
symmetryS S

Article

New Generalized Hermite-Hadamard Inequality and
Related Integral Inequalities Involving Katugampola
Type Fractional Integrals

Ohud Almutairi 1,† and Adem Kılıçman 2,*,†

1 Department of Mathematics, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia;
AhoudbAlmutairi@gmail.com

2 Department of Mathematics and Institite for Mathematical Research, Universiti Putra Malaysia,
Selangor 43400, Malaysia

* Correspondence: akilic@upm.edu.my; Tel.: +603-89466813
† These authors contributed equally to this work.

Received: 12 February 2020; Accepted: 31 March 2020; Published: 5 April 2020
����������
�������

Abstract: In this paper, a new identity for the generalized fractional integral is defined. Using
this identity we studied a new integral inequality for functions whose first derivatives in absolute
value are convex. The new generalized Hermite-Hadamard inequality for generalized convex
function on fractal sets involving Katugampola type fractional integral is established. This fractional
integral generalizes Riemann-Liouville and Hadamard’s integral, which possess a symmetric
property. We derive trapezoid and mid-point type inequalities connected to this generalized
Hermite-Hadamard inequality.
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1. Introduction

The emergence of convexity theory, in the field of mathematical analysis, has been considered
as the remarkable development. Due to the wide applications of convexity, variety of new convex
functions have being reported and widely studied in the literature. The definition of a classical convex
function is given below.

Definition 1. A function G : V ⊆ R→ R is said to be convex if

G(ϑm + (1− ϑn)) ≤ ϑG(m) + (1− ϑ)G(n),

holds for all m, n ∈ R and ϑ ∈ [0, 1].

This notion has inspired many to formulate new inequalities. Many new classes of inequalities
that are related to the convex functions have been derived and applied to other field of studies, see
[1,2]. Among the interesting classes of such inequalities are those of Hermite-Hadamard’s type, which
have been applied to many problems in finance, engineering and science. Similar to the convexity,
convexity inequality, for a function G : V ⊆ R → R, the Hermite-Hadamard inequality can also be
defined as

G
(

m + n
2

)
≤ 1

n−m

∫ n

m
G(x)dx ≤ G(m) + G(n)

2
. (1)
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In the literature, many generalizations of Hermite-Hadamard type inequalities are established
by applying the generalizations of convexity. For example, very recently, a new type of integral
inequality for regular convex function was studied by [3]. Furthermore, many researchers have been
studying the generalization of inequality in (1) motivated by various modifications of the notion
of convexity, such as s-convexity and generalized s-convexity, for example see the details in ([4–7]),
where Hermite-Hadamard inequality were extended in order to include the problems that related to
fractional calculus, a branch of calculus dealing with derivatives and integrals of non-integer order
(see [8–13]). Nowadays, the real-life applications of fractional calculus exist in most areas of studies
[14,15]. Based on the application of fractional calculus, the mathematicians defined its derivatives and
integrals differently. Thus there are many type of fractional derivatives. One of the most widely used
approaches is the Riemann-Liouville operator method. The detail of this method can be found in the
following references [16,17]. The work of Sarikaya et al. [18] on the formulation of Hermite-Hadamard
inequality, via Riemann-Liouville fractional integral, has fascinated many researchers to contribute to
this field. Next, we recall the Sarikaya’s inequality as follows.

Theorem 1. Let G : [m, n] → R be a positive function with 0 ≤ m < n and G ∈ L[m, n]. If G is a convex
function on [m, n], then the following inequalities hold

G
(

m + n
2

)
≤ Γ(λ + 1)

2(n−m)λ

[
Jλ
m+G(n) + Jλ

n−G(m)
]
≤ G(m) + G(n)

2
(2)

with λ > 0. Where the Riemann-Liouville integrals Jλ
m+G and Jλ

n−G of order λ ∈ R+ are defined by

Jλ
m+G(x) =

1
Γ(λ)

∫ x

m
(x− ϑ)λ−1G(ϑ)dϑ, x > m,

and

Jλ
n−G(x) =

1
Γ(λ)

∫ n

x
(ϑ− x)λ−1G(ϑ)dϑ, x < n,

respectively.

Using the above approach, many new inequalities have been obtained and reported in the
literature. For example, an important theorem was established through the Riemann-Liouville
fractional calculus and reported in [19] as follows.

Theorem 2. Suppse that G : [m, n]→ R is a differentiable function on (m, n), where m < n. If |G ′| is convex
on [m, n], then the following inequality holds:∣∣∣∣ Γ(λ + 1)

2(n−m)λ

[
Jλ
m+G(n) + Jλ

n−G(n)
]
− G

(
m + n

2

)∣∣∣∣
≤ n−m

4(λ + 1)

(
λ + 3− 1

2λ−1

) [∣∣G ′(m)
∣∣+ |G ′(n)|] .

(3)

Other similar improvements on Hermite-Hadamard type inequalities, including an introduction
to generalized convex function on fractal sets, can be seen in [20]. For example, a very new study
was carried out on the improvement of Hermite-Hadamard type inequalities via generalized convex
functions on fractal set, see [21], and we provide the definition of this concept as

Definition 2. Let G : V ⊂ R→ Rα(0 < α ≤ 1). If the following inequality

G(ϑm + (1− ϑ)n) ≤ ϑαG(m) + (1− ϑ)αG(n) (4)
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holds for any m, n ∈ V and ϑ ∈ [0, 1], then G is called a generalized convex on V.

The Riemann-Liouville fractional integral, along the Hadamard’s fractional integral that possesses
a symmetric property given in [22], is a generalized through the recent work of Katugampola. These
two integrals were combined and given in a single form (see [23,24]).

