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Abstract: Cloud computing is an innovative technology that deploys networks of servers, located
in wide remote areas, for performing operations on a large amount of data. In cloud computing,
a workflow model is used to represent different scientific and web applications. One of the main issues
in this context is scheduling large workflows of tasks with scientific standards on the heterogeneous
cloud environment. Other issues are particular to public cloud computing. These include the need for
the user to be satisfied with the quality of service (QoS) parameters, such as scalability and reliability,
as well as maximize the end-users resource utilization rate. This paper surveys scheduling algorithms
based on particle swarm optimization (PSO). This is aimed at assisting users to decide on the most
suitable QoS consideration for large workflows in infrastructure as a service (IaaS) cloud applications
and mapping tasks to resources. Besides, the scheduling schemes are categorized according to the
variant of the PSO algorithm implemented. Their objectives, characteristics, limitations and testing
tools have also been highlighted. Finally, further directions for future research are identified.

Keywords: cloud computing; cost; IaaS; Makespan; particle swarm optimization; quality of service;
reliability; workflow scheduling

1. Introduction

Cloud computing is a new technology that provides virtual, scalable and dynamic resources
to users based on a pay-as-you-use service. This technology is network-dependent. Due to the
network scale involved, some services such as e-commerce applications use up the entire network [1].
Cloud computing is practically developed in three stages: distributed computing, parallel computing
and grid computing [2]. Cloud computing is also used for executing scientific workflows such as
geological, astronomical, biological, cosmic, biotechnology and image processing. Cloud computing
can be classified into three types: public clouds that everyone can register and use for their services,
private clouds that are operated without limitation of network bandwidth, security visibility and
regulatory specifications within the organization and hybrid clouds that merge private clouds with
public cloud resources. An important aspect of cloud computing is workflow scheduling which is the
process of mapping dependent tasks to the available resources considering the quality of service (QoS)
constraints [3].

Workflow scheduling incurs a large communication and computation cost [4]. Some meta-
heuristic-based algorithms such as ant colony optimization (ACO), genetic algorithm (GA), simulated
annealing (SA) and particle swarm optimization (PSO) have been proposed for scheduling tasks
or workflows in the cloud environment [5]. As one of the meta-heuristic approaches used to solve
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optimization problems, PSO initially provides a random solution population then looks for optimal
solutions by updating generations. Unlike other meta-heuristic algorithms, there are no developmental
operators such as crossover and mutation in the traditional PSO algorithm [6]. Possible solutions in
PSO (called particles) travel the problem space by tracking the existing optimal particles [7].

One of the fundamental challenges of cloud computing is how to manage the QoS in terms
of reliability and performance during the workflow scheduling process. This involves scheduling
complex workflows to concurrently reduce execution time and cost using heterogeneous resources
of the cloud [8]. Most of the previous studies focus on only one objective, such as reducing the
execution time or minimizing the total execution cost, to optimize the performance of workflow
scheduling applications while satisfying user’s QoS constraints. However, the complex nature of
dynamic workflow necessitates that total execution cost is traded-off for processing time to help strike
a balance between them.

1.1. Motivation

The above-mentioned challenge motivates this systematic review that focuses on the QoS
requirements of PSO-based algorithms built for scheduling workflows in the cloud environment.
The schemes are classified according to the type of PSO algorithm used. Their objectives and properties
are also highlighted. In addition, we show the enhancements made by hybridizing PSO algorithms with
other meta-heuristic algorithms. This analysis compares the schemes and discusses the peculiarities of
each scheme to motivate further research in this field.

1.2. Related Works

Most of the previous surveys on PSO focused on task and workflow scheduling in cloud
computing without considering future direction and open issues and some quality of service metrics.
Some surveys [9,10] have also reviewed task scheduling algorithms based on PSO. However, their works
fall out of the scope of this paper. They mentioned the basic working principles of several scheduling
algorithms but did not discuss the pros and cons of various approaches. In contrast to the previous
surveys, we systematically review the literature on PSO-based workflow scheduling algorithms in
cloud computing while taking account of QoS metrics such as fault tolerance, execution time and cost.
Moreover, future directions are highlighted. Table 1 compares this paper with the previous reviews on
workflow scheduling using PSO-based algorithms.

1.3. Contributions

The contributions of this survey are as follows:

• Classification of PSO-based workflow scheduling algorithms in cloud computing. The QoS
constraints, type of workflow used, advantages and disadvantage of these algorithms in cloud
computing are indicated.

• Identification of various quality of service metrics used in the literature. Table 2 defines most of
these QoS metrics.

• Identification of bi-objective, tri-objective and multi-objective PSO-based scheduling approaches
in the literature.

• Presentation of future directions on state-of-the-art PSO-based scheduling algorithms.

The rest of this paper is organized as follows: Section 2 illustrates the systematic review process
adopted to select the relevant research articles for our classification, while Section 3 provides the
background to this study. Section 4 discusses the PSO-based scheduling strategies in cloud computing.
Section 5 classifies the PSO-based scheduling schemes. Section 6 summarizes the literature review
indicating the limitations of the review. Section 7 provides a technical comparison of Cloud, Fog and
edge. Open challenges and future research directions are presented in Section 8. Finally, Section 9
concludes this paper.
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Table 1. Comparison of previous reviews on workflow scheduling based on PSO.

Year [ref] Article Title Quality of
Service (QoS)

Testing
Tools

Workflow
Scheduling

Task
Scheduling

Fault
Tolerance

Energy
Consumption

PSO Algorithms
Classification

Future
Directions

PSO
Only

2013 [9]

Review Paper on PSO in workflow
scheduling and Cloud Model

enhancing Search mechanism in
Cloud Computing

3 3 3 7 7 7 7 7 3

2016 [10] A Survey of PSO-Based Scheduling
Algorithms in Cloud Computing 3 3 3 3 7 3 3 7 3

2016 [11]
Towards workflow scheduling in

cloud computing: A comprehensive
analysis

3 7 3 7 7 7 7 3 7

2019 [12]
A Survey on Scheduling Strategies for
Workflows in Cloud Environment and

Emerging Trends
3 7 3 7 7 3 7 3 7

2019 [6]
A comprehensive survey for

scheduling techniques in
cloud computing

3 7 3 3 3 3 3 3 7

2019 [13]
Load Balancing and Server

Consolidation in Cloud Computing
Environments: A Meta-Study

3 7 7 3 7 3 7 3 7

This paper

A Survey on QoS requirement based
on Particle Swarm Optimization

Scheduling Techniques for Workflow
Scheduling in Cloud Computing

3 3 3 7 3 3 3 3 3
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2. Systematic Review Process

This section gives a clear description of how this review is defined, analyzed and interpreted.
Research questions are developed to clearly outline the goals of this study. A search protocol is then
designed so that the most relevant research papers can be reviewed. This we achieved by using search
strings as well as selected digital libraries. The inclusion and exclusion criteria are defined to determine
the parameters and research articles that will be included or excluded during the review process.
Thereafter, the data obtained are synthesized to ensure all study questions are answered meaningfully.

