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Abstract: It is necessary to optimize clustering processing of communication big data numerical
attribute feature information in order to improve the ability of numerical attribute mining of
communication big data, and thus a big data clustering algorithm based on cloud computing
was proposed. The cloud extended distributed feature fitting method was used to process the
numerical attribute linear programming of communication big data, and the mutual information
feature quantity of communication big data numerical attribute was extracted. Combined with
fuzzy C-means clustering and linear regression analysis, the statistical analysis of big data numerical
attribute feature information was carried out, and the associated attribute sample set of communication
big data numerical attribute cloud grid distribution was constructed. Cloud computing and adaptive
quantitative recurrent classifiers were used for data classification, and block template matching and
multi-sensor information fusion were combined to search the clustering center automatically to
improve the convergence of clustering. The simulation results show that, after the application of
this method, the information fusion performance of the clustering process was better, the automatic
searching ability of the data clustering center was stronger, the frequency domain equalization
control effect was good, the bit error rate was low, the energy consumption was small, and the
ability of fuzzy weighted clustering retrieval of numerical attributes of communication big data was
effectively improved.

Keywords: cloud computing; communication big data; numerical attributes; fuzzy weighting;
clustering

1. Introduction

With the development of the economy, the progress of science and technology, and the improvement
of talent technology, the development of wireless network mobile communication technology has been
greatly promoted. With the increasing demand for internet communication, the process of improving
the data transmission performance of wireless network mobile communication can help people to have
a more comprehensive and clear understanding of the world, to pay attention to the dynamics of the
world in real time, and to understand a more abundant amount of knowledge. In the new era, people
cannot be separated from wireless network mobile communication data transmission. Whether in
work or in daily life, wireless network mobile communication data transmission has penetrated into
every corner and has promoted people’s interaction. Wireless network mobile communication data
transmission depends on optical cable optical fiber. Therefore, the superior performance of optical cable
optical fiber communication transmission represents the top economic development and efficiency in
the world [1]. In our country, at the end of 2017, the number of optical fiber access (FTTH/0) ports
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reached 657 million, and the full function standardization of the first stage of the 5G network was
completed in 2018. It is expected that in 2020, the optical fiber access (optical access) port will reach 657
million, with the full-function standardization of the first stage of 5G network having been completed
in 2018. The experiment of the 5G mobile communication system in China has been carried out to
promote the progress and development of society in the process of continuously improving the data
transmission performance of mobile communication in a wireless network. It is necessary to optimize
the clustering analysis of communication big data, establish the transmission fusion control model of
communication big data, and combine big data mining method to continue the adaptive clustering of
communication big data.

Fuzzy weighted clustering is a kind of unsupervised pattern recognition problem, which gathers
things into groups according to their attributes, making the similarity within the groups as large as
possible and the similarity between the groups as small as possible. Traditional clustering methods
include C-means clustering and FCM soft clustering. With the increasing amount of data to be clustered,
the efficiency of direct clustering with traditional methods is very low. High dimensional datasets
involve spatial distribution, whereas the effectiveness of traditional clustering algorithm has strong
dependence on the spatial distribution of samples. For example, C-means clustering has a better
clustering effect when the feature space is a hypersphere, whereas it has a worse clustering effect
when the feature space is a hypersphere, and FCM soft clustering has a better clustering effect when
the feature space is an ellipsoid. In order to overcome the dependence of clustering efficiency on
the spatial distribution of samples, a high-dimensional data fuzzy clustering algorithm based on
genetic algorithm is adopted for the subset clustering of each high-dimensional communication big
dataset. The purpose is to transform the fuzzy non similarity between high-dimensional samples into
Euclidean distance between two-dimensional samples, that is, to transform the difference between
high-dimensional samples into the difference between two-dimensional samples, so as to realize the
mapping from high-dimensional samples to two-dimensional samples. Finally, the FCM algorithm can
be used to cluster the two-dimensional samples.