Definition 3. Let [m, n] ⊂ R be a finite interval. Then, the left-and right-sided Katugampola fractional
integrals of order λ > 0 for G ∈ Xp

c (m, n) are defined by

ρ Iλ
m+G(x) =

ρ1−λ

Γ(λ)

∫ x

m

ϑρ−1

(xρ − ϑρ)1−λ
G(ϑ)dϑ and ρ Iλ

n−G(x) =
ρ1−λ

Γ(λ)

∫ n

x

ϑρ−1

(ϑρ − xρ)1−λ
G(ϑ)dϑ,

with m < x < n, ρ > 0. Given the space of complex-valued Lebesgue measurable function ω as Xp
c (m, n)(c ∈

R, 1 ≤ p ≤ ∞), we define the norm of the function on [m, n] as follows

‖G‖Xp
c
=

(∫ n

m
|ϑcG(ϑ)|p dϑ

ϑ

)1/p
< ∞,

whereby 1 ≤ p < ∞, c ∈ R. If p = ∞, we obtain

‖G‖X∞
c = ess sup

m≤ϑ≤n
[ϑc|G(ϑ)|] .

Other related works including the generalization of Hermite-Hadamard inequality for
Katugampola fractional integrals [25], given in the following lemma, as well as the theorem that
follows immediately.

Lemma 1. Let G : [mρ, nρ] → R be a differentiable mapping on (mρ, nρ), with 0 ≤ m < n. If the fractional
integrals exist, we obtain the following equality,

G (mρ) + G (nρ)

2
− λρλΓ(λ + 1)

2 (nρ −mρ)λ

[
ρ Iλ

m+G (nρ) +ρ Iλ
n−G (m

ρ)
]
=

nρ −mρ

2

∫ 1

0

[
(1− ϑρ)λ − ϑρλ

]
ϑρ−1

× G ′ (ϑρmρ + (1− ϑρ) nρ) dϑ.

(5)

Theorem 3. Let λ > 0 and ρ > 0. Let G : [mρ, nρ] → R be a non-negative function with 0 ≤ m < n and
G ∈ Xp

c (mρ, nρ) . If G is also a convex function on [m, n], then we have

G
(

mρ + nρ

2

)
≤ ρλΓ(λ + 1)

2 (nρ −mρ)λ

[
ρ Iλ

m+G (nρ) +ρ Iλ
n−G (m

ρ)
]
≤ G (m

ρ) + G (nρ)

2
, (6)

whereby the fractional integrals are given for the function G (xρ) and evaluated at m and n, respectively.

Katugampola fractional integrals have many applications in the fields of science and technology,
some of which can be found in the following references [26,27]. Therefore, many generalizations
of different inequalities are studied via these fractional integrals. For example, Kermausuor [28]
and Mumcu et al. [29] generalized Ostrowski-type and Hermite-Hadamard type inequalities for
harmonically convex functions, respectively. Tekin et al. [30] proposed Hermite-Hadamard inequality
for p-convex functions for Katugampola fractional integrals. Other inequalities generalized via
Katugampola fractional integrals include Grüss inequality, [31,32] and Lyapunov inequality [33].

Therefore, the aim of this paper is to generalize the Hermite-Hadamard inequality for generalized
convex functions on fractal sets via Katugampola fractional integrals. This can be the generalization of
the work of Chen and Katugampola [25], who proposed the inequality stated in Theorem 3. Another
objective of this study is to define a new identity for generalized fractional integrals, through which
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generalized Hermite-Hadamard type inequalities for convex function are derived. The trapezoid
and mid-point type inequalities are also proposed for the generalized convex function involving
Katugampola fractional integrals, which would generalize the Riemann-Liouville and the Hadamard
integrals into a single form.

2. New Generalized Fractional Integrals Identity and New Integral Inequality for Katugampola
Fractional Integrals

In order to improve the identity established in [19] for generalized fractional integrals, the
following lemma can be used to prove our results.

Lemma 2. Let G : [mρ, nρ]→ R be a differentiable mapping on (mρ, nρ), where m < n. The following equality
holds if the fractional integrals exist,

λρλΓ(λ + 1)
2(nρ −mρ)λ

[ρ Jλ
m+G(nρ) +ρ Jλ

n−G(m
ρ)]− G

(
mρ + nρ

2

)
=

nρ −mρ

2

[∫ 1

0
MG ′(ϑρmρ + (1− ϑρ)nρ)dϑ−

∫ 1

0

[
(1− ϑρ)λ − ϑρλ

]
ϑρ−1G ′(ϑρmρ + (1− ϑρ)nρ)dϑ

]
,

(7)

where

M =

{
ϑρ−1, 0 ≤ ϑ < 1

ρ
√

2
−ϑρ−1, 1

ρ
√

2
≤ ϑ < 1.

Proof. It suffices to note that

I =
[ ∫ 1

ρ√2

0
ϑρ−1G ′(ϑρmρ + (1− ϑρ)nρ)dϑ

]
+

[
−
∫ 1

1
ρ√2

ϑρ−1G ′(ϑρmρ + (1− ϑρ)nρ)dϑ

]
+

[
−
∫ 1

0

[
(1− ϑρ)λ

]
ϑρ−1G ′(ϑρmρ + (1− ϑρ)nρ)dϑ

]
+

[ ∫ 1

0

[
ϑρλ
]

ϑρ−1G ′(ϑρmρ + (1− ϑρ)nρ)dϑ

]
= I1 + I2 + I3 + I4.