2.1. Research Question (RQ)

The research questions below were formulated in the planning stage of this review and their
answers are provided in subsequent sections:

RQ1. Which heuristic, meta-heuristic or hybrid PSO technologies are available to support
workflow scheduling?

RQ2. Which simulation tool is mostly used to conduct cloud computing experiments?
RQ3. What are the flaws of the current PSO-based workflow scheduling strategies?
RQ4. Which PSO-based workflow scheduling algorithm performs best for different QoS constraints?
RQ5. What are the prospects for PSO-based workflow scheduling schemes?

To answer these questions, we follow the Systematic Literature Review (SLR) protocols [14].

2.2. Search Strategy

For search string construction, the following steps were followed [15]: (1) Selecting the keywords
from the RQs. (2) Discovering the synonyms and alternate spelling systems to extend the keywords.
(3) Investigating the resulting keywords in the relevant literature. (4) Combining the synonyms
and alternate spelling using ‘Boolean OR’ (5) Combining the main terms and conditions using
‘Boolean AND’. Thereafter, we found the general terms and conditions relating to QoS customization.
The corresponding search string used in the digital library engines is: “((“multi objective” OR
“multi-objective”) AND (“Particle Swarm Optimization” OR “PSO”) AND (“Workflow Scheduling”)
AND (“Cloud Computing” OR “Cloud”) AND (“QoS”))”.

2.3. Quest Approach (QA)

The research methodology of this analysis has been designed to ensure specific and unprejudiced
solutions in the literature are considered for providing answers to the RQs. The defined search
parameters are cloud computing, optimization, workflows, scheduling, heuristic techniques,
meta-heuristic, and hybrid optimization.

2.4. Sample Discrimination Strategy (SDS)

Initially, 474 research papers were collected and screened for the review using the criteria specified.
Some research papers were withdrawn because their titles did not fit into the scope of our current survey
and/or they have incomplete descriptions and conclusions. 150 research papers were read but the
contents of these articles are not relevant to our subject; hence, they were excluded. After the analysis,
we got 79 relevant research papers for our survey of PSO-based workflow scheduling. These papers
can be found in the list of references. The research papers were published within the period from 2000
to 2019 with some important historical references [16,17].

2.5. Data Clarification and Planning (DCP)

To organize and compare the required information, extensive structures (Tables 3–8) were
generated. Then this information was further arranged to respond to the targeted RQs.
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2.6. Target Audience

The survey is targeted at researchers interested in PSO algorithm for scheduling workflows
based on specific QoS constraints. Scientists with a broad range of backgrounds including distributed
computing, cloud, Big Data, Grid and parallel computing can also benefit from learning how workflows
can be scheduled using PSO-based techniques that have been influenced by research over the
past few decades. PSO algorithm has found broad use in several fields of computer science and
applied mathematical applications including neural network weight calculation, time series analysis,
market optimization and many more.

2.7. Sources of Data

Electronic databases, including IEEE Xplore, ResearchGate, Google Scholar, Wiley Library, etc.
were searched for research papers on scheduling strategies based on PSO. The following online
electronic databases were used for this research:

(1) IEEE Xplore (<www.ieeexplore.ieee.org>).
(2) Science Direct (<www.scidirect.com>).
(3) Springer (<www.springer.com>).
(4) ResearchGate (<www.researchgate.net>).
(5) Google Scholar (<www.scholar.google.co.in>).
(6) Scopus (<www.scopus.com>).
(7) Taylor & Francis (<taylorandfrancis.com>).
(8) Wiley Library (<www.onlinelibrary.wiley.com>).

3. Background

3.1. Workflow

A workflow is a sequence of activities carried out to achieve a defined objective in any environment.
It is a group of simple processes that are used for solving complex problems [18]. These processes
follow a certain order to improve the execution procedure and ensure efficiency. Workflows define
the way various tasks are configured, performed and tracked. It can be modelled as a Direct Acyclic
Graph (DAG) consisting of nodes and edges (Figure 1). Workflows can be represented as W = (T, E),
where T is a set of tasks t1, t2, . . . , tn and E is an edge (ta, tb) [19].Symmetry 2020, 12, 551 6 of 28 
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Figure 1. A simple DAG workflow.

A schedule is denoted as:
Sched = (Res, map, CE, TE) (1)

where Res = r1, r2, . . . , rn represents the resources, map is the mapping of task-to-resource, CE is the
total execution cost and TE is the total execution time [19].
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3.2. Scientific Workflow

Several workflows with scientific standards are used in scheduling processes to allocate tasks
to appropriate resources. They are also used to measure the efficiency of scheduling methods in
different scientific areas. Each scientific workflow contains tasks arranged in levels in the form of a
parent-child relationship. Based on this relationship, a parent must be processed first before the child.
Several workflow scheduling methods work with different scientific workflow datasets considering that
some datasets are complicated and huge. These datasets are processed to meet the users’ requirements
without violating the considered constraints. Scientific-oriented workflows cover a wide range of
areas such as geology, astronomy, biology, cosmic analysis, biotechnology as well as image processing.
Some of the most popular workflows are highlighted below and illustrated in Figure 2:
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• GENOMICS: This workflow is used for DNA methylation and histone data modification in
Epigenome Centers (https://pegasus.isi.edu/workflow_gallery/).

• CYBERSHAKE: The Cybershake workflow is used in South California Earthquake Center (SCEC)
to characterize earthquake hazards using the Probabilistic Seismic hazards analysis (PSHA)
technique (https://pegasus.isi.edu/workflow_gallery/).

• MONTAGE: This generates the custom mosaics of the sky using input images in the Flexible
Image Transport System (FITS) format (https://pegasus.isi.edu/workflow_gallery/).

• LIGO: This workflow is used in Einstein’s theory of general relativity. The Laser Interferometer
Gravitational-wave Observatory (LIGO) attempts to detect gravitational waves produced by
various events in the universe (https://pegasus.isi.edu/workflow_gallery/).

• SIPHIT: This workflow is used in the automated untranslated search for RNAs from bioinformatics
bacterial database projects at Harvard University (https://pegasus.isi.edu/workflow_gallery/).

