Theorem 1.7.4), as we can see from its proof), we obtain

‖u‖C0,γ(U1)
≤ c
(
K′
(
‖u‖L2(U2)

+ ‖ f ‖Lq̃(U2)

)
+ ‖u‖L2(U2)

)
≤
(
cK′ ∨ c

) (
‖u‖H1,2(U2)

+ ‖ f ‖Lq̃(U2)

)
≤
(
cK′ ∨ c

) (
C1‖u‖L1(U) + C1‖ f ‖Lq̃(U) + ‖ f ‖Lq̃(U2)

)
≤ (C1 + 1)

(
cK′ ∨ c

) (
‖u‖L1(U) + ‖ f ‖Lq̃(U)

)
,

where c > 0, C1 > 0 are constants that are independent of u and f .

Proof of Theorem 4. By [8] (Theorem 3.6), there exists ρ ∈ H1,p
loc (R

d) ∩ C(Rd) satisfying ρ(x) > 0 for all
x ∈ Rd, such that ∫

Rd

〈1
2

A∇ρ + (
1
2
∇A− ψG)ρ,∇ϕ

〉
dx = 0, for all ϕ ∈ C∞

0 (Rd),

hence ∫
Rd

〈
G− ∇A

2ψ
− A∇ρ

2ρψ
,∇ϕ

〉
ρψdx = 0, for all ϕ ∈ C∞

0 (Rd);

moreover,

ρψ B = ρψG− ρ

2
∇A− A∇ρ

2
∈ Lp

loc(R
d,Rd).

The equivalence of Equation (18) and (6) follows since L f = L0 f + 〈G− βρ,A,ψ,∇ f 〉, f ∈ C∞
0 (Rd),

where L0 is as in Equation (12) and by elementary calculation
∫
Rd L0 f dµ = 0 for any f ∈ C∞

0 (Rd).

Proof of Theorem 5. Let f ∈ C∞
0 (Rd) and α > 0. Then, by Theorem 3, Gα f ∈ D(L)b ⊂ D(E0) and

E0(Gα f , ϕ)−
∫
Rd
〈B,∇Gα f 〉ϕdµ = −

∫
Rd

(
L Gα f

)
ϕ dµ =

∫
Rd
( f − αGα f )ϕ dµ, (A10)

for all ϕ ∈ C∞
0 (Rd). Thus, Assumption (A10) implies for all ϕ ∈ C∞

0 (Rd)

∫
Rd

〈1
2

ρA∇Gα f ,∇ϕ
〉
dx−

∫
Rd
〈ρψB,∇Gα f 〉ϕ dx +

∫
Rd
(αρψGα f ) ϕdx

=
∫
Rd
(ρψ f ) ϕdx. (A11)
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ρ is locally bounded below and above on Rd and ρψB ∈ Lp
loc(R

d,Rd), αρψ ∈ Lq
loc(R

d). Let B and B′

be open balls in Rd satisfying B ⊂ B′. Since 1
ψ ∈ L∞(B′), Gα f ∈ H1,2(B′). Thus, by Theorem 2, there exist

a Hölder continuous µ-version Rα f of Gα f on Rd and constants γ ∈ (0, 1), c1 > 0 that are independent of
f , such that

‖Rα f ‖C0,γ(B) ≤ c1
(
‖Gα f ‖L1(B′) + ‖ρψ f ‖

L( 1
q +

1
s )
−1

(B′)

)
≤ c2

(
‖Gα f ‖L1(B′ ,µ) + ‖ f ‖Ls(B′ ,µ)

)
, (A12)

where c2 := c1
( 1

infB′ ρψ ∨
‖ρψ‖Lq(B′)
(infB′ ρψ)1/s

)
. Using the Hölder inequality and the contraction property,

Assumption (A12) extends to f ∈ ∪r∈[s,∞)Lr(Rd, µ). In order to extend Assumption (A12) to f ∈
L∞(Rd, µ), let fn := 1Bn · f ∈ Lq(Rd, µ)0, n ≥ 1. Then, ‖ f − fn‖Ls(B′ ,µ) + ‖Gα( f − fn)‖L1(B′ ,µ) → 0
as n→ ∞ by Lebesgue’s Theorem. Hence, Assumption (A12) also extends to f ∈ L∞(Rd, µ).

The following well-known fact is stated without proof.

Lemma A4. Let U be a bounded open subset of Rd and T > 0. Then, C2
0(U × (0, T)) is in the closure of{

∑N
i=1 figi | fi ∈ C∞

0 (U), gi ∈ C∞
0 ((0, T)), i = 1, . . . , N, N ∈ N

}
w.r.t. ‖u‖C2(U×[0,T]) := ‖u‖C(U×[0,T]) +

∑d+1
i=1 ‖∂iu‖C(U×[0,T]) + ∑d+1

i,j=1 ‖∂i∂ju‖C(U×[0,T]).

