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Abstract: In this paper, we propose a new feature descriptor for images that is based on the dihedral
group Dy, the symmetry group of the square. The group action of the D4 elements on a square
image region is used to create a vector space that forms the basis for the feature vector. For the
evaluation, we employed the Error-Correcting Output Coding (ECOC) algorithm and tested our
model with four diverse datasets. The results from the four databases used in this paper indicate that
the feature vectors obtained from our proposed D, algorithm are comparable in performance to that
of Histograms of Oriented Gradients (HOG) model. Furthermore, as the D4 model encapsulates a
complete set of orientations pertaining to the D4 group, it enables its generalization to a wide range
of image classification applications.
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1. Introduction

In computer vision, a feature vector or descriptor for an image region is usually defined by
mathematical operations on a set of neighboring pixels in the image region. These operations generally
result in a compact representation of the image region, which reduces the computational complexity
associated with classification tasks. An optimal feature vector should provide a suitable representation
of an object or image region that enables its discrimination from the other objects or image regions in
the scene.

Histogram of Oriented Gradients (HOG), as outlined in the study by Dalal and Triggs [1], is a
feature descriptor that is commonly used for object detection. Its applications include: people detection
in images and videos [1], pedestrian detection [2], palmprint recognition [3], sketch based image
retrieval [4], scene text recognition [5], traffic sign detection [6], traffic light detection [7], and vehicle
detection [8].

HOG is based on the idea that an object’s shape and appearance can be characterized by the
distribution of local intensity gradients [1]. A feature vector in HOG algorithm is calculated by dividing
an image into smaller regions called cells and for each cell accumulating a histogram of gradients for
all pixels in the cell [1]. The local gradients are contrast-normalized by selecting larger regions called
blocks and using the results to normalize all the cells in a block [1]. In a study [1] by Dalal and Triggs,
the authors observed that the HOG based feature vector outperformed the wavelet [9], PCA-SIFT [10],
and Shape context [11] based descriptors for a human detection test case.

Based on the success obtained by using local gradients or edge orientation in the HOG model [1],
we hypothesize that the use the D4 elements on a square image region can capture the local gradients.
We investigate if the inherent properties of the complete set of elements pertaining to the D4 group can
form a natural basis for calculating a feature vector suitable for image discrimination. The D, group
has shown promising results in various computer vision applications [12-17], which motivated us to
use this group for our proposed algorithm.
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The rest of the article is organized as follows. In Section 2, we briefly discuss the theory behind
the dihedral group Dy4. In Section 3, we outline the proposed D, algorithm for calculating feature
vector associated with a given image. In Section 3.3, we briefly explain the databases used for testing
the performance of the proposed model. In Section 3.4, we briefly explain the ECOC algorithm that
used for classification. In Section 4, we discuss the results obtained for the different datasets used in
this paper. In Section 5, we discuss the different customizable aspects of the proposed D4 model and
possible future research directions. Finally, based on the results, we outline our conclusions.

2. Theory

A dihedral group D, is the group of symmetries of an n-sided regular polygon, i.e., all sides have
the same length and all angles are equal. D, has n rotational symmetries and n reflection symmetries.
In other words, it has n axes of symmetry and a total of 2n different symmetries [18]. For instance,
the polygons for n = 3-6 and the associated reflection symmetries are shown in Figure 1. Here, we can
see that, if n is odd, each axis of symmetry connects the vertex with the midpoint of the opposite
side. If n is even, there are n/2 symmetry axes connecting the midpoints of opposite sides and n/2
symmetry axes connecting opposite vertices.

Figure 1. Polygons for n = 3-6 and the associated reflection symmetries.

A group is a set G together with a binary operation * on its elements. This operation * must
behave such that:

(i) G must be closed under *, that is, for every pair of elements g7, g» in G we must have that g1 * g»
is again an element in G.
(ii) The operation * must be associative, that is, for all elements g1, g2, g3 in G we must have that

81%(82%3) = (g1 % 82) * &3
(iii) There is an element e in G, called the identity element, such that for all ¢ € G we have that
exg=g=gxe.
(iv) For every element g in G there is an element ¢! in G, called the inverse of g, such that

gxg l=e=glxg
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The Group Dy

The group Dy has eight elements, four rotational symmetries and four reflection symmetries.
The rotations are 0°, 90°, 180°, and 270°, and the reflections are defined along the four axes shown
in Figure 1. We refer to these elements as 0y, 1, ...,07. Note that the identity element is rotation
by 0°, and that for each element there is another element that has the opposite effect on the square,
as required in the definition of a group. As an example of one of the group elements, consider Figure 2,
where we demonstrate rotation by 90° counterclockwise on a square with labeled corners.