3.3. Workflow Scheduler

To optimize defined objectives, a scheduler analyzes and distributes its tasks to the available
resources. It provides a summary of the workflow, identifies multiple queues and distributes tasks to
effectively run the device based on the user’s requirements. Workflows can be forwarded to resources
using simple approaches such as queues or more complicated techniques. When a user needs to
use cloud resources efficiently, an efficient scheduler is required to facilitate his/her goals. The main
function of workflow schedulers, such as GA, ACO and PSO described below, is to provide satisfactory
QoS to end-users.

3.3.1. Genetic Algorithm (GA)

GA is a bioinspired algorithm developed in 1960 by John Holland from the University of
Pennsylvania (USA). It is an optimization strategy that is well-known for finding an approximate
solution to a search problem. It is used in many scientific applications such as cancer scanning,

https://pegasus.isi.edu/workflow_gallery/
https://pegasus.isi.edu/workflow_gallery/
https://pegasus.isi.edu/workflow_gallery/
https://pegasus.isi.edu/workflow_gallery/
https://pegasus.isi.edu/workflow_gallery/
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gene expression profiling analysis, robotics, telecommunications, engineering design, automotive and
marketing [20].

3.3.2. Ant Colony Optimization (ACO)

ACO was proposed by Marco Dorigo in 1992. It is a probability-based algorithm for finding the
best path. It simulates the procedure by which ants find the shortest path during their search for food.
Practical applications of ACO include the train scheduling system, timetabling, shape optimization,
telecommunication network design and problems in computational biology [21].

3.3.3. Particle Swarm Optimization (PSO)

PSO was developed by Eberhart and Kennedy in 1995. It is a population-based optimization
technique that simulates the social behavior of birds flocking or fish schooling [17]. A typical PSO
algorithm is presented in Figure 3. PSO can be applied in many different areas such as artificial
neural network, training, function optimization, fuzzy system control and other areas where GA can
be used [22].
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Figure 3. Pseudocode of the PSO algorithm.

Where

w = inertia;
ci = acceleration coefficient, i = 1,2;
ri = random number, i = 1,2 and ri ∈ [1,2];
xi = current position of particle i;
pbest = best position of particle i and
gbest = position of the best particle in the population.

The three algorithms mentioned above have their ways of solving complex optimization problems.
Each algorithm has its characteristic performance in finding the best solution, depending on the
problems. They can be compared based on the differences in their operation.

3.4. QoS Constraints

In cloud computing, customers define QoS constraints according to their requirements. Some of
these QoS constraints in the literature are described in Table 2 below.



Symmetry 2020, 12, 551 8 of 27

Table 2. QoS constraints for workflow scheduling.

S. No. Constraint Description

1 Makespan The period between the starting time of the execution and the completion time
of the actual workflow [23].

2 Cost The amount paid by users for executing workload on cloud providers’
services [24].

3 Throughput The total number of users’ requests finished within a time limit [25].

4 Reliability This is the ratio of the total number of performed tasks to the total number of
tasks. The aim is to provide services to clients [26].

5 Resource
utilization

The appropriate use of resources in the course of workflow scheduling using
the idle time gaps [27].

6 Turnaround
time The difference between the completion time and the task submission time [28].

7 Success rate The total number of workflows carried out within user-defined constraints [29].

8 Tardiness This defines how long workflow schedule has been postponed to the extent
that the time of completion exceeds the estimated time limit [30].

9 Resource
availability

This estimates the number of resources available to map tasks in order to
reduce the rate of failure [31].

10 Load balancing This defines how the scheduler optimizes resources used to reduce the pressure
of cloud resources [11].

11 Response time The time between task arrival and task completion [32].

12 Budget The expense of using cloud services for a certain period of time [33].

13 Deadline The user’s time limit to perform the workflow [34].

14 Waiting time This determines the interval between the time the task is ready and when the
task begins [35].

15 Execution time The time it takes for the resource to perform the task [23].

16 Security This describes a stable scheduling to reduce the effect of security attacks by
attackers via abusing the cloud services [11].

17 Energy
consumption This determines the utilization of the energy during the scheduling process [36].

18 Fault tolerance This identifies the hardware and software problems that can be occurred at the
start of execution until the last job in the workflow is completed [37].

Meeting these requirements is a primary challenge in workflow scheduling. To address this issue,
different workflow scheduling algorithms have been proposed. In the next section, we review research
works on PSO-based workflow scheduling schemes that consider QoS constraints.

4. PSO-Based Scheduling

PSO has an advantage over evolutionary algorithms in which it has a rapid convergence capacity.
Additionally, some shortcomings of PSO like local optima can be solved by changing some of its
features and formulas or by applying PSO with other metaheuristic algorithms. Different categories of
PSO-based scheduling algorithms [10] can be considered in diverse applications. They can also be
used for scheduling a realistic workflow on virtual machines (VMs) in the cloud. Examples of these
categories are standard PSO [38–41], jumping PSO [42], learning PSO [41], bi-objective PSO [43,44],
modified PSO [45–52], binary PSO and its variants [16,53–57], and hybrid PSO [58]. Figure 4 below
shows the classification of PSO-based algorithms in cloud computing. In what follows, we review and
classify the 79 selected research articles in line with the earlier identified RQs.
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4.1. Standard PSO

Overcoming the drawbacks of cloud VM migration is costly and time-consuming. Instead of
moving the entire overloaded VM, the PSO-based task scheduling algorithm [38] was suggested to
shift the task from overloaded VMs to underloaded VMs. A new optimization model was developed
to convert these new tasks into VM, optimize makespan as well as transfer time. The architecture
of cloud resource brokers was designed, developed and built by [39]. Reference [59] states that
controlling the resources and developing the different kinds of QoS parameters based on specified
fitness function using the PSO algorithm is a constraint. PSO-based asset planning technique, called
BULLET was suggested by [60] to reduce running costs, time, availability and power along with other
QoS parameters. This suggested PSO-based algorithm has been used to efficiently plan resources to
optimally solve the problem using the fitness function. The fitness function is more effective [61,62] in
allocating the best resources for applications (tasks). It enables all applications to be processed in the
shortest possible time at a minimum cost.

4.2. Jumping and Learning PSO

In the standard PSO technique, the global best particle, gbest, gets stuck in the local minima because
it is not dynamically adjusted in all iterations which yield a poor convergence rate. To address this
drawback, the Jumping PSO technique was proposed. This technique involves moving particulate
matter from one coordinate to another and reducing workflow scheduling compilation time [42].
Self-adaptive learning PSO [41] incorporates four-velocity updating mechanisms for the IaaS cloud to
delegate user tasks effectively and increase the revenue of cloud service providers.