(8)

Integrating by parts, we get I1 and I2 as follows,

I1 =
∫ 1

ρ√2

0
G ′(ϑρmρ + (1− ϑρ)nρ)dt =

1
mρ − nρ G(ϑ

ρmρ + (1− ϑρ)nρ)

∣∣∣∣ 1
ρ√2

0

=
1

ρ(nρ −mρ)

[
−G

(
mρ + nρ

2

)
+ G(nρ)

]
,

(9)

I2 = −
∫ 1

1
ρ√2

G ′(ϑρmρ + (1− ϑρ)nρ)dϑ =
−1

mρ − nρ G(ϑ
ρmρ + (1− ϑρ)nρ)

∣∣∣∣1 1
ρ√2

=
1

nρ −mρ

[
G(mρ)− G

(
mρ + nρ

2

)]
.

(10)

Set xρ = ϑρmρ + (1− ϑρ)nρ for calculating I3 and I4,
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I3 = −
∫ 1

0
(1− ϑρ)λG ′(ϑρmρ + (1− ϑρ)nρ)dϑ

= − (1− ϑρ)λ

mρ − nρ G(ϑ
ρmρ + (1− ϑρ)n)

∣∣∣∣1
0
− λ

mρ − nρ

∫ 1

0
(1− ϑρ)λ−1G(ϑρmρ + (1− ϑρ)n)dϑ

= − G(n
ρ)

nρ −mρ +
λ

nρ −mρ

∫ mρ

nρ

(
xρ −mρ

nρ −mρ

)λ−1
G(xρ)

xρ

mρ − nρ dx

= − G(nρ)

ρ(nρ −mρ)
+

λρλ−1Γ(λ + 1)
(nρ −mρ)λ+1

ρ

Iλ
n−G (m

ρ) ,

(11)

I4 = −
∫ 1

0
ϑρλ · ϑρ−1G ′ (ϑρmρ + (1− ϑρ) nρ) dϑ = − G (mρ)

ρ (nρ −mρ)
+

λρλ−1Γ(λ + 1)

(nρ −mρ)λ+1

ρ

Iλ
m+G (nρ) . (12)

Now substituting inequalities (9), (10), (11) and (12) into (8) completes the proof.

Remark 1. If ρ = 1, then the identity (7) in Lemma 2 reduces to identity (3) in Lemma 2.1 [19].

Using Lemma 2, the following result for differentiable function is obtained.

Theorem 4. Let G : [mρ, nρ]→ R be a differentiable mapping on (mρ, nρ) with 0 ≤ m < n. If |G ′| is convex
on [mρ, nρ] , then the following inequality holds:

∣∣∣∣ λρλΓ(λ+1)
2(nρ−mρ)λ

[
ρ Iλ

m+G (nρ) +ρ Iα
n−G (m

ρ)
]
− G

(
mρ+nρ

2

)∣∣∣∣ ≤ nρ−mρ

4ρ(λ+1)

[
3 + λ− 1

2λ−1

]
[|G ′ (mρ)|+ |G ′ (nρ)|] . (13)

Proof. Usining Lemma 2 and the convexity of |G ′|, we get∣∣∣∣λρλΓ(λ + 1)
2(nρ −mρ)λ

[
ρ Iλ

m+G (nρ) +ρ Iλ
n−G (m

ρ)
]
− G

(
mρ + nρ

2

) ∣∣∣∣
≤nρ −mρ

2

[ ∫ 1
ρ√2

0
ϑρ−1|G ′(ϑρmρ + (1− ϑρ)nρ)|dϑ +

∫ 1

1
ρ√2

tρ−1|G ′(ϑρmρ + (1− ϑρ)nρ)|dϑ

+
∫ 1

0
|(1− ϑρ)λ − ϑρλ|ϑρ−1|G ′(ϑρmρ + (1− ϑρ)nρ)|dϑ

]
≤nρ −mρ

2

[ ∫ 1
ρ√2

0
ϑρ−1[ϑρ|G ′(mρ)|+ (1− ϑρ)|G ′(nρ)|]dϑ +

∫ 1

1
ρ√2

ϑρ−1[ϑρ|G ′(mρ)|+ (1− ϑρ)|G ′(nρ)|]dϑ

+
∫ 1

0
|(1− ϑρ)λ − ϑρλ|ϑρ−1|G ′(ϑρmρ + (1− ϑρ)nρ)|dϑ

]
.

(14)

Thus,

∣∣∣∣λρλΓ(λ + 1)
2(nρ −mρ)λ

[
ρ Iλ

m+G (nρ) +ρ Iλ
n−G (m

ρ)
]
− G

(
mρ + nρ

2

) ∣∣∣∣ = nρ −mρ

2
[I1 + I2 + I3], (15)

whereby I1, I2 and I3 are the first, second and third integrals in inequality (14).
When calculating I1 and I2, we get the following

I1 =
∫ 1

ρ√2

0
ϑρ−1|G ′(ϑρmρ + (1− ϑρ)nρ)|dϑ =

1
ρ8

∣∣G ′(mρ)
∣∣+ 3

ρ8

∣∣G ′(nρ)
∣∣ , (16)
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I2 =
∫ 1

1
ρ√2

ϑρ−1|G ′(ϑρmρ + (1− ϑρ)nρ)| = 3
ρ8

∣∣G ′(mρ)
∣∣+ 1

ρ8

∣∣G ′(nρ)
∣∣ . (17)

A similar line of argument for the proof of Theorem 2.5 in [25] can be used to calculate I3,

I3 =
∫ 1

0

[
(1− ϑρ)λ − ϑρλ

]
ϑρ−1G ′(ϑρmρ + (1− ϑ)ρbρ)dt =

1
ρ(λ + 1)

(
1− 1

2λ

) [∣∣G ′ (mρ)
∣∣+ |G ′ (nρ)

]
|. (18)

Submitting inequalities (16), (17) and (18) in (15), we get (13). This completes the proof.