Proof of Theorem 6. First assume f ∈ D(L)b ∩ D(Ls) ∩ D(L2). By means of Lemma 1, define
u ∈ Cb(Rd × [0, ∞)) by u(x, t) := Pt f (x). Note that for any bounded open set O ⊂ Rd and T > 0,
it holds u ∈ H1,2(O× (0, T)) by Lemma A6 below. Let ϕ1 ∈ C∞

0 (Rd), ϕ2 ∈ C∞
0 ((0, T)). Observe that

Tt f ∈ D(L)b, hence ∫∫
Rd×(0,T)

〈1
2

ρA∇u,∇(ϕ1 ϕ2)〉 − 〈ρψB,∇ (Tt f )〉ϕ1 ϕ2 dxdt

=
∫ T

0
ϕ2(E0(Tt f , ϕ1)−

∫
Rd
〈B,∇Tt f 〉ϕ1 dµ)dt

=
∫ T

0
−ϕ2

( d
dt

∫
Rd

ϕ1Tt f ρψdx
)
dt =

∫∫
Rd×(0,T)

u ∂t(ϕ1 ϕ2)ρψdxdt. (A13)

By Lemma A4, Assumption (A13) extends to∫∫
Rd×(0,T)

〈1
2

ρA∇u,∇ϕ〉 − 〈ρψB,∇ (Tt f )〉ϕ dxdt =
∫∫

Rd×(0,T)
u ∂t ϕ · ρψdxdt (A14)

for all ϕ ∈ C∞
0 (Rd × (0, T)). Let τ∗2 := τ2+τ4

2 and take r > 0 so that

r <
√

τ1 − τ3

2
and Rx̄(2r) ⊂ V, ∀x̄ ∈ U.

Then, for all (x̄, t̄) ∈ U × [τ1, τ∗2 ], we have Rx̄(2r) × (t̄ − (2r)2, t̄) ⊂ V × (τ3, τ4). Using the
compactness of U × [τ1, τ2], there exist (xi, ti) ∈ U × [τ1, τ∗2 ], i = 1, . . . , N, such that

U × [τ1, τ2] ⊂
N⋃

i=1

Rxi (r)× (ti − r2, ti).
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Using Theorem 1,

‖u‖C(U×[τ1,τ2])
= sup

U×[τ1,τ2]

|u| ≤ max
i=1,...,N

sup
Rxi (r)×(ti−r2,ti)

|u|

≤ max
i=1,...,N

ci‖u‖
L

2p
p−2 ,2(

Rxi (2r)×(ti−(2r)2,ti)
)

≤ ( max
i=1,...,N

ci)︸ ︷︷ ︸
=:C1

‖u‖
L

2p
p−2 ,2(

V×(τ3,τ4)
),

where ci > 0 (1 ≤ i ≤ N) are constants that are independent of u. Thus, for ν ≥ 2p
p−2 ,

‖P· f ‖C(U×[τ1,τ2])
≤ C1‖P· f ‖

L
2p

p−2 ,2(
V×(τ3,τ4)

) (A15)

≤ C1
( 1

infV ρψ

) p−2
2p
( ∫ τ4

τ3

‖Tt f ‖2

L
2p

p−2 (V,µ)
dt
)1/2

≤ C1
( 1

infV ρψ

) p−2
2p µ(V)

1
2−

1
p−

1
ν︸ ︷︷ ︸

=:C2

( ∫ τ4

τ3

‖Tt f ‖2
Lν(V,µ)dt

)1/2

≤ C1C2(τ4 − τ3)
1/2‖ f ‖Lν(Rd ,µ). (A16)

Now, assume f ∈ L1(Rd, µ) ∩ L∞(Rd, µ). Then nGn f ∈ D(L)b ∩ D(Ls) ∩ D(L2) for all n ∈ N and
limn→∞ nGn f = f in Lν(Rd, µ). Thus, Assumption (A16) extends to all f ∈ L1(Rd, µ) ∩ L∞(Rd, µ).
If ν ∈ [ 2p

p−2 , ∞), the above again extends to all f ∈ Lν(Rd, µ) using the denseness of L1(Rd, µ)∩ L∞(Rd, µ)

in Lν(Rd, µ). Finally, assume f ∈ L∞(Rd, µ) and let fn := 1Bn · f for n ≥ 1. Then, limn→∞ fn = f µ-a.e.
on Rd and

Tt f = lim
n→∞

Tt fn = lim
n→∞

Pt fn, µ-a.e. on Rd. (A17)

Thus, using the sub-Markovian property and Lebesgue’s Theorem in Assumption (A15), (P· fn(·))n≥1

is a Cauchy sequence in C(U × [τ1, τ2]). Hence, we can again define

P· f := lim
n→∞

P· fn(·) in C(U × [τ1, τ2]).