4.3. Bi-Objective PSO

Bi-objective PSO is a variation of PSO that simultaneously optimizes two objectives in the cloud
environment. This workflow takes deadline and budget constraints into account to optimize the
costs and time of implementation. A priority bi-objective PSO algorithm was proposed by [43] to
simultaneously optimize both cost and makespan. The proposed algorithm assigns the result of HEFT
to initialize PSO. The simulations of four different workflow systems in the real-world and correlations
with other algorithms determine the efficiency of the algorithm. The results of the computations
indicate that the proposed algorithm performs better than others. To simultaneously optimize both
parameters, i.e., time and costs, authors in [44] suggested the use of the smallest position value (using
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PSO technique) to meet the end-user requirements and reduce infrastructure cost (thereby maximizing
profit for cloud service providers).

4.4. Modified PSO (MPSO)

In the last decade, several modifications to PSO algorithms (known as MPSOs) have been proposed
to optimize the performance of cloud computing for different QoS parameters. A lot of MPSOs now
exist to overcome the weaknesses in the existing PSO algorithm. For example, [45] introduced an
improved PSO planning algorithm to solve the cloud resource planning problem. The algorithm looks
for the best resource for the next task and assigns the task to that resource to minimize completion
time and cost. This is executed based on the current workload at VMs. Results showed that MPSO
algorithms are better than the existing PSO algorithm in terms of time, cost, speed, and effectiveness.
Similarly, [47] introduced an MPSO algorithm that optimized the fitness function to reduce the
processing time and utilization of cloud resources. A new PSO methodology for the IaaS cloud, called
the NPSO, was introduced in [48] to minimize the financial costs and time taken to finalize applications.
An updated PSO algorithm was also proposed by [61] to address particle decline randomness and
find an optimal global solution. The proposed technique provides one-to-one mapping and the fastest
processor assignment tasking.

The MPSO techniques mentioned above are characterized by premature convergence and
stagnation. Thus, efforts were made to resolve these problems. In this context, [50] proposed
PSO algorithm distribution-dependent update rules that evaluate output at 13 non-linear global
benchmark optimization functions. Experimental evidence shows that the proposed PSO-based
algorithm optimizes the fitness function better than the existing algorithms. To increase the global
search efficiency [62], an alternative modified APSO-VI algorithm was proposed based on the average
absolute velocity of the evading particles. The experimental findings showed that the proposed
algorithm escaped from a local minimum without premature convergence. [52] used the APSO-VI
algorithms to schedule applications in a cloud environment. The proposed algorithm optimized
different QoS parameters (like cost, time, throughput and energy consumption as well as task rejections)
when compared to other state-of-the-art algorithms (such as PSO) considering the constraint of the
time limit.

4.5. Binary PSO (BPSO)

Most real-world optimization problems are distinct. Examples of such include task scheduling,
0–1 knapsack problem and travel salesman problem. These problems can be solved using the BPSO
algorithm. This binary version of PSO [16] was proposed for discrete optimization problems in 1997.
The sigmoid transfer function was used to convert the velocity value from continuous to binary.
BPSO has been used to solve diverse discrete optimization problems [53–55]. It has good convergence
ability but it is affected by a lack of diversity in its premature convergence. An active research focus is
to enhance BPSO’s exploration and development capability. In this context, a sigmoid transmission,
a linear transfer function, and two separate V-form transfer functions have been proposed to solve the
problems of exploration-exploitation in BPSO [16,56,57].

4.6. Hybrid PSO

In conjunction with one or more scheduling algorithms, PSO can be used to solve several practical
problems. Such combinations are named PSO hybrid algorithms. They can solve problems of local
minimum, premature convergence, low convergence accuracy, etc. For example, to improve the
completion time and resource usage ratio in cloud computing, resource planning algorithms [58]
combine SA with PSO to form an improved PSO (IPSO) algorithm. SA increases the convergence
speed and accuracy. This is achieved by adding PSO throughout the simulation process in every
iteration. In IPSO algorithms, SA also increases PSO search speed. Krishnasamy and Gomathi et al. [63]
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discussed an additional hybrid PSO (PSO and DE) algorithm to balance the workload and minimize
cloud computing time for applications.

5. PSO-Based Workflow Scheduling Schemes

The particle swarm optimization algorithms for workflow scheduling can be generally
categorized as heuristic, meta-heuristic and hybrid schemes (Figure 5). With regards to RQ1, it is
observed that most researchers concentrate on the following techniques for planning workflows in
distributed environments.
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5.1. Heuristic Algorithms

Heuristic means "to be found by trial and error." This group of algorithms solves optimization
problems in a reasonable time. However, optimal solutions cannot be guaranteed. This is fine if we do
not want the best solutions that can easily be found [64]. These algorithms were used by previous
researchers to solve scheduling problems in cloud computing. For example, the approach in [65]
implements service cost on PSO (PSO-SC) to optimize workflow in a dynamic cloud scenario. PSO-SC
approach did not only reduce the computing time but also decrease the cost of running users’ tasks
during the scheduling process. Results show that the approach effectively schedules tasks and reduces
the complexities associated with such scheduling processes.

Table 3. Summary of the reviewed PSO heuristic algorithm for workflow scheduling.

Year Algorithm Type of
Algorithm

Type of
Workflow Testing Tool Advantage Disadvantage

2016 [65] PSO-SC Dynamic DAG
Mathematical formula

and simulation
software (Cloudsim).

It improves the
performance and
provides a best

optimal solution.

It is trapped in
local optima.

Table 4. QoS parameters in the reviewed PSO heuristic algorithm.

Year Reduce
Execution Time Cost Energy

Consumption
Fault

Tolerance
Single/Multi

Objective
Scheduling

Strategy

2016 [65] 3 3 7 7 MO DYNAMIC

Tables 3 and 4 present the current PSO-based heuristic algorithm used by researchers to address
workflow scheduling problems. The tables provide comprehensive answers to RQ1, RQ2, RQ3 and
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RQ4. They indicate the source of the algorithm, its advantages and disadvantages, the testing tool
used in the experiment, target QoS constraints, etc.

5.2. Meta-Heuristic Algorithms

The word “meta” means “above” and usually, the meta-algorithms do much better than simple
heuristics. This is because they involve randomization and local searches. Randomization provides
a good way to escape local searches and thus all meta-heuristic algorithms are built for global
optimization [64]. Next, we review some PSO-based meta-heuristic algorithms.