Remark 2. i. Choosing ρ = 1 in Theorem 4 reduces inequality (13) to inequality (3) of Theorem 2.
ii. Choosing ρ = 1 and λ = 1 reduces inequality (13) to inequality (16) in [19], which is given as follows∣∣∣∣ 1

n−m

∫ n

m
G(x)dx− G

(
m + n

2

)∣∣∣∣ ≤ 3(n−m)

8
(∣∣G ′(m)

∣∣+ ∣∣G ′(n)∣∣) .

3. Generalized Hermite-Hadamard Inequality and Related Integral Inequalities for Katugampola
Fractional Integral on Fractal Sets

The following theorem generalizes the result obtained by [25] of the Hermite-Hadamard inequality
involving the Katugampola fractional integrals for generalized convex function on fractal sets.

Theorem 5. Suppose that G : [mρ, nρ] ⊂ R+ → Rα (0 < α ≤ 1) is a positive function with 0 ≤ m < n and
G ∈ Xp

c (mρ, nρ) for λ > 0 and ρ > 0. If G is a generalized convex function on [mρ, nρ] , then we obtain

G
(

mρ + nρ

2

)
≤ ρλΓ(λ + 1)

2α (nρ −mρ)λ

[
ρ Iλ

m+G (nρ) +ρ Iλ
n−G (m

ρ)
]

≤ G (m
ρ) + G (nρ)

2α
.

(19)

Proof. Suppose that x, y ∈ [m, n], λ > 0, defined by xρ = ϑρmρ + (1− ϑρ) nρ and yρ = ϑρnρ +

(1− ϑρ)mρ, where ϑ ∈ [0, 1]. Since G is generalized convex function, we have

2αG
(

mρ + nρ

2

)
≤ G (ϑρmρ + (1− ϑρ) nρ) + G (ϑρnρ + (1− ϑρ)mρ) . (20)

Multiplying both sides of the inequality (20) by ϑλρ−1, for λ > 0 and then integrating over [0, 1]
with respect to ϑ, we obtain the following

2α

λρ
G
(

mρ + nρ

2

)
≤
∫ 1

0
ϑλρ−1G (ϑρmρ + (1− ϑρ) nρ) dϑ +

∫ 1

0
ϑλρ−1G (ϑρnρ + (1− ϑρ)mρ) dϑ

=
∫ m

n

(
nρ − xρ

nρ −mρ

)λ−1
G (xρ)

xρ−1

mρ − nρ dx

+
∫ n

m

(
yρ −mρ

nρ −mρ

)λ−1
G (yρ)

yρ−1

nρ −mρ dy

=
ρλ−1Γ(λ)

(nρ −mρ)λ

[
ρ Iλ

m+G (nρ) +ρ Iλ
n−G (m

ρ)
]

.

(21)

This establishes the first inequality. When proving the second inequality (19), we first observe
generalized convex functions G, which is given as

G (ϑρmρ + (1− ϑρ) nρ) ≤ (ϑρ)α G (mρ) + (1− ϑρ)α G (nρ) , (22)
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and
G (ϑρnρ + (1− ϑρ)mρ) ≤ (ϑρ)α G (nρ) + (1− ϑρ)α G (mρ) . (23)

Summing the above inequalities, we have

G (ϑρmρ + (1− ϑρ) nρ) + G (ϑρnρ + (1− ϑρ)mρ) ≤ G (mρ) + G (nρ) . (24)

Multiplying both sides of inequality (24) by ϑλρ−1, for λ > 0 and integrating the result over [0, 1]
with respect to ϑ, we obtain

ρλ−1Γ(λ)

(nρ −mρ)λ

[
ρ Iλ

m+G (nρ) +ρ Iλ
n−G (m

ρ)
]
≤ G (m

ρ) + G (nρ)

λρ
. (25)

This completes the proof.

Remark 3. Taking α = 1 in inequality (19) of Theorem 5 reduces the result to inequality (6) of Theorem 3.

Now, we derive the mid-point type inequalities via generalized convex functions on the fractal
set for the Katugampola fractional integral. Therefore, the definition of generalized beta function is
given as follows

βρ(m, n) =
∫ 1

0
ρ (1− xρ)n−1 (xρ)m−1 xρ−1dx.

Note that, as ρ→ 1, βρ(m, n)→ β(m, n).

Theorem 6. Suppose that λ > 0 and ρ > 0. Let G : [mρ, nρ] ⊂ R+ → Rα (0 < α ≤ 1) be a differentiable
function on (mρ, nρ) , and G ′ ∈ L1[m, n] with 0 ≤ m < n. If |G ′|q is generalized convex on [mρ, nρ], we obtain∣∣∣∣λρλΓ(λ + 1)

2(nρ −mρ)λ
[ρ Jλ

m+G(nρ) +ρ Jλ
n−G(m

ρ)]− G
(

mρ + nρ

2

) ∣∣∣∣ ≤ nρ −mρ

2

[
βρ(λ + 1, α + 1)

ρ

]
[|G ′(mρ)|+ |G ′(nρ)|]. (26)