For each t > 0, Pt fn converges uniformly to Pt f in U; hence, in view of Assumption (A17), Tt f
has continuous µ-version Pt f and P· f ∈ C(U × [τ1, τ2]). Therefore, Assumption (A16) extends to all
f ∈ L∞(Rd, µ). Since U and [τ1, τ2] were arbitrary, it holds for any f ∈ ∪

ν∈[ 2p
p−2 ,∞]

Lν(Rd, µ), P· f (·) is

continuous on Rd × (0, ∞) and for each t > 0, Pt f = Tt f µ-a.e. on Rd.

Proof of Proposition 3. The first shows the quasiregularity of the generalized Dirichlet form (E , D(L2))

associated with (L2, D(L2)), and the existence of a µ-tight special standard process associated with
(E , D(L2)). This can be done exactly as in [10] (Theorem 3.5). One only has to take care that space Y ,
as defined in the proof of [10] (Theorem 3.5), is replaced because of a seemingly uncorrected version of
the paper by

Y := {u ∈ D(L)b | ∃ f , g ∈ L1(Rd, µ)b, f , g ≥ 0, such that u ≤ G1 f and − u ≤ G1g}
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to guarantee the convergence at the end of the proof. In particular, D(L)b is an algebra that can be proven
in a similar way to [10] (Remark 1.7iii). Then, the assertion follows exactly as in [11] (Theorem 6), using
for the proof instead G there the space Y defined above and defining Ek ≡ Rd, k ≥ 1.

Proof of Theorem 9. Let g ∈ Ld+1(BR × (0, T)). (all functions defined on BR × (0, T) are trivially
extended on Rd × (0, ∞) \ BR × (0, T).) Using [12] (2. Theorem (2), p. 52), there exists a constant C1 > 0
that is independent of g, such that

Ẽx

[∫
(0,T∧D̃R)\ZM̃

(
2−

d
d+1 det(A)

1
d+1 ·

( 1
ψ

) d
d+1 g

)
(X̃s, s)ds

]

= Ẽx

[∫ T∧D̃R

0

(
2−

d
d+1 det(A)

1
d+1 ·

( 1
ψ

) d
d+1 g

)
(X̃s, s)ds

]

≤ eT‖G‖L∞(BR) · Ẽx

[∫ T∧D̃R

0
e−
∫ s

0 ‖G(X̃u)‖du · det
(

Â/2
) 1

d+1 g(X̃s, s)ds

]
≤ eT‖G‖L∞(BR) · C1‖g‖Ld+1(BR×(0,∞))

= eT‖G‖L∞(BR) · C1‖g‖Ld+1(BR×(0,T)).

Let f ∈ L2d+2,d+1(BR × (0, T)). Let ψ denote the extended Borel measurable version as explained in
Remark 3(i). Note that

ZM̃(ω̃) = {s ≥ 0 |
( 1

ψ

) d
d+1

(X̃s(ω̃))ψ
d

d+1 (X̃s(ω̃)) 6= 1}.

Hence, by Equation (29),

P̃x
(
dt({s ≥ 0 |

( 1
ψ

) d
d+1

(X̃s)ψ
d

d+1 (X̃s) 6= 1}) = 0
)
= 1.

Thus, replacing g with 2
d

d+1 · det(A)−
1

d+1 ψ
d

d+1 f , we get

Ẽx

[∫ T∧D̃R

0
f (X̃s, s)ds

]
= Ẽx

[∫
(0,T∧D̃R)\ZM̃

f (X̃s, s)ds
]

≤ eT‖G‖L∞(BR) · C1‖2
d

d+1 · det(A)−
1

d+1 ψ
d

d+1 f ‖Ld+1(BR×(0,T))

≤ 2
d

d+1 eT‖G‖L∞(BR) · C1‖det(A)−
1

d+1 ‖L∞(BR)
‖ψ‖

2d
2d+2
L2d(BR)︸ ︷︷ ︸

=:C

‖ f ‖L2d+2,d+1(BR×(0,T)).

Proof of Theorem 10. Take T0 > 0 satisfying T0 > T. Extend u to BR0 × [−T0, T0] by

u(x, t) = u(x, 0) for − T0 ≤ t < 0, u(x, t) = u(x, T) for T < t ≤ T0, x ∈ BR0 .