A B B C

D C A D
Figure 2. Rotation of the square by 90° counterclockwise.
3. Method

In this section, we describe the details of our proposed algorithm. First, we discuss the colorspace
used for our proposed model. Second, we describe the procedure used to obtain the D4 based feature
vector from a given image. Third, we discuss the conditions under which the proposed model can
generate sparse feature vectors and describe our proposed solution to mitigate that problem. Fourth,
we briefly explain details of the four different databases used in our analysis. Fifth, we outline details
of the procedure used for the analysis and discuss the ECOC algorithm.

3.1. De-Correlated Color Space

As a first step, to reduce redundant information across the color channels, the input RGB color
image I is de-correlated. In line with the study by Sharma [17], the color channels are de-correlated
as follows: First, the matrix entries of I are reorganized to create a two-dimensional matrix M of size
w X n, where n is the number of channels and w is the length of vector, i.e., the product of the length of
matrix rows and columns. In the case of an RGB image, n = 3. After that, the matrix entries of M are
normalized by the mean for each channel.Next, we calculate the correlation matrix of M as,

C=M"M, 1)

where the size of C is n by n. Following this, the Eigen decomposition of a symmetric matrix is
calculated as,
C=VvDVT, 2)

where V is a square matrix whose columns are Eigenvectors of C, while D is the diagonal matrix whose
diagonal entries are the corresponding Eigenvalues. Finally, the RGB image channels are transformed
into Eigenvector space (also known as principal components) as:

S=VvII-u), 3)

where y is the mean for each channel and S is the transformed space matrix that represent the
de-correlated channels. As an example, the de-correlated channels of an RGB image is shown in
Figure 3.

If the input image is grayscale only, we perform a histogram equalization on the image and
normalize it in the range [0 1].
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DeCorr p De(!!orr2 De(!!orr3
Figure 3. The Red, Green, and Blue channels of an input RGB image from dataset [19] are de-correlated
into three channels: DeCorry, DeCorr;, and DeCorrs.

3.2. Proposed Dy Model

To calculate feature vector associated with an input image, we decompose the image into k square
regions of size N by N pixels each as shown in Figure 4. Please note that the choice of N can influence
the results, which is discussed below in Section 4. If an image size is not a multiple of the square region
size, the image borders are extended by padding with neighboring information.

B (i.e., a square region) is defined as an N x N-matrix and o; as one of the eight group elements of
Dj. The eight elements are the rotations along 0°, 90°, 180°, and 270°, and the reflections along
the horizontal, vertical, and two diagonal axes of the square. As an example, the eight group
transformations pertaining to a square block of an image are shown in Figure 5. As asymmetry
associated with rotation by 0° is trivial, there are only seven unique asymmetries to be considered;
these seven asymmetries are used in the proposed algorithm. The asymmetry of square region B by o;
is denoted by A;(B) to be,

1 X

Ai(B) = N2Z,/ —(0:B)j], )

wherei = {1,2,3,4,5,6,7} and N 2 is the total number of pixels in each square region. In other words,
asymmetry for each unique group element is represented by a positive real value that is obtained by
the mean square root of the absolute value norm associated with the matrix differences of B and ¢;B.

Figure 4. An input image from dataset [19] is divided into square blocks.
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Figure 5. The transformations obtained by using the different elements of the D4 group.

Finally, the seven scalar asymmetry values associated with each square region in the image are
collected in a matrix R and normalized in the range [0 1] for each element.

Figure 6 shows the different features associated with a cat image captured by the different
asymmetries Ry to Ry. This results in a k X 7 x 3 sized feature vector where k corresponds to the
number of blocks into which an input image is divided, 7 corresponds to the number of different
asymmetries, and 3 corresponds to the number of channels associated with the input RGB image.
This resulting feature vector is then used for image classification tasks.