Proof. From Lemma 2, we have

∣∣∣∣λρλΓ(λ + 1)
2(nρ −mρ)λ

[ρ Jλ
m+G(nρ) +ρ Jλ

n−G(m
ρ)]− G

(
mρ + nρ

2

) ∣∣∣∣
≤ nρ −mρ

2

∣∣∣∣∣
∫ 1

ρ√2

0
ϑρ−1[G ′(ϑρmρ + (1− ϑρ)nρ)]dϑ +

∫ 1

1
ρ√2

ϑρ−1[G ′(ϑρmρ + (1− ϑρ)nρ)]dϑ

−
∫ 1

0

[
(1− ϑρ)λ − ϑρλ

]
ϑρ−1G ′(ϑρmρ + (1− ϑρ)nρ)dϑ

∣∣∣∣
≤ nρ −mρ

2

∣∣∣∣ ∫ 1
ρ√2

0
ϑρ−1[G ′(ϑρmρ + (1− ϑρ)nρ)]dϑ +

∫ 1

1
ρ√2

tρ−1[G ′(ϑρmρ + (1− ϑρ)nρ)]dϑ

∣∣∣∣
+

∣∣∣∣ ∫ 1

0
[(1− ϑρ)λ − ϑρλ]ϑρ−1G ′(ϑρmρ + (1− ϑρ)nρ)dϑ

∣∣∣∣. (27)

Using the fact that the function |G ′| is generalized convex on [mρ, nρ], we obtain the following

∣∣∣∣ ∫ 1
ρ√2

0
ϑρ−1[G ′(ϑρmρ + (1− ϑρ)nρ)]dϑ

∣∣∣∣ ≤ ∫ 1
ρ√2

0
ϑρ−1[ϑρα|G ′(mρ)|+ (1− ϑρ)α|G ′(nρ)|]dt

≤|G ′(mρ)|
∫ 1

ρ√2

0
ϑρα+ρ−1dϑ + |G ′(nρ)|

∫ 1
ρ√2

0
ϑρ−1(1− ϑρ)αdϑ

=|G ′(mρ)|
[

1
2α+1ρ(α + 1)

]
+ |G ′(nρ)|

[
2α+1 − 1

2α+1ρ(α + 1)

]
.

(28)
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In the same way, we have∣∣∣∣ ∫ 1

1
ρ√2

ϑρ−1[G ′(ϑρmρ + (1− ϑρ)nρ)]dϑ

∣∣∣∣ ≤|G ′(mρ)|
[

2α+1 − 1
2α+1ρ(α + 1)

]
+ |G ′(nρ)|

[
1

2α+1ρ(α + 1)

]
(29)

and∣∣∣∣ ∫ 1

0
[(1− ϑρ)λ − ϑρλ]ϑρ−1G ′(ϑρmρ + (1− ϑρ)nρ)dϑ

∣∣∣∣ ≤ ∫ 1

0

[
(1− ϑρ)λ + (ϑρ)λ

]
ϑρ−1 ∣∣G ′ (ϑρmρ + (1− ϑρ) nρ)

∣∣ dϑ

≤ |G ′ (mρ) |
∫ 1

0
[ϑρ−1(ϑρ)α(1− ϑρ)λ + ϑρ−1(ϑρ)α(ϑρ)λ]dϑ

+ |G ′(nρ)|
∫ 1

0
[ϑρ−1(1− ϑρ)λ(1− ϑρ)α + ϑρ−1(ϑρ)λ(1− ϑρ)α]dϑ

≤ |G ′ (mρ) |
[

βρ(λ + 1, α + 1)
ρ

+
1

ρ(λ + α + 1)

]
+ |G ′(nρ)|

[
βρ(λ + 1, α + 1)

ρ
+

1
ρ(λ + α + 1)

]
.

(30)

Substituting inequalities (28), (29) and (30) in (27), we deduce the inequality (26).

The following corollary is derived to show the estimates of the difference between mid-point-type
and the integral of G on [mρ, nρ] when λ = α = 2

3 .

Corollary 1. In Theorem 6, if we take λ = α = 2
3 in inequality (26), we have∣∣∣∣λρλΓ(λ + 1)

2(nρ −mρ)λ
[ρ Jλ

m+G(nρ) +ρ Jλ
n−G(m

ρ)]− G
(

mρ + nρ

2

) ∣∣∣∣ ≤ (nρ −mρ)βρ(
5
3 , 5

3 )

ρ

[
|G ′(mρ)|+ |G ′(nρ)|

2

]
.

The trapezoid-type inequalities via generalized convex function on fractal sets for Katugampola
fractional integrals can be derived using Lemma 1.

Theorem 7. Suppose that λ > 0 and ρ > 0. Let G : [mρ, nρ] ⊂ R+ → Rα (0 < α ≤ 1) be a differentiable
function on (mρ, nρ) , and G ′ ∈ L1[m, n] with 0 ≤ m < n. If |G ′|q is generalized convex on [mρ, nρ] for q ≥ 1,
we obtain∣∣∣∣G (mρ) + G (bρ)

2
− λρλΓ(λ + 1)

2 (nρ −mρ)λ

[
ρ Iλ

m+G (nρ) +ρ Iλ
n−G (m

ρ)
] ∣∣∣∣ ≤ nρ −mρ

2

(
1

ρ(λ + 1)

)1− 1
q
[

βρ(λ + 1, α + 1)
ρ

+
1

ρ(λ + α + 1)

] 1
q

×
(
|G ′ (mρ) |q + |G ′(nρ)|q

) 1
q

.