Then, it holds that

u ∈W2,1
2d+2(BR0 × (0, T)) ∩ C(BR0 × [−T, T]) and ‖∇u‖ ∈ L4d+4(BR0 × (−T0, T0)).
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For sufficiently large n ∈ N, let ζn be a standard mollifier on Rd+1 and un := u ∗ ζn.
Then it holds un ∈ C∞(BR × [0, T]), such that limn→∞ ‖un − u‖W2,1

2d+2(BR×(0,T)) = 0 and

limn→∞ ‖∇un −∇u‖L4d+4(BR×(0,T)) = 0 . By Itô’s formula, for x ∈ Rd, it holds for any n ≥ 1

un(X̃T∧D̃R
, T ∧ D̃R)− un(x, 0)

=
∫ T∧D̃R

0
∇un(X̃s, s) σ̂(X̃s)dW̃s +

∫ T∧D̃R

0
(∂tun + Lun)(X̃s, s)ds, P̃x-a.s. (A18)

By Sobolev embedding, there exists a constant C > 0, independent of un and u, such that

‖un − u‖C(BR×[0,T]) ≤ C‖un − u‖W2,1
2d+2(BR×(0,T)).

Thus, limn→∞ un(x, 0) = u(x, 0) and

un(XT∧D̃R
, T ∧ D̃R) converges Px-a.s. to u(XT∧D̃R

, T ∧ D̃R) as n→ ∞.

By Theorem 9,

Ẽx

[∣∣∣∣∣
∫ T∧D̃R

0
(∂tun + Lun)(X̃s, s)ds−

∫ T∧D̃R

0
(∂tu + Lu)(X̃s, s)ds

∣∣∣∣∣
]

≤ Ẽx

[∫ T∧D̃R

0
|∂tu− ∂tun|(X̃s, s)ds

]
+ Ẽx

[∫ T∧D̃R

0
|Lu− Lun|(X̃s, s)ds

]
≤ C‖∂tun − ∂tu‖L2d+2,d+1(BR×(0,T)) + C‖Lu− Lun‖L2d+2,d+1(BR×(0,T)) −→n→∞

0

where C > 0 is a constant that is independent of u and un. Using Jensen’s inequality, Itô isometry, and
Theorem 9, we obtain

Ẽx

[∫ T∧D̃R

0

(
∇un(X̃s, s)−∇u(X̃s, s)

)
σ̂(X̃s)dWs

]

≤ Ẽx

∣∣∣∣∣
∫ T∧D̃R

0

(
∇un(X̃s, s)−∇u(X̃s, s)

)
σ̂(X̃s)dWs

∣∣∣∣∣
2
1/2

= Ẽx

[∫ T∧D̃R

0

∥∥ (∇un(X̃s, s)−∇u(X̃s, s)
)

σ̂(X̃s)
∥∥2ds

]1/2

≤ C‖(∇un −∇u)σ̂‖L4d+4,2d+2(BR×(0,T))

≤ CC′‖σ̂‖L∞(BR)
‖∇un −∇u‖L4d+4,2d+2(BR×(0,T)) −→n→∞

0.

Letting n→ ∞ in Assumption (A18), the assertion holds.

Lemma A5. Assume Assumption (A4)′ and let q0 > 2d + 2 be such that 1
q0
+ 1

q = 1
2d+2 . If u ∈ D(Lq0); then,

u ∈ H2,2d+2
loc (Rd). Moreover, for any open ball B in Rd, there exists a constant C > 0, independent of u, such that

‖u‖H2,2d+2(B) ≤ C‖u‖D(Lq0 )
.
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Proof of Lemma A5. By Assumption (A4)′ and Theorem 4, ρ ∈ H1,2d+2
loc (Rd) ∩ C(Rd) and

ρψB ∈ L2d+2
loc (Rd,Rd). Let f ∈ C∞

0 (Rd) and α > 0. Then by (A11), for all ϕ ∈ C∞
0 (Rd)

∫
Rd

〈1
2

ρA∇Gα f ,∇ϕ
〉
dx−

∫
Rd
〈ρψB,∇Gα f 〉ϕ dx +

∫
Rd
(αρψGα f ) ϕdx

=
∫
Rd
(ρψ f ) ϕdx. (A19)

Let q̃ :=
(

1
2d+2 + 1

d

)−1
. Then αρψ ∈ L2d+2

loc (Rd) ⊂ Lq̃
loc(R

d), ρψ f ∈ L2d+2
loc (Rd) ⊂ Lq̃

loc(R
d), hence

by [15] (Theorem 1.8.3), Gα f ∈ H1,2d+2
loc (Rd). Moreover, using [15] (Theorem 1.7.4) and the resolvent

contraction property, for any open balls V, V′ in Rd with V ⊂ V′, there exists a constant C̃ > 0,
independent of f , such that