Figure 6. The normalized asymmetry values associated with the different elements of the D4 group.
The resulting values were generated by using the red channel of the input RGB image.

The proposed Dy model was implemented using MATLAB and its implementation will be made
available at the MathWorks file exchange website.

Special Case

A typical limitation of the proposed algorithm is that, for completely symmetric patterns such as
shown in Figure 7, the feature vectors generated will be sparse. This can be addressed by selecting the
square blocks with an overlap, as shown in Figure 8 . Please note that, for our calculations, we used an
overlap of 50% for each block, which was an arbitrary choice.
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Figure 7. Ry, i.e., the normalized asymmetry values obtained for rotation along 90° for a pattern in
which the block size matches the size of the checkerboard pattern creates a matrix with zeros.

i

R1

Figure 8. Ry, i.e., the normalized asymmetry values obtained for rotation along 90° for a pattern in
which the block size matches the size of the checkerboard pattern and enabling an overlap of half block
size creates a matrix with non zero values.

3.3. Databases

To evaluate the performance of the feature vector obtained from the D; model, we used four
different datasets: Cats and Dogs [19], Fashion-MNIST [20], Person [1], and NLC [21]. The Cats and
Dogs [19] dataset consists of 8192 RGB color images of cats and dogs. A few sample images of the
two categories are shown in Figure 9. As the pictures are taken in complex backgrounds, this dataset
is considered to be quite challenging for machine learning algorithms [22]. The Fashion-MNIST [20]
dataset consists of grayscale images of clothing items belonging to 10 different categories. Using this
dataset enables us to explore our proposed model for image data that lack color information.
For instance, a few sample images belonging to the Fashion-MNIST [20] dataset are shown in Figure 10.
The Person [1] dataset consists of color RGB images of people in different upright positions (as shown
in Figure 11) and is divided into two categories consisting of positive samples with people and negative
samples for images without people. The NLC [21] dataset consists of color images of sky, which are
divided into four categories: noctilucent clouds, tropospheric clouds, clear sky, and rest. This is a
unique dataset as it does not contain the usual shapes, such as people, animals, and clothing items,
which exist in the other datasets. For example, a few samples of images belonging to the different
categories are shown in Figure 12. For more details on the datasets, please see Table 1.
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Figure 9. A few sample images from the Cats and Dogs [19] dataset, which has two categories of
images: cats and dogs.

Figure 10. A few sample images from the Fashion-MNIST [20] dataset, which has ten different
categories of images.

Figure 11. A few sample images from the Person [1] dataset, which has two categories of images:
persons and rest.
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Figure 12. A few sample images from the NLC [21] dataset, which has four categories of images: clear
sky (first row from the top), noctilucent clouds (second row), tropospheric clouds (third row), and rest
(fourth row).

Table 1. Details of the four databases used in the paper. Please note that the size and samples in
the table represent the dimensions of images used for calculating feature vectors and the number of
images, respectively.

Dataset Size Channels Samples Classes
Cats and Dogs [19] 60 x 60 2 (RGB) 8192 2
Fashion-MNIST [20] 28 x 28 1 (Gray) 60,000 10
Person [1] 64 x 128 3 (RGB) 7264 2
NLC [21] 50 x 50 3 (RGB) 24,000 4

3.4. Procedure for Analysis

In this section, we outline the procedure used for analysis of proposed D4 model for the four
different datasets used in this paper. We compared the performance of the proposed D4 model with
that of the HOG [1] model by employing the ECOC algorithm. For the training phase of the ECOC
algorithm, we used 60% of the samples for each dataset and for evaluating the performance we used
40% of the data. The total number of samples used in our analysis and the size of sample images
for each dataset are shown in Table 1. The data samples for each database were randomized prior to
selection for training and testing.
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ECOC Algorithm

The ECOC algorithm is suitable for problems that involve instances belonging to multiple classes
or categories [23]. For instance, in an optical digit recognition task, each handwritten character can
belong to one of the ten different classes associated with digits from 0 to 9.