(31)

Proof. From Lemma 1, we have∣∣∣∣G (mρ) + G (nρ)

2
− λρλΓ(λ + 1)

2 (nρ −mρ)λ

[
ρ Iα

m+G (nρ) +ρ Iλ
n−G (m

ρ)
] ∣∣∣∣ ≤ nρ −mρ

2

∣∣∣∣ ∫ 1

0

[
(1− ϑρ)λ − ϑρλ

]
ϑρ−1

× G ′ (ϑρmρ + (1− ϑρ) nρ) dϑ

∣∣∣∣.
(32)

In the first case, suppose that q = 1. Since the function |G ′| is generalized convex on [mρ, nρ],
we have

G ′ (ϑρmρ + (1− ϑρ) nρ) ≤ (ϑρ)α|G ′(mρ)|+ (1− ϑρ)α|G ′(nρ)|.



Symmetry 2020, 12, 568 9 of 14

Therefore,∣∣∣∣ ∫ 1

0

[
(1− ϑρ)λ − ϑρλ

]
ϑρ−1G ′ (ϑρmρ + (1− ϑρ) nρ) dϑ

∣∣∣∣ ≤ ∫ 1

0

[
(1− ϑρ)λ + ϑρλ

]
ϑρ−1[(ϑρ)αG ′|(mρ)|+ (1− ϑρ)α|G ′(nρ)|]dϑ

≤ |G ′(mρ)|
∫ 1

0
[ϑρ−1(ϑρ)α(1− ϑρ)λ + ϑρ−1(ϑρ)α(ϑρ)λ]dϑ

+ |G ′(nρ)|
∫ 1

0
[ϑρ−1(1− ϑρ)λ(1− ϑρ)α + ϑρ−1(ϑρ)λ(1− ϑρ)α]dϑ

≤ |G ′ (mρ) |
[

βρ(λ + 1, α + 1)
ρ

+
1

ρ(λ + α + 1)

]
+ |G ′(nρ)|

[
βρ(λ + 1, α + 1)

ρ
+

1
ρ(λ + α + 1)

]
.

Hence, the inequalities (32) and (33) complete the proof.

The second case can be evaluated when q > 1. Using the Hölder’s inequality and generalized
convexity of |G ′|, for p = q

q−1 , we obtain

∣∣∣∣ ∫ 1

0

[
(1− ϑρ)λ − ϑρλ

]
ϑρ−1G ′ (ϑρmρ + (1− ϑρ) nρ) dϑ

∣∣∣∣ ≤ (∫ 1

0

[
(1− ϑρ)λ + (ϑρ)λ

]
ϑρ−1

)1− 1
q

×
(∫ 1

0

[
(1− ϑρ)λ + (ϑρ)λ

]
ϑρ−1 ∣∣G ′ (ϑρmρ + (1− ϑρ) nρ)

∣∣q dϑ

) 1
q

≤
(∫ 1

0

[
(1− ϑρ)λ + (ϑρ)λ

]
ϑρ−1

)1− 1
q

×
(
|G ′ (mρ) |q

∫ 1

0
[ϑρ−1(ϑρ)α(1− ϑρ)λ + ϑρ−1(ϑρ)λ(ϑρ)α]dϑ

+ |G ′(nρ)|q
∫ 1

0
[ϑρ−1(1− ϑρ)λ(1− ϑρ)α + ϑρ−1(ϑρ)λ(1− ϑρ)α]dϑ

) 1
q

≤
(

1
ρ(λ + 1)

)1− 1
q

×
(
|G ′ (mρ) |q

[
βρ(λ + 1, α + 1)

ρ
+

1
ρ(λ + α + 1)

]

+ |G ′(nρ)|q
[

βρ(λ + 1, α + 1)
ρ

+
1

ρ(λ + α + 1)

]) 1
q

.

(33)

The inequalities (32) and (33) complete the proof.

Other special cases related to Theorem 7 are stated in the following corollary. This would estimate
the difference between trapezoid-type and the integral of G

Corollary 2. Consider inequality (31) of the Theorem 7,

1. If λ = α = 1
3 and ρ = 1, we have the trapezoid inequality:

∣∣∣∣G (m) + G (n)
2

− λΓ(λ + 1)

2 (n−m)λ

[
Iλ
m+G (n) + Iλ

n−G (m)
] ∣∣∣∣ ≤ n−m

2

(
3
4

)1− 1
q
[

β

(
4
3

,
4
3

)
+

3
5

] 1
q

×
(
|G ′ (m) |q + |G ′(n)|q

) 1
q

.

(34)

2. For λ = α = 3
5 , we have

∣∣∣∣G (mρ) + G (nρ)

2
− λρλΓ(λ + 1)

2 (nρ −mρ)λ

[
ρ Iλ

m+G (nρ) +ρ Iλ
n−G (m

ρ)
] ∣∣∣∣ ≤ nρ −mρ

2

(
5

8ρ

)1− 1
q
[

βρ(
8
5 , 8

5 )

ρ
+

5
11ρ

] 1
q

×
(
|G ′ (mρ) |q + |G ′(nρ)|q

) 1
q

.

(35)



Symmetry 2020, 12, 568 10 of 14

Theorem 8. Let λ > 0 and ρ > 0. Let G : [mρ, nρ] ⊂ R+ → Rα (0 < α ≤ 1) be a differentiable function on
(mρ, nρ) , and G ′ ∈ L1[m, n] with 0 ≤ a < b. If |G ′|qis generalized convex on [mρ, nρ] for q ≥ 1, we obtain

∣∣∣∣G (mρ) + G (nρ)

2
− λρλΓ(λ + 1)

2 (nρ −mρ)λ

[
ρ Iλ

m+G (nρ) +ρ Iλ
n−G (m

ρ)
] ∣∣∣∣ ≤ nρ −mρ

2

(
1

p(ρ− 1) + 1

) 1
p

×
[

βρ(λ + 1, α + 1)
ρ

+
1

ρ(λ + α + 1)

] 1
q
(
|G ′ (mρ) |q + |G ′(nρ)|q

) 1
q

.