‖Gα f ‖H1,2d+2(V) ≤ C̃(‖Gα f ‖L1(V′) + ‖ρψ f ‖Lq̃(V′))

≤ C̃(‖Gα f ‖L1(V′) + ‖ρψ‖L2d+2(V′)‖ f ‖Ld(V′))

≤ C̃ C̃1‖ f ‖Lq0 (Rd ,µ), (A20)

where C̃1 :=
( 1

infV′ ρψ

) 1
q0 (α−1dx(V′)1− 1

q0 + ‖ρψ‖L2d+2(V′)dx(V′)
1
d−

1
q0 ). Using Morrey’s inequality and

Assumption (A20), there exists a constant C̃2 > 0 that is independent of f , such that

‖Gα f ‖L∞(V) ≤ C̃2C̃C̃1‖ f ‖Lq0 (Rd ,µ). (A21)

Now, set
h1 := 〈ρψB,∇Gα f 〉 − αρψGα f + ρψ f ∈ Ld+1

loc (Rd).

Then, Assumption (A19) implies for all ϕ ∈ C∞
0 (Rd)

∫
Rd

〈1
2

ρA∇Gα f ,∇ϕ
〉
dx =

∫
Rd

h1 ϕdx. (A22)

Let U1, U2 be open balls in Rd satisfying B ⊂ U1 ⊂ U1 ⊂ U2. Take ζ1 ∈ C∞
0 (U2) such that ζ1 ≡ 1 on

U1. Then, using integration by parts, and Assumption (A22), for all ϕ ∈ C∞
0 (U2)∫

U2

〈1
2

ρA∇(ζ1Gα f ),∇ϕ〉dx =
∫

U2

〈1
2

ρA∇Gα f , ζ1∇ϕ〉dx +
∫

U2

1
2
〈A∇ζ1,∇ϕ〉ρGα f dx

=
∫

U2

〈1
2

ρA∇Gα f ,∇(ζ1 ϕ)〉dx−
∫

U2

〈1
2

ρA∇Gα f ,∇ζ1〉︸ ︷︷ ︸
=:h2

ϕdx

+
∫

U2

−1
2
(
〈Gα f∇ρ + ρ∇Gα f , A∇ζ1〉+ ρGα f 〈∇A,∇ζ1〉+ ρGα f trace(A∇2ζ1)

)
︸ ︷︷ ︸

=:h3

ϕdx

=
∫

U2

(h1ζ1 − h2 + h3)ϕdx. (A23)
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Note that h2, h3 ∈ L2d+2
loc (Rd). Let h4 := 〈 1

2∇(ρA),∇(ζ1Gα f )〉 ∈ Ld+1
loc (Rd). Using Assumption (A23),

∫
U2

〈1
2

ρA∇(ζ1Gα f ),∇ϕ〉dx +
∫

U2

〈1
2
∇(ρA),∇(ζ1Gα f )〉ϕdx

=
∫

U2

(h1ζ1 − h2 + h3 + h4)ϕdx, (A24)

for all ϕ ∈ C∞
0 (U2). We have h := h1ζ1 − h2 + h3 + h4 ∈ Ld+1

loc (Rd) and

‖h‖Ld+1(U2)
≤ C2(‖Gα f ‖H1,2d+2(U2)

+ ‖ρψ f ‖Ld+1(U2)
), (A25)

where C2 > 0 is a constant that is independent of f . By [19] (Theorem 9.15), there exists w ∈ H2,d+1(U2)∩
H1,d+1

0 (U2), such that

− 1
2

trace(ρA∇2w) = h a.e. on U2. (A26)

Furthermore, using [19] (Lemma 9.17), and Assumptions (A25) and (A20), there exists a constant
C1 > 0 that is independent of f , such that

‖w‖H2,d+1(U2)
≤ C1‖h‖Ld+1(U2)

≤ C1C2

(
‖Gα f ‖H1,2d+2(U2)

+ ‖ρψ f ‖Ld+1(U2)

)
≤ C1C2C3‖ f ‖Lq0 (Rd ,µ),

where C3 := C̃1 + ‖ρψ‖L2d+2(U2)
dx(U2)

1
2d+2−

1
q0
( 1

infU2 ρψ

) 1
q0 . Assumption (A26) implies

∫
U2

〈1
2

ρA∇w,∇ϕ〉dx +
∫

U2

〈1
2
∇(ρA),∇w〉ϕdx =

∫
U2

hϕdx, ∀ϕ ∈ C∞
0 (U2). (A27)