Pandey et al. [66] found PSO to be the most effective for run-time workflow scheduling. This is
due to its low computation and communication cost. Also, there are two considerations for obtaining
optimized solutions: one is the heuristic scheduling process while the other is the PSO for optimized
performance “task-resource mapping”. In [67], Wu et al. proposed an RDPSO-based PSO algorithm
where each solution is described in task-set pairs. Greedy’s Randomized Adaptive Research Process
(GRASP) is used to maximize the initial swarm population. A three-stage process is then followed to
establish new swarms. The “gbest” and “pbest” particles are picked at the first level. However, due to
the discrete properties of scheduling, gbest pairs are not well-optimized in the next step for producing
new locations as they ‘learn’ from their previous location. The unmapped tasks pick resources from
other optimized pairs in the third step. The authors concluded that RDPSO surpasses PSO with respect
to minimizing costs.

Thanh et al. [68] proposed a new version of the PSO algorithm that was proven to solve the
problem of workflow preparation. The PSOi deploys other approaches to reach optimal solutions
without being trapped in local optimum solutions. This version uses a new strategy for transferring
particles into a new space called “inverse”. After every iteration, PSOi helps to change the particulate
position. A Catfish PSO (C-PSO) algorithm [19] was proposed to select the best task schedule with
the least execution time and makespan. It was developed to schedule a large scientific workflow in
an IaaS. As hypothesized, the algorithm was able to efficiently schedule tasks and map them to their
appropriate resources. Another proposed workflow scheduling algorithm was named PSO-DS with
CUPA features [18]. This algorithm uses a workflow manager system (WMS) to create a direct link
between the workflow owners and resources. Thus, WMS was used with the required protocol to start
communication between resources in the experiment.

Many of the proposed scheduling algorithms for cloud computing fall short of meeting the required
QoS of users or do not take other basic principles of cloud computing such as heterogeneity of resources
into consideration. Reference [69] proposed a resource scheduling strategy for scientific workflow in
the IaaS cloud. The approach uses a PSO meta-heuristic algorithm to minimize the total execution cost
of a workflow considering the deadline constraints. The main objective was to optimize the workflow
scheduling in the cloud, considering the dynamism in IaaS resource provisioning and scheduling.
This approach uses PSO not just for mapping tasks to resources but for determining the number and
type of virtual machine to be leased and when to be leased and released. Moreover, it considers
diverse IaaS cloud characteristics such as variation performance and resource boot time. The proposed
solution merged different underlying aspects of IaaS cloud such as elasticity, heterogeneity, pay-by-use,
and resource dynamism. The drawback of this approach is that it defines deadline constraints for
resource provisioning and execution cost minimization.

Similarly, a multi-swarm multi-objective advanced operation algorithm (MSMOOA) [70] was
proposed to improve multi-objective workflow process in cloud computing. The approach uses
different kinds of swarms to cater to diverse issues, thereby enabling efficient data sharing among the
swarms. Each physical machine works with these swarms. The swarms are later “upgraded” to a
multi-objective molecule used for discovering a “non-commanded” arrangement as a single objective.
MSMOOA groups particles of the swarm into two classes. Particles in the first category communicate
with particles of different swarms to energize data sharing among the swarms. The second class of the
particles trades the data between particles of similar swarms. In the approach, the server manager (SM)



Symmetry 2020, 12, 551 13 of 27

is used to maintain the effect of accessing resource visibility for the mapping. Experimental results
comparing MSMOOA and two other approaches (HEFT and MOHEFT) indicated that MSMOOA
performed significantly better than those approaches.

The authors in [71] developed a Fuzzy PSO with LJFN and SJFN algorithm using LJFN and SJFN
heuristics. They used a method that swaps LJFN and SJFN heuristics when a new job is assigned to grid
nodes. Nevertheless, the number of grid nodes allocated based on FCFS and LJFN is greater than the
number of tasks. The proposed approach creates optimal solutions in time to reduce preparation time
and increase resource use efficiency. [41], [72] suggested a PSO-based strategy that takes advantage of
PSO’s quick convergence. The proposed method (SLPSO) deploys various speed upgrade methods
that prevent the solution from being stuck in the local optima and boost the performance. This involves
other policies such as adaptive parameters changing, designing different population topologies, using
multi-population in standard PSO and bio-inspired PSO methods that combine PSO with other adaptive
systems. Within the user-specified QoS constraints, SLPSO performs efficiently well.

PSO with VNS was proposed by [73]. It combines four procedures: “initialization”, “particle string
update”, “fitness calculation” and “solution selection”. Before these procedures, the “particle string”
must be generated to encrypt promising solutions. VNS was implemented to increase the reliability of
the solutions in the solution selection process. On the same subject, Chen et al. [74] studied S-CLPSO
to control the user-specified constraints using PSO and clarified the set-based PSO approach and its
suitability for workflow scheduling. Speed and place are modified in every iteration in the S-CLPSO
algorithm. The SPSO strategy tends to be a better option for workflow scheduling problems since
service instances in the cloud are treated as a collection. Also, it is simple to ‘expedite search’ with
S-PSO. It was therefore concluded that under very tight constraints, the findings obtained by S-CLPSO
are very promising.

Tables 5 and 6 provide a comparative analysis of the various meta-heuristic algorithms used
in the literature to manage workflow scheduling problems. The tables present a systematic annual
review of several meta-heuristic algorithms indicating the source of each algorithm, its advantages
and disadvantages, the testing tool used in the experiment, target QoS constraints, scheduling strategy,
etc. Both tables answer RQs 1–4.

5.3. Hybrid Algorithms

This section reviews research works that combine heuristic and meta-heuristic algorithms.
A systematic analysis of the various hybrid algorithms proposed for workflow scheduling is shown
in Tables 7 and 8 based on the year of publication. These tables also provide answers to RQs 1–4
indicating the strengths and weaknesses of the algorithms. The testing tools used in the experiments,
target QoS constraints, scheduling strategy, etc. are also highlighted.
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Table 5. Summary of the reviewed PSO meta-heuristic algorithms for workflow scheduling.

Year [Ref] Algorithm Type of Algorithm Type of Workflow Testing Tool Advantage Disadvantage

2010 [66] PSO Dynamic Simple JSwarm6 package for
simulation

PSO attains less cost than Best Resource
Selection (BRS).

It does not consider real
applications.

2010 [67] RDPSO Dynamic Simple simulation RDPSO yields feasible solutions. Not Specified.

2012 [74] S-CLPSO Static
Real-life application

workflows and PSPLIB
workflows

Simulation S-CLPSO produce effective solutions
while considering QoS constraints. Not Specified.

2014 [43] BPSO Static Scientific Workflows Cloudsim BPSO is better than PSO in terms of
performance and cost.

They have not considered the load
of resources.

2015 [68] PSOi Static Simple CloudSim, packet
library Jswarm

PSOi is effective in terms of makespan in
the small-scale cloud.