(36)

Proof. From Lemma 1, we have∣∣∣∣G (mρ) + G (nρ)

2
− λρλΓ(λ + 1)

2 (nρ −mρ)λ

[
ρ Iλ

m+G (nρ) +ρ Iλ
n−G (m

ρ)
] ∣∣∣∣ ≤ nρ −mρ

2∣∣∣∣ ∫ 1

0

[
(1− ϑρ)λ − ϑρλ

]
ϑρ−1G ′ (ϑρmρ + (1− ϑρ) nρ) dϑ

∣∣∣∣.
(37)

Using the Hölder’s inequality and generalized convexity of |G ′|, we obtain∣∣∣∣ ∫ 1

0

[
(1− ϑρ)λ − ϑρλ

]
ϑρ−1G ′ (ϑρmρ + (1− ϑρ) nρ) dϑ

∣∣∣∣ ≤ (∫ 1

0

(
ϑρ−1

)p
dϑ

) 1
p

×
(∫ 1

0

[
(1− ϑρ)λ + (ϑρ)λ

]
ϑρ−1 ∣∣G ′ (ϑρmρ + (1− ϑρ) nρ)

∣∣q dϑ

) 1
q

≤
(

1
p(ρ− 1) + 1

) 1
p

×
(
|G ′ (mρ) |q

∫ 1

0
[ϑρ−1(ϑρ)α(1− ϑρ)λ + ϑρ−1(ϑρ)λ(ϑρ)α]dϑ

+ |G ′(nρ)|q
∫ 1

0
[ϑρ−1(1− ϑρ)α(1− ϑρ)λ + ϑρ−1(ϑρ)λ(1− ϑρ)α]dϑ

) 1
q

≤
(

1
p(ρ− 1) + 1

) 1
p

×
(
|G ′ (mρ) |q

[
βρ(λ + 1, α + 1)

ρ
+

1
ρ(λ + α + 1)

]

+ |G ′(nρ)|q
[

βρ(λ + 1, α + 1)
ρ

+
1

ρ(λ + α + 1)

]) 1
q

.

In order to simplify Theorem 8, we consider some special cases related to inequality (36), when
λ = α = 1

2 and λ = α = 4
9 .

Corollary 3. Considering inequality (36) of Theorem 8, we have the following trapezoid inequality

1. For λ = α = 1
2 , we get

∣∣∣∣G (mρ) + G (nρ)

2
− λρλΓ(λ + 1)

2 (nρ −mρ)λ

[
ρ Iλ

m+G (nρ) +ρ Iλ
n−G (m

ρ)
] ∣∣∣∣ ≤ nρ −mρ

2

(
1

p(ρ− 1) + 1

) 1
p

×
[

βρ(
3
2 , 3

2 )

ρ
+

1
2ρ

] 1
q
(
|G ′ (mρ) |q + |G ′(nρ)|q

) 1
q

.

2. If λ = α = 4
9 , we have

∣∣∣∣G (mρ) + G (nρ)

2
− λρλΓ(λ + 1)

2 (nρ −mρ)λ

[
ρ Iλ

m+G (nρ) +ρ Iλ
n−G (m

ρ)
] ∣∣∣∣ ≤ nρ −mρ

2

(
1

p(ρ− 1) + 1

) 1
p

×
[

βρ(
13
9 , 13

9 )

ρ
+

9
7ρ

] 1
q
(
|G ′ (mρ) |q + |G ′(nρ)|q

) 1
q

.
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Theorem 9. Let λ > 0 and ρ > 0. Let G : [mρ, nρ] ⊂ R+ → Rα (0 < α ≤ 1) be a differentiable function on
(mρ, nρ) , and G ′ ∈ L1[m, n] with 0 ≤ m < n. If |G ′|qis generalized convex on [mρ, nρ] for q ≥ 1, we obtain∣∣∣∣G (mρ) + G (nρ)

2
− λρλΓ(λ + 1)

2 (nρ −mρ)λ

[
ρ Iλ

m+G (nρ) +ρ Iλ
n−G (m

ρ)
] ∣∣∣∣ ≤ nρ −mρ

2

(
1
ρ

)1− 1
q

×
[

βρ(λ + 1, α + 1)
ρ

+
1

ρ(λ + α + 1)

] 1
q
(
|G ′ (mρ) |q + |G ′(nρ)|q

) 1
q

.

(38)

Proof. Using the fact |G ′|q , a generalized convex on [mρ, nρ] with q ≥ 1, we obtain

G ′ (ϑρmρ + (1− ϑρ) nρ) ≤ (ϑρ)α G ′ (mρ) + (1− ϑρ)α G ′ (nρ) . (39)

Applying inequality (39), together with the power mean inequality, on (37), we have

∣∣∣∣ ∫ 1

0

[
(1− ϑρ)λ − ϑρλ

]
ϑρ−1G ′ (ϑρmρ + (1− ϑρ) nρ) dϑ

∣∣∣∣ ≤ (∫ 1

0
ϑρ−1dϑ

)1− 1
q

×
(∫ 1

0

[
(1− ϑρ)λ + (ϑρ)λ

]
ϑρ−1 ∣∣G ′ (ϑρmρ + (1− ϑρ) nρ)

∣∣q dϑ

) 1
q

≤
(

1
ρ

)1− 1
q
(
|G ′ (mρ) |q

∫ 1

0
[ϑρ−1(ϑρ)α(1− ϑρ)λ + ϑρ−1(ϑρ)α(ϑρ)λ]dϑ

+ |G ′(nρ)|q
∫ 1

0
[ϑρ−1(1− ϑρ)α(1− ϑρ)λ + ϑρ−1(ϑρ)λ(1− ϑρ)α]dϑ

) 1
q

≤
(

1
ρ

)1− 1
q
(
|G ′ (mρ) |q

[
βρ(λ + 1, α + 1)

ρ
+

1
ρ(λ + α + 1)

]

+ |G ′(nρ)|q
[

βρ(λ + 1, α + 1)
ρ

+
1

ρ(λ + α + 1)

]) 1
q

.