Using the maximal principle of [21] (Theorem 1) and comparing Assumptions (A27) and (A24),
we obtain ζGα f = w on U2, hence Gα f = w on U1, so that Gα f ∈ H2,d+1(U1). Therefore, by Morrey’s
inequality, we obtain ∂iGα f ∈ L∞(U1), 1 ≤ i ≤ d, and

‖∂iGα f ‖L∞(U1)
≤ C4‖Gα f ‖H2,d+1(U1)

≤ C4‖w‖H2,d+1(U2)
≤ C1C2C3C4‖ f ‖Lq0 (Rd ,µ), (A28)

where C4 > 0 is a constant that is independent of f . Thus, we obtain h ∈ L2d+2(U1). Now, take ζ2 ∈
C∞

0 (U1), such that ζ2 ≡ 1 on B. Note that a.e. on U1, it holds that

−1
2

trace
(
ρA∇2(ζ2Gα f )

)
= −1

2
ζ2h− 1

2
Gα f · trace(ρA∇2ζ2)− 〈ρA∇ζ2,∇Gα f 〉 =: h̃.

Since ‖∇Gα f ‖ ∈ L∞(U1), h̃ ∈ L2d+2(U1), by [19] (Theorem 9.15), we get ζ2Gα f ∈ H2,2d+2(U1);
hence, Gα f ∈ H2,2d+2(B). Using [19] (Lemma 9.17), (A21), (A28), there exist constants C5, C6 > 0 that are
independent of f , such that

‖Gα f ‖H2,2d+2(B) ≤ ‖ζ2Gα f ‖H2,2d+2(U1)
≤ C5‖h̃‖L2d+2(U1)

≤ C5C6(‖ f ‖Lq0 (Rd ,µ) + ‖ρψ f ‖L2d+2(U1)
)

≤ C5C6(‖ f ‖Lq0 (Rd ,µ) + ‖ρψ‖Lq(U1)
(inf

U1
ρψ)−1/q0‖ f ‖Lq0 (Rd ,µ))

≤ C‖ f ‖Lq0 (Rd ,µ), (A29)
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where C := C5C6(1 ∨ ‖ρψ‖Lq(U1)
(infU1 ρψ)−1/q0). Using the denseness of C∞

0 (Rd) in Lq0(Rd, µ), (A29)
extends to f ∈ Lq0(Rd, µ). Now let u ∈ D(Lq0), Then (1− Lq0)u ∈ Lq0(Rd, µ), hence by (A29), it holds
u = G1(1− Lq0)u ∈ H2,2d+2

loc (Rd) and

‖u‖H2,2d+2(B) = ‖G1(1− Lq0)u‖H2,2d+2(B) ≤ C‖(1− Lq0)u‖Lq0 (Rd ,µ) ≤ C‖u‖D(Lq0 )
.

Lemma A6. Assume Assumptions (A1) and (A2). Let f ∈ D(L)b ∩ D(Ls) ∩ D(L2) and define

u f := P· f ∈ C(Rd × [0, ∞))

as in Lemma 1. Then, for any open set U in Rd and T > 0,

∂tu f , ∂iu f ∈ L2,∞(U × (0, T)) for all 1 ≤ i ≤ d,

and for each t ∈ (0, T), it holds

∂tu f (·, t) = TtL2 f ∈ L2(U), and ∂iu f (·, t) = ∂iPt f ∈ L2(U).

If we additionally assume Assumption (A4)′ and f ∈ D(Lq0), where q0 is as in Lemma A5, then ∂i∂ju f ∈
L2d+2,∞(U × (0, T)) for all 1 ≤ i, j ≤ d, and for each t ∈ (0, T), it holds that

∂i∂ju f (·, t) = ∂i∂jPt f ∈ L2d+2(U).

Proof of Lemma A6. Assume Assumptions (A1) and (A2). Let f ∈ D(L)b ∩ D(Ls) ∩ D(L2) and t > 0,
t0 ≥ 0. Then, by Theorem 3(c),

Pt0 f = Tt0 f ∈ D(L)b ⊂ D(E0),

where T0 := id. Observe that, by Theorem 3(c), for any open ball B in Rd with U ⊂ B,

‖∇Pt f −∇Pt0 f ‖2
L2(B) ≤ 2(λB inf

B
ρ)−1E0(Pt f − Pt0 f , Pt f − Pt0 f )

≤ 4(λB inf
B

ρ)−1‖ f ‖L∞(Rd ,µ)‖TtL f − Tt0 L f ‖L1(Rd ,µ). (A30)

Likewise,

‖∇Pt f ‖2
L2(B) ≤ 2(λB inf

B
ρ)−1‖ f ‖L∞(Rd ,µ)‖TtL f ‖L1(Rd ,µ).

For each i = 1, . . . , d, define a map

∂iP· f : [0, T]→ L2(U), t 7→ ∂iPt f .