The ECOC algorithm [23] is based on the approach of distributed output code mentioned in
the study by Sejnowski et al. [24]. Here, the general idea is to decompose a problem into several
binary problems by using a binary classifier (such as a support vector machine [25]). This means
that, for a given class i, it should be able to discriminate among the patterns of the class i and the
rest of the classes [26]. In this manner, each class is assigned a unique n bit binary string called
a codeword [23], where each bit identifies the membership of the class to a classifier [27]. In the
evaluation stage, the classification decision is based on the output codeword obtained from the binary
classifiers. The distances between codewords of the output and the classes are calculated and the class
with the shortest distance is assigned as the predicted class. For our calculations, we used the ECOC
model with SVM from MATLAB.

4. Results

In this section, we discuss the results obtained by testing different colorspaces, norm functions,
and the comparison of the D4 model and HOG [1] model across the four different datasets.

4.1. Colorspace Selection

We used percentage accuracy as a metric for judging the performance of a model, which is defined
as the ratio of number of samples with correct classification to that of the total number of samples used
for testing.

To see if the choice of a colorspace can influence the performance of the proposed Dy model,
we used the Person [1] dataset for testing. Our results, as shown in Table 2, indicate that for RGB
colorspace the accuracy is slightly lower than that of the HSV and De-Corr colorspaces. For our
analysis in the rest of the paper, we use the HSV colorspace for the D4 model.

Table 2. Performance of the D4 model for the different norm functions used in this paper, here N = 16
means a block size of 16 by 16 pixels.

Colorspace N  Accuracy (in %)

RGB 16 94.80
L*a*b* 16 97.07
HSV 16 97.51
De-Corr 16 96.20

4.2. Norm Function Selection

We testrf different norm functions for calculation of the values associated with asymmetries as
defined in Equation (4). Three functions, namely L; norm, Ly norm, and our proposed norm defined
by mean square-root of absolute differences, were evaluated for the Person [1] dataset. The results
shown in Table 3 suggest that different norm functions influence the accuracy of the prediction with our
proposed norm giving the highest accuracy. Thus, this norm function was employed in our proposed
D4 model.
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Table 3. Performance of the D, metric for the different colorspaces used in this paper, where N is the
size of square region i.e., block size.

Norm N  Accuracy (in %)
Ly 16 95.74
L 16 95.91
As defined in Equation (4) 16 97.51

4.3. Comparison for Different Databases

We compared the performance of feature vectors generated by using the proposed D4 model and
the HOG [1] model for four different datasets. As shown in Table 4, different block or cell sizes used in
the D4 and HOG [1] models lead of different feature vector sizes. Please note that N is the block size in
case of the D4 model and the cell size in case of the HOG [1] model.

Table 4. Accuracy for the different datasets and different block/cell sizes (N), and feature vectors sizes
used for the proposed D, and the HOG [1] models. Please note that N is the block size in case of the Dy
model and the cell size in case of the HOG [1] model.

Model N Feature Vector Size Database Accuracy

Dy 8 4725 Cats and Dogs [19] 67.43%
HOG [1] 8 3888 Cats and Dogs [19] 68.19%
Dy 16 1029 Cats and Dogs [19] 69.21%
HOG [1] 16 432 Cats and Dogs [19] 69.66%
Dy + HOG 16 1461 Cats and Dogs [19] 73.76%
Dy 16 2205 Person [1] 97.51%
HOG[1] 16 2268 Person [1] 96.98%
D4+ HOG 16 4473 Person [1] 98.09%
Dy 4 1183 Fashion-MNIST [20] 90.61%
HOG [1] 4 1296 Fashion-MNIST [20] 90.61%
Dy + HOG 4 2479 Fashion-MNIST [20] 91.50%
Dy 8 3549 NLC [21] 89.55%
HOG [1] 8 2700 NLC [21] 84.11%
Dy 16 1029 NLC [21] 86.35%
HOG[1] 16 432 NLC [21] 80.94%
D4 + HOG 16 1461 NLC [21] 92.63%

A larger block or cell size can generate a compact feature vector for both D4 and HOG [1] models.
However, it can also reduce the accuracy, as illustrated by the results associated with the NLC [21]
dataset, where the accuracy of both D4 and HOG [1] models decrease when the block or cell size is
increased from 8 to 16. A larger feature vector can capture more details associated with an image,
but it also increases the computational complexity associated with the classification task.