The following corollary is given to simplify inequality (38) in Theorem (9)

Corollary 4. Considering inequality (38) of Theorem 9, for λ = α = 3
7 , we get∣∣∣∣G (mρ) + G (nρ)

2
− λρλΓ(λ + 1)

2 (nρ −mρ)λ

[
ρ Iλ

m+G (nρ) +ρ Iλ
n−G (m

ρ)
] ∣∣∣∣ ≤ nρ −mρ

2

(
1
ρ

)1− 1
q

×
[

βρ(
10
3 , 10

3 )

ρ
+

7
13ρ

] 1
q
(
|G ′ (mρ) |q + |G ′(nρ)|q

) 1
q

.

Corollary 5. From Theorems 7, 8 and 9 for q > 1, we obtain the following:∣∣∣∣G (mρ) + G (nρ)

2
− λρλΓ(α + 1)

2 (nρ −mρ)λ

[
ρ Iλ

m+G (nρ) +ρ Iλ
n−G (m

ρ)
] ∣∣∣∣ ≤min{S1, S2, S3}

nρ −mρ

2
,

where,

S1 =

(
1

ρ(λ + 1)

)1− 1
q
[

βρ(λ + 1, α + 1)
ρ

+
1

ρ(λ + α + 1)

] 1
q

(|G ′ (mρ) |q + |G ′(nρ)|q)
1
q ,

S2 =

(
1

p(ρ− 1) + 1

) 1
p
[

βρ(λ + 1, α + 1)
ρ

+
1

ρ(λ + α + 1)

] 1
q

(|G ′ (mρ) |q + |G ′(nρ)|q)
1
q ,

and

S3 =

(
1
ρ

)1− 1
q
[

βρ(λ + 1, α + 1)
ρ

+
1

ρ(λ + α + 1)

] 1
q

(|G ′ (mρ) |q + |G ′(nρ)|q)
1
q .
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4. Applications to Special Means

In this section, some generalized inequalities connected to the special means are obtained to serve
as an application of our results, as in [2]. Thus,

i. The arithmetic mean:
A(m, n) = m+n

2 ; m, n ∈ R, with m, n > 0.
ii. The generalized log-mean:

Li(m, n) =
[

ni+1−mi+1

(i+1)(n−m)

] 1
i ; i ∈ Z{−1, 0}, m, n ∈ R, with m, n > 0.

Proposition 1. Let i ∈ Z, |i| ≥ 2 and m, n ∈ R where 0 < m < n. For ρ > 0, λ > 0, 0 < α < 1 and q ≥ 1,
we obtain the following: ∣∣∣A (mi, ni

)
− Li

i(m, n)
∣∣∣ ≤ |i|(n−m)

8
A

1
q (|m|q(i−1), |n|q(i−1)).

Proof. Applying G(m) = mi in inequality (31) of Theorem 7, we have

∣∣∣∣∣mρi + nρi

2
− λρλΓ(λ + 1)

2 (nρ −mρ)λ

[
ρ Iλ

m+

(
niρ
)
+ρ Iλ

n−
(

miρ
)]∣∣∣∣∣ ≤ i(nρ −mρ)

2

(
1

ρ(λ + 1)

)1− 1
q
[

βρ(λ + 1, α + 1)
ρ

+
1

ρ(λ + α + 1)

] 1
q

× (|mρ|q(i−1) + |nρ|q(i−1))
1
q .

(40)
Choosing ρ = 1, α = 1 and λ = 1, in inequality (40) gives the required result.

Proposition 2. Let m, n ∈ R where 0 < m < n. For i ∈ Z, |i| ≥ 2, ρ > 0, λ > 0, 0 < α < 1 and q ≥ 1, we
obtain the following:

∣∣∣A (mi, ni
)
− Li

i(m, n)
∣∣∣ ≤ |i|(n−m)

2

(
1
2

) 1
q

A
1
q (|m|q(i−1), |n|q(i−1)).

Proof. From inequality (36) of Theorem 8, when applying G(m) = mi, we have∣∣∣∣∣mρi + nρi

2
− λρλΓ(λ + 1)

2 (nρ −mρ)λ

[
ρ Iλ

m+

(
niρ
)
+ρ Iλ

n−
(

miρ
)]∣∣∣∣∣ ≤ i(nρ −mρ)

2

(
1

p(ρ− 1) + 1

) 1
p

×
[

βρ(λ + 1, α + 1)
ρ

+
1

ρ(λ + α + 1)

] 1
q

× (|mρ|q(i−1) + |nρ|q(i−1))
1
q .

(41)

Considering ρ = 1 and λ = α = 1 in inequality (41) gives the required result.

5. Conclusions

In this paper, we defined a new identity for the generalized fractional integrals. Connected to
this, the new integral inequality for a differentiable convex function is derived. We obtained the
generalization of Theorem 2 introduced by Chen and Katugampola. In addition, the trapezoid and
mid-point type inequalities are studied, along with generalized Hermite-Hadamard inequality, for
Katugampola fractional integrals.
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