Then, by Assumption (A30) and the L1(Rd, µ)-strong continuity of (Tt)t>0, map ∂iP· f is continuous
with respect to the ‖ · ‖L2(B)-norm, hence by [22] (Theorem, p91), there exists a Borel measurable function
ui

f on U × (0, T) such that for each t ∈ (0, T), it holds that

ui
f (·, t) = ∂iPt f ∈ L2(U).
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Thus, using Assumption (A30) and the L1(Rd, µ)-contraction property of (Tt)t>0, it holds that
ui

f ∈ L2,∞(U × (0, T)) and

‖ui
f ‖L2,∞(U×(0,T)) ≤ 2(λB inf

B
ρ)−1/2‖ f ‖1/2

L∞(Rd ,µ)
‖L f ‖1/2

L1(Rd ,µ)
.

Now, let ϕ1 ∈ C∞
0 (U) and ϕ2 ∈ C∞

0 ((0, T)). Then∫∫
U×(0,T)

u f · ∂i(ϕ1 ϕ2)dxdt = −
∫∫

U
ui

f · ϕ1 ϕ2dxdt. (A31)

Using the approximation as in Lemma A4, ∂iu f = ui
f ∈ L2,∞(U × (0, T)).

Now, define a map
T·L2 f : [0, T]→ L2(U), t 7→ TtL2 f ,

where T0 := id. Since

‖TtL2 f − Tt0 L2 f ‖L2(U) ≤ (inf
U

ρψ)−1/2‖TtL2 f − Tt0 L2 f ‖L2(Rd ,µ),

using the L2(Rd, µ)-strong continuity of (Tt)t>0 and [22] (Theorem, p91), there exists a Borel measurable
function u0

f on U × (0, T) such that for each t ∈ (0, T) it holds that

u0
f (·, t) = TtL2 f ∈ L2(U).

Using the L2(Rd, µ)-contraction property of (Tt)t>0, it holds u0
f ∈ L2,∞(U × (0, T)) and

‖u0
f ‖L2,∞(U×(0,T)) ≤ (inf

U
ρψ)−1/2‖L2 f ‖L2(Rd ,µ).

Observe that ∫∫
U×(0,T)

u f · ∂t(ϕ1 ϕ2)dxdt = −
∫∫

U
u0

f · ϕ1 ϕ2dxdt.

Using the approximation of Lemma A4, we obtain ∂tu f = u0
f ∈ L2,∞(U× (0, T)). Now assume (A4′).

Then, by Lemma A5, Pt0 f ∈ D(Lq0) ⊂ H2,2d+2
loc (Rd), and for each 1 ≤ i, j ≤ d, it holds

‖∂i∂jPt f − ∂i∂jPt0 f ‖L2d+2(U) ≤ ‖Tt f − Tt0 f ‖Lq0 (Rd ,µ) + ‖TtLq0 f − Tt0 Lq0 f ‖Lq0 (Rd ,µ). (A32)

Define a map
∂i∂jP· f : [0, T]→ L2(U), t 7→ ∂i∂jPt f .

By the Lq0(Rd, µ)-strong continuity of (Tt)t>0 and (A32), map ∂i∂jP· f is continuous with respect to

the ‖ · ‖L2d+2(U)-norm. Hence, by [22] (Theorem, p91), there exists a Borel measurable function uij
f on

U × (0, T) such that, for each t ∈ (0, T), it holds that

uij
f (·, t) = ∂i∂jPt f .
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Using Lemma A5 and the Lq0(Rd, µ)-contraction property of (Tt)t>0, uij
f ∈ L2d+2,∞(U × (0, T)) and

‖uij
f ‖L2d+2,∞(U×(0,T)) ≤ sup

t∈(0,T)
‖Pt f ‖H2,2d+2(U) ≤ C‖ f ‖D(Lq0 )

,

where C > 0 is a constant that is independent of f . Using the same line of arguments as in
Assumption (A31), and the approximation as in Lemma A4,

∂i∂ju f = uij
f ∈ L2d+2,∞(U × (0, T)).