It has low performance when
solving large instances in less

execution time.

2017 [4] HPSO Dynamic Scientific Workflows Cloudsim Minimizes the cost of execution and
time simultaneously.

The consumption of energy and
other effective QoS is not

considered.

2014 [69] PSO Dynamic Scientific Workflows Cloudsim
It involves basic IaaS cloud concepts

such as pay-as-you-go model, flexibility,
elasticity, and resource dynamics.

It does not consider budget and
reliability constraints.

2017 [70] MSMOOA Dynamic Scientific Workflows WorkflowSim

Multi-modulated particle optimization
algorithm (MOPSOA) is used to find the
non-dominated solutions with a single
objective called a swarm in every PM.

Not Specified.

2016 [19] C-PSO Dynamic Scientific Workflows WorkflowSim
It yields significant changes in

makespan and execution cost in
comparison to PSO for 400 tasks.

C-PSO performance is slightly
better than PSO for workflows of

100, 200 and 300 tasks.

2017 [18] PSO-DS Dynamic Scientific Workflows CUPA

It can produce better results in terms of
cost and makespan. Specifically, for

those with fewer resources that provide
functional values over 80%.

PSO-DS needs a high budget to be
implemented by users.

2017 [75] DPSO Dynamic Scientific Workflows WorkflowSim. It schedules the medical workflow
application with a discrete PSO. Not Specified.

2019 [76] DNCPSO Dynamic Scientific Workflows WorkflowSim.

It effectively and efficiently deals with
the workflow scheduling issue in

cloud–edge environment to reduce the
makespan and cost.

Not Specified.
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Table 5. Cont.

Year [Ref] Algorithm Type of Algorithm Type of Workflow Testing Tool Advantage Disadvantage

2018 [77] MAPSO Dynamic Scientific Workflows Simple benchmark
program

It minimizes the total execution time and
cost of the workflow while meeting

multiple QoS constraints.

The consumption of energy and
fault tolerance are not considered.

2018 [78] APMWSA Dynamic Real-life applications
Workflows Cloudsim

It runs the workflow execution process
to minimize total cost and makespan.
This algorithm uses the concept of the

novel adaptive elite-based PSO
(NAEB-PSO) for task resource mapping.

Not Specified.

Table 6. QoS parameters of the reviewed PSO meta-heuristic algorithms for workflow scheduling.

Year Makespan Cost Execution
Time Reliability Utilization Response

Time Budget Deadline Throughput Energy
Consumption

Fault
Tolerance

Single/Multi
Objective

Scheduling
Strategy

2010 [66] 7 3 7 7 7 7 7 7 7 7 7 SO DYNAMIC

2010 [67] 3 3 7 7 7 7 3 3 7 7 7 MO DYNAMIC

2012 [74] 3 3 7 3 7 7 3 3 7 7 7 MO STATIC

2014 [43] 7 3 3 7 7 7 3 3 7 7 7 MO STATIC

2015 [68] 7 7 3 7 7 7 7 7 7 7 7 SO STATIC

2017 [4] 3 3 7 7 7 7 3 3 7 3 7 MO DYNAMIC

2014 [69] 7 3 7 7 7 7 7 3 7 7 7 MO DYNAMIC

2017 [70] 7 3 3 7 7 7 7 7 7 3 7 MO DYNAMIC

2016 [19] 7 3 3 7 7 7 7 7 7 7 7 MO DYNAMIC

2017 [18] 7 3 3 7 7 7 7 7 7 7 7 MO DYNAMIC

2017 [75] 3 3 3 7 3 7 7 7 7 7 7 MO DYNAMIC

2019 [76] 3 3 7 7 7 7 7 7 7 7 7 MO DYNAMIC

2018 [77] 7 3 3 3 7 7 3 3 7 7 7 MO DYNAMIC

2018 [78] 3 3 7 7 7 7 3 3 7 7 7 MO DYNAMIC
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Table 7. Summary of the reviewed PSO hybrid algorithms for workflow scheduling.

Year Algorithm Type of Algorithm Type of Workflow Testing Tool Advantage Disadvantage

2017 [22] PSO with MIN-MAX Dynamic DAG Java Programming

LAPSO algorithm efficiently handles
various QoS constraints in terms of

trustworthy networking environments and
successful optimization of the users’

QoS objectives.

Not Specified.

2009 [26] RHDPSO Static DAG of the workflow
in e-protein project

Java programming
language

Shows convergence speed and ability to
obtain faster and feasible schedules.

Performs well only in
grid background.

2015 [79] Hybrid PSO-ACO Dynamic Task workflow Workflow method
It proposes a new framework for scheduling

single tasks on the resource
sets dynamically.

Not Specified.

2015 [80] Hybrid PSO Dynamic Simple Cloudsim Performs better in terms of schedule length. Not Specified.

2017 [81] ACO with PSO Dynamic Scientific workflow CloudSim
In addition to reduced time delay, ACO-PSO

produces an efficient schedule with
lower cost.

Data transfer cost
between centres is not

studied.

2015 [82] SA with PSO Dynamic Simple CloudSim This method maximizes the resource
utilization and minimizes the makespan. Not Specified.

2017 [83] SA with PSO Dynamic Workflow of 100 jobs MATLAB

Experimental results showed that the
proposed method outperforms the

techniques available for various
quality indicators.

Not Specified.

2017 [84] PSO + GA-PSO Dynamic Simple DAG CloudSim

It allows consumers to choose resources
equally from different geographical sites,

with a reduced time of execution.
This decreases production costs in return.

Not Specified.

2013 [85] PSO with HEFT Static

Synthetic workflow
application, neuro-

science workflow and
a protein annotation

workflow

Grid toolkit Improves makespan time, cost and
energy consumption.

It does not consider
any constraint like the
deadline, priority of

applications, etc.

2015 [86] PBM with PSO. Dynamic Normal workflow
DAG Cloudsim

The ability of the PSO approach to explore
the problem space has been improved by
using random inertia weight to provide
particles with the ability to find better

solutions during the late stages of the search.

Not Specified.
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Table 7. Cont.

Year Algorithm Type of Algorithm Type of Workflow Testing Tool Advantage Disadvantage

2017 [87] Hybrid PSO+ACO Dynamic Scientific workflow Cloudsim
It uses PSO and ACO hybrids for several

purposes and minimizes the overall
run-time and cost.

Not Specified.

2015 [88] PSO with gravitation
search algorithm Dynamic DAG Cloudsim

In comparison to non-heuristic
implementations, the results of the

experiments indicated a a 30% decrease in
cost than PSO. Also, a 30% cost reduction in

comparison to the gravitational search
algorithm was recorded.