The accuracy percentages in Table 4 indicate that, for the Cats and Dogs [19] dataset, the HOG [1]
model performs better than that of the D, model. For the Person [1] dataset, the performance of both
D4 and HOG [1] models are quite similar. For the Fashion-MNIST [20] dataset, both models have
identical accuracies. For the NLC [21] dataset, the D4 model performs better than the HOG [1] model.
These results indicate that, for the four different datasets used in this paper, both D, and HOG [1]
models are quite similar in terms of their performance.

To see if combining the proposed D, and the HOG [1] models could provide a better classification
accuracy, we combined the feature vectors from both algorithms. The associated accuracies can be
observed in Table 4. We note that the combined models outperform the individual models for all four
datasets. This indicates that there are differences in the feature vectors obtained from the proposed Dy
and the HOG [1] models that can further improve the performance of classification.
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5. Discussion

As mentioned in Section 4.1, the proposed D4 model is influenced by the choice of colorspace used
for calculation of the feature vector. For images, the colorspaces that generate uncorrelated channels
such as L*a*b*, HSV, and De-Corr give better classification accuracies as compared to traditional
RGB channels.

The choice of norm function, as outlined in Section 4.2, can also influence the performance of the
D, based feature vector. We employed a custom norm function that returns a scalar value associated
with a particular asymmetry as defined by the D, group elements. The feature vectors generated by
using this norm function give better accuracies than the feature vectors using the L; and L, norm
functions. It should be noted that a recent study by Ballesteros and Salgado [28], where the authors
explored the optimal parameters for the HOG [1] model, suggests that the choice of norm function
depends on the task at hand.

As shown in Table 4, the choice of block size for calculating the feature vector for the D4 model
can influence the accuracy of the classification. Using a larger block size can generate a compact feature
vector, but, it can also reduce the accuracy of prediction, as discussed in Section 4.3. This implies that
the choice of block size is dependent on the type of classification problem.

The proposed D; model calculates a feature vector for a given image based on seven unique
asymmetries associated with the dihedral group Dy4. These asymmetries encapsulate the local gradients
in a suitable manner that renders them to be used as a feature vector. This can be observed from the
results obtained in Section 4.3, where the performance of the D4 model is comparable to that of the
HOG [1] model. Furthermore, the simplicity of asymmetry calculations reduces the computational
complexity of the Dy model.

The combined Dy and HOG models outperform the individual D4 and HOG models for all the
datasets used in this paper (as shown in Table 4). This implies that, for a given image, the feature
vectors generated from the two models are not identical.

Studies by Bilgic et al. [29] and Hong et al. [30] on improving the robustness and using the
HOG [1] model for real-time tasks suggest employing the AdaBoost algorithm to combine the results
from a set of weak classifications by using multiple iterations to provide a robust classification output.
Similar approaches can be applied to the proposed D, model to improve its robustness and enable its
use in real-time applications. This is something we plan to address in the future.

In the future, the proposed Dy model based feature vector approach can be extended to
three-dimensional image data. This can achieved by dividing the three-dimensional image space
into cube spaces and by employing the symmetry group associated with a cube, i.e., using the
S4 x Sy group transformations. S; is the symmetric group of degree 2 and has two elements: the
identity and the permutation interchanging the two points [18]. S4 is a symmetric group of degree
4,i.e., all permutations on a set of size four [18]. This group has 24 elements that are obtained by
rotations about opposite faces, opposite diagonals and opposite edges of the cube.

6. Conclusions

In this article, we propose a new feature descriptor for images that has its basis in the dihedral
group Dy elements. The group action of the D4 elements on a square image region is used to create
a vector space that forms the basis for the feature vector. For testing the performance of the Dy
based feature vector, we used an Error-Correcting Output Coding (ECOC) algorithm. An evaluation
was performed using four different datasets. Our results show that the proposed Dy algorithm is
comparable in performance to that of Histograms of Oriented Gradients (HOG) model. In addition,
as the D4 model captures the complete set of orientations pertaining to the D4 group, it enables its
generalization to a wide range of image classification tasks. In addition, we outline a few approaches
towards future research directions.
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