Proof of Theorem 11. Let f ∈ C∞
0 (Rd). Then f ∈ D(Ls). Define u f := P· f (·). Then by Lemma 1,

u f ∈ Cb(Rd × [0, ∞)) and u f (x, 0) = f (x) for all x ∈ Rd. In particular, since G ∈ L∞
loc(R

d,Rd),
it holds f ∈ D(Lq0), so that Pt f ∈ D(Lq0) for any t ≥ 0. By Lemma A6, for each t > 0, it holds
∂tu f (·, t) = TtLs f = TtL f µ-a.e. on Rd. Note that for each t > 0, using the sub-Markovian property,

‖∂tu f (·, t)‖L∞(Rd) = ‖TtL f ‖L∞(Rd) ≤ ‖L f ‖L∞(Rd ,µ);

hence, ∂tu f ∈ L∞(Rd × (0, ∞)). By Lemma A6, for 1 ≤ i, j ≤ d, t > 0, ∂iu f (·, t) = ∂iPt f , ∂i∂ju f (·, t) =
∂i∂jPt f µ-a.e. on Rd. Using Lemma A5 and the Lq0(Rd, µ)-contraction property of (Tt)t>0, for any R > 0
and for each 1 ≤ i, j ≤ d, t > 0, it holds

‖∂i∂ju f (·, t)‖L2d+2(BR)
≤ ‖Pt f ‖H2,2d+2(BR)

≤ C‖ f ‖D(Lq0 )
,

where C > 0 is as in Lemma A5 and independent of f and t > 0. By Morrey’s inequality, there exists a
constant CR,d > 0, independent of f and t > 0, such that for each t > 0, 1 ≤ i ≤ d,

‖∂iu f (·, t)‖L∞(BR)
≤ ‖∂iPt f ‖L∞(BR)

≤ CR,d‖Pt f ‖H2,2d+2(BR)
≤ CR,dC‖ f ‖D(Lq0 )

.

Thus, u f ∈ W2,1
2d+2,∞(BR × (0, ∞)) and ∂tu f , ∂iu f ∈ L∞(BR × (0, ∞)) for all 1 ≤ i ≤ d.

By Assumption (A14), we have for any ϕ ∈ C∞
0 (Rd × (0, ∞))

∫∫
Rd×(0,∞)

〈1
2

ρA∇u f ,∇ϕ〉 − 〈ρψB,∇u f 〉ϕ dxdt =
∫∫

Rd×(0,∞)
−∂tu f · ϕρψdxdt,

and using integration by parts, we obtain

−
∫∫

Rd×(0,∞)

( 1
2

trace(Â∇2u f ) +
〈

βρ,A,ψ + B,∇u f
〉)

ϕ dµdt =
∫∫

Rd×(0,∞)
−∂tu f · ϕ dµdt

for any ϕ ∈ C∞
0 (Rd × (0, ∞)). Therefore,

∂tu f =
1
2

trace(Â∇2u f ) + 〈G,∇u f 〉 a.e. on Rd × (0, ∞).

Proof of Theorem 12. Let x ∈ Rd be arbitrary. Let Qx = Px ◦ X−1 and Q̃x = P̃x ◦ X̃−1 respectively.
Then Qx, Q̃x are two solutions of the time-homogeneous martingale problem with initial condition
x and coefficients (σ̂, G) as defined in [2] (Chapter 5, 4.15 Definition). Let f ∈ C∞

0 (Rd). For T > 0,
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define g(x, t) := u f (x, T − t), (x, t) ∈ Rd × [0, T], where u f is defined as in Theorem 11. Then by
Theorem 11,

g ∈ Cb

(
Rd × [0, T]

)
∩
( ⋂

r>0
W2,1

2d+2,∞(Br × (0, T))
)
,

∂tg ∈ L∞(Rd × (0, T)), ∂ig ∈
⋂
r>0

L∞(Br × (0, T)), 1 ≤ i ≤ d,

and it holds

∂g
∂t

+ Lg = 0 a.e. in Rd × (0, T), g(x, T) = f (x) for all x ∈ Rd.

Applying Theorem 9 to M, for x ∈ Rd, R > 0, it holds that

Ex

[∫ T∧DR

0

∣∣∣∂g
∂t

+ Lg
∣∣∣(Xs, s)ds

]
= 0,

hence ∫ T∧DR

0

(∂g
∂t

+ Lg
)
(Xs, s)ds = 0, Px-a.s.,

and so by Theorem 10,

g(XT∧DR , T ∧ DR)− g(x, 0) =
∫ T∧DR

0
∇g(Xs, s)σ̂(Xs)dWs, Px-a.s.

Therefore
Ex
[
g(XT∧DR , T ∧ DR)

]
= g(x, 0).

Letting R→ ∞ and using Lebesgue’s Theorem, we obtain

Ex[ f (XT)] = Ex[g(XT , T)] = g(x, 0).

Analogously for M̃, we obtain Ẽx[ f (X̃T)] = g(x, 0). Thus,

Ex[ f (XT)] = Ẽx[ f (X̃T)].

Therefore, Qx and Q̃x have the same one-dimensional marginal distributions, and we can conclude
as in [2] (Chapter 5, proof of 4.27 Proposition) that Qx = Q̃x.

For the last statement, see [2] (Chapter 5, 4.20 Theorem).
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