Not Specified.

Table 8. QoS parameters of the reviewed PSO hybrid algorithms for workflow scheduling.

Year Makespan Cost Execution
Time Reliability Utilization Response

Time Budget Deadline Throughput Efficiency Availability Security Reputation Energy
Consumption

Fault
Tolerance

Single/Multi
Objective

Scheduling
Strategy

2017 [22] 3 3 7 3 7 7 7 7 7 7 3 3 3 7 7 MO DYNAMIC

2009 [26] 3 3 7 3 3 7 7 7 7 7 7 7 7 7 7 MO STATIC

2015 [79] 7 3 3 7 7 7 7 7 7 7 3 7 7 7 7 MO DYNAMIC

2015 [80] 7 7 3 7 7 7 7 7 7 7 7 7 7 7 7 SO DYNAMIC

2017 [81] 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 MO DYNAMIC

2015 [82] 3 7 7 7 3 7 7 7 7 7 7 7 7 7 7 MO DYNAMIC

2017 [83] 3 7 7 7 3 7 7 7 7 3 7 7 7 7 7 MO DYNAMIC

2017 [84] 3 3 3 7 3 7 7 7 7 7 7 7 7 7 7 MO DYNAMIC

2013 [85] 3 3 3 7 7 7 7 7 7 7 7 7 7 3 7 MO DYNAMIC

2015 [86] 7 3 3 7 3 7 7 7 7 7 7 7 7 7 7 MO DYNAMIC

2017 [87] 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 MO DYNAMIC

2015 [88] 7 3 7 7 7 7 7 7 7 7 7 7 7 7 7 SO DYNAMIC
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Authors of [79] introduced the PSO-ACO algorithm, which is a fusion of PSO and ACO algorithms.
The algorithm focuses on reducing the cost and time expended in PSO for the "fitness test" and seeks
the global optimal solutions in ACO. The initial approach is to initialize the population then compare
them based on an iterative loop objective function. The steps are repeated by changing the speed and
position of particles up to a full schedule. Moreover, ACO also uses the global updating process and
job rescheduling. [80] proposed a new PSO and TS algorithm in which PSO executes global search and
TS performs a local search. The idea behind this hybrid approach is to develop both local (in confined
space) and global solutions. It finds viable solutions while preventing solutions from sticking to the
local optima.

A non-dominance sort-based Hybrid Particle Swarm Optimization (HPSO) algorithm was
introduced in [4] to solve scheduling problems with conflicting objectives in the IaaS cloud. HPSO is
an extension of the authors’ previously proposed Budget and Deadline Constrained heterogeneous
Earliest Finish Time (BDHEFT) algorithm: a form of multi-objective PSO. One of the disadvantages
of the proposed technology is that energy consumption was not considered during the scheduling
phase. The HPSO aims to improve the deadline and budgetary constraints of two objectives: makespan
and cost. In future works, the energy consumption of the created workflow scheduling could also
be reduced while considering these two conflicting objectives. HPSO provides a collection of ‘best
solutions’ a customer can choose from. Its operations consider non-predominant system arrangements
to tackle the cloud work process for booking issues. It involves a mixture of a multi-objective PSO
operation and rundown-based heuristics [4].

To improve the elasticity and heterogeneity of the existing works in the cloud for optimal scientific
workflow scheduling in the IaaS cloud, [81] introduced a new meta-heuristic optimization strategy
involving ACO and PSO algorithms. The hybrid finds local and global best solutions to minimize
makespan and reduce cost. Another hybrid workflow scheduling algorithm was proposed in [82].
The approach combines the features of both PSO and SA. It was implemented on Cloudsim to improve
on the brokers’ services, reduce makespan as well as increase resource utilization.

Mapping tasks to the available resources in the cloud is quite challenging. Thus, a hybrid
meta-heuristic algorithm for optimizing parallel scheduling processes in the cloud environment [83]
was proposed. This improves on the hybridized SA and PSO algorithms using a crossover variation
operator. The algorithm was able to effectively reduce the flow time and schedule length. Results from
the experiment indicated that the approach outperforms some of the existing approaches. A PSO-based
constraints-aware multi-QoS workflow scheduling strategy and a proposed look-ahead heuristics
(LAPSO) [22] were used to provide QoS satisfaction for various end-users (EU) with diverse QoS
objectives and optimization requirements. The strategy selects the best solution using the proposed
constraints handling approach. It hybridizes PSO with a novel look-ahead mechanism based on
min-max heuristics which improves the quality of choosing the best solution. Simulation results
indicate that LAPSO guarantees the satisfaction of the EU constraints even in “tight” situations.

Another major issue in cloud industries is allocating and scheduling dynamic and virtual resources
to the users for maximal profit. A multi-objective resource allocation (GA-PSO) algorithm was proposed
in [84] to minimize cost, time, and energy consumption. The approach uses meta-heuristic algorithms to
solve some scheduling issues encountered in cloud industries. PSO solves large optimization problems
with superior search speed and GA solves both non-linear and highly complicated engineering
problems. Experimental results indicated that GA-PSO was able to reduce cost and makespan and also
increase resource utilization.

Conflicting constraints such as budget and deadline emerge in the course of cloud resources
scheduling because cheaper resources are slower than expensive resources. Most of the previous
studies concentrate on one objective, i.e., either time minimization or cost minimization, under the
influence of user-specified QoS constraints. Because of the complexity of workflow and the dynamic
nature of the cloud, a trade-off is required to make a balance between total time of execution and
processing cost. Another effort, RHDPSO [26], showed that premature convergence and position
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maximum should be prevented. To this end, two methods were presented: first, "the discretization
process" which is used to overcome the multi-QoS workflow constraint scheduling problem and
second, "the random time sequence method" which can interrupt double particle extremities and
solve premature convergence and local optimum problems. However, the regular PSO algorithms are
superior to this hybrid form.

6. Summary of the Literature Review

This section summarizes the QoS metrics used in the reviewed literature for the evaluation of
PSO-based workflow scheduling strategies. The rate at which each QoS metric is utilized for evaluation
purposes is presented in Figure 6. The limitations of this review are also highlighted.
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Figure 6. The percentages of QoS metrics considered in workflow scheduling strategies.

6.1. Percentages of QoS Metrics Used in Workflow Scheduling Strategies

From Figure 6, the most widely used evaluation measure by the researchers in the reviewed
literature to evaluate PSO-based workflow scheduling strategies is cost. 30% of the proposed workflow
scheduling strategies considered the execution cost. The metric with the second-highest percentage
of usage (17%) is execution time followed by Makespan (15%). Resource utilization and reliability
constraint metrics of PSO-based workflow scheduling rates represent 6% and 5%, respectively. Next to
meeting users’ defined deadline constraints (9%), energy consumption was used for evaluation by
4% of the total research on workflow scheduling encountered in this review. Efficiency, security,
and reputation (1% each) were scarcely used.

6.2. Limitations of This Literature Review

Upon analyzing the data obtained from the literature review related to workflow scheduling, we
realize the following limitations:

• The best criteria or methods for different databases were not defined.
• The accuracy of the algorithms has not been established.
• Not all the QoS constraints, e.g., load balancing, were addressed.
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6.3. Historical Distribution

This paper presents the distribution of published research on workflow scheduling in the last few
years. Specific RQs are considered for resolving the gaps in current strategies (RQ3). From Sections 1–6,
we evaluated potential expectations (RQ5) after conducting QA, SDS, and DCP in the corresponding
publications between the years 2000 to 2019.

6.4. Distribution of Publications per Year

The papers published in the years between 2000 and 2019 are shown in Figure 7. This analysis
includes all articles that we got from all databases before the exclusion process. Figure 7 shows that
one article was published in 2000 and 2001, 19 articles were published in 2010, 23 articles in 2012,
53 articles in 2015, 79 articles in 2017 and 47 articles in 2019.
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The highlighted measurements in most of the research articles reviewed within the scope of this
paper (i.e., scheduling scientific workflow using PSO-based techniques) are illustrated in Figure 8.
Researchers in this area considered 15 common metrics. The frequency count and the number of papers
that used each metric are also provided in Figure 8. The important and least considered measurements
are shown as well. The highlighted measurements i.e., Execution time, Makespan and Cost, have the
highest frequency count. Fault tolerance, throughput, response time, reputation, efficiency and security
are much less utilized in PSO-based scientific workflow scheduling. A classification of the studied QoS
metric for each paper is also provided in Figure 8. Therefore, we note that Execution time, Makespan
and Cost are the main concerns for most authors.
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6.5. Research Validity

This research has carefully examined the existing literature. Nonetheless, some primary studies
might not have been reviewed considering that researchers use various synonyms in the course of
presenting their work. Moreover, we have thoroughly reviewed the techniques during the DCP stage
to prevent the biased study selection problem.

7. Technical Comparison of Cloud, Fog and Edge Computing

The fog computing architecture consists of fog clusters wherein multiple fog devices cooperate.
In contrast, the most important physical components of clouds are data centers. As a result, cloud
computing is expensive to operate and it consumes energy. On the other hand, energy consumption
and operation costs are low in the fog computing paradigm. Fog is closer to the user, so there can
be one or a few hops between users and fog devices [89]. However, there is a significantly higher
distance between users and the cloud. For this reason, the latency of communication for the cloud is
higher when compared to fog. Cloud is more centralized while fog is regionally coordinated and has
dispersed solution [90].

In edge computing, different platforms (all having different runtimes) could be used for
programming. Cloud computing typically uses one programming language for one target platform.
Edge computing requires a comprehensive security plan to address its state-of-the-art authentication
and proactive attacks while the cloud does not require a massive security plan. Edge computing
is known to be suitable for operations with very high latency requirements. Hence, medium-sized
businesses with budget constraints can save financial resources using edge computing. On the
other hand, cloud computing is better suited for large data storage programs and organizations [91].
The technical comparison between these three types of computing is shown in Table 9.
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Table 9. Technical comparison of cloud, fog and edge computing.

Parameters Cloud Computing Fog Edge

Internal connectivity Mostly wired Mostly wireless Mostly wireless

Power source Direct power Battery, direct power, green
energy such as solar power.

Battery, direct power, green
energy such as solar power.

Power consumption High Low Low

Computation capacity High Low Low

Storage capacity High Low Low

Participating node variable Constantly dynamic Constantly dynamic

Management centralized Distributed/ centralized Distributed

Computation device Powerful server system Any device with
computation power

Any device with
computation power

Nature of failure predictable Highly diverse Highly diverse

Connectivity from user
High speed (with

combination of wire
and wireless)

Mostly wireless Mostly wireless

Network latency High Low Low

Node mobility Very low High High

Number of
intermediate hops Multi One/few Single hop

Application type Non latency-aware latency-aware latency-aware

Real time
application handling Difficult Achievable Achievable

Computation cost High Low Low

Cooling cost High Very low Low

8. Open Challenges and Future Research Direction

This section answers RQ5 by providing insights into further research directions. We recommend
that future works should explore different choices that affect the performance of the scheduling
algorithm in terms of: (1) selecting the initial resource pool which has a significant effect on the
process, (2) using different optimization algorithms such as genetic algorithm and (3) comparing their
performances with PSO. There is also a need to work with these algorithms to ensure the process
of mapping tasks to resources takes place with enough memory size. Moreover, these algorithms
should be implemented in workflow engines so that they can be used in different real-life applications.
Introducing hybrid meta-heuristic algorithms can also improve the performance in the cloud.

Similarly, it is necessary that multi-objective solutions are introduced to workflow scheduling
processes. Due to the vulnerability of the cloud environment to failure, fault-tolerant approaches are
needed to ensure effective communication between users. Also, error-tolerant methods with lower
complexity must be taken into account for designing multi-objective workflows. To reduce the energy
consumption of cloud data centers and achieve green-cloud computing, more attention must be paid
to objectives like the VM load balancing in the data center network. Furthermore, some recent cloud
schedulers report security threats that negatively impact the quality of cloud services. This is generally
because cloud systems overlook security problems. To either prevent or minimize the impacts of
these security threats, future research addressing scheduling problems should focus on various factors
relating to protection and workflow scheduling solutions.

9. Conclusions

Cloud computing is a new technology that gives the industry the ability to take the benefits of
virtual resources on a pay-per-use basis. Its scheduling process involves mapping the tasks to the
VMs to reduce the makespan and execution cost. Scheduling also enhances resource availability and



Symmetry 2020, 12, 551 23 of 27

system scalability for cloud providers thereby reducing the operational cost of data centres. A popular
“unorganized” optimization technique for low computational and cost-effective applications suitable
for workflow scheduling in cloud computing is Particle Swarm Optimization. In this respect, this paper
presented a clear analysis of different PSO-based algorithms in cloud computing. This was done in line
with the objectives of solving workflow scheduling problems. We note that future work should focus
on scheduling workflows in a heterogeneous cloud environment. Also, the dynamic request for hybrid
resources should be evaluated while considering different levels of reliability. Furthermore, scheduling
algorithms should also cater to the trust concerns of cloud users who submit tasks for execution in
the cloud.
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