In reference [2], it was proposed that there are mode coupling and differential mode delay in the
LMF method, and thus the adaptive equalization algorithm was used as the compensation mechanism.
In order to reduce the complexity of the adaptive equalization algorithm in the long-distance LMF
communication system, the frequency-domain equalization minimum average method based on
variable step size was used to realize the mode decomposition multiplexing of multiple input and
multiple output equalizers. After that, the equalization weight coefficient was modified by the least
mean square adaptive algorithm of the frequency domain block, and the step factor was adjusted by
the variable step function so that it could take into account the convergence speed and performance,
and further use the fast Fourier transform to reduce the computational complexity. The simulation
results showed that in the 112 g bit/s 1000 km small mode fiber channel communication system,
the method could improve the signal Q2 factor by 3.7 dB and can be used in the 100 km small mode
fiber communication system in the programmable field gate array under the same convergence. It can
realize the signal demultiplexing in the system of modular division multiplexing, and realize the
purpose of fast convergence and low steady-state maladjustment.

In reference [3], the 66 mode division multiplexing (MDM) system was demultiplexed by the
unconstrained frequency domain equalization (FDE) of multiple input and multiple output, so as
to eliminate the effects of mode coupling and differential mode delay on the signal. At the same
time, unconstrained least mean square (fd-lms) algorithm and unconstrained frequency domain
constant modulus algorithm (fd-cma) were used to demultiplex the MDM system, so as to prove the
unconstrained FDE demultiplexing effect. Then, the performance of both unconstrained fd-lms and
fd-cma were compared, and the results showed that unconstrained FDE demultiplexing performance
and constraining of the FDE performance is similar, but the calculation method is simple.

In the mobile communication network, it is necessary to optimize the clustering processing of the
text big data of the numerical attribute of the network communication big data, combine the clustering
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attribute features of the data for fusion scheduling and classification recognition, improve the accurate
positioning of the numerical attribute of the communication big data, improve the quantitative analysis
ability of the numerical attribute of the communication big data, and study the clustering method of the
characteristic information of the numerical attribute of the numerical attribute of the communication [4-6].
It has great significance in improving the information recommendation ability and big data information
processing ability of mobile communication networks [7-9]. The multi-dimensional text information
clustering processing of communication big data numerical attributes is based on the multi-dimensional
feature extraction and association rule mining of the data, combined with the sensing data acquisition
method to extract the association rule feature quantity of the communication big data numerical attribute
multi-dimensional text information, as well as realizing of the multi-dimensional text data classification
and recognition. In this paper, a big data clustering algorithm based on cloud computing was proposed.
The cloud extended distributed feature fitting method was used to program and process the numerical
attributes of communication big data. The mutual information features of big data numerical attributes
were extracted, and the data classification was carried out by using cloud computing and adaptive
quantitative recurrent classifiers. Finally, the simulation experiments were carried out to show the superior
performance of this method in improving the clustering ability of numerical attribute feature information
of communication big data [10-12].

2. Numerical Attribute Sampling and Feature Parameter Extraction of Communication Big Data

2.1. Communication Big Data Numerical Attribute Multi-Dimensional Text Feature Data Sampling

The construction of a network model is the basis of wireless network mobile communication data
transmission, which has an important position, and is the guarantee of transmission performance. The main
research field is the ad-hoc network, involving the use of mobile nodes for data transmission, and its
structure is mainly a two-dimensional plane used to form a mobile node set. Each node is a relatively
independent single signal channel, but at the same time, it should also conform to the overall standard of
ordered random distribution [13-15]. In the network mode, the regular motion of the node set is used to
carry out different signal transmission. On this basis, the node location and information corresponding
to the corresponding symbols can be effectively found through the independence of the nodes, in which
each node set is composed of nodes. In a mobile communication network, the multi-dimensional text
information structure of communication big data numerical attribute is complex and the system coupling
is strong. Through the classification of communication big data numerical attribute feature information,
the optimal detection and classification recognition of big data numerical attribute is realized, and the
multi-dimensional text information fusion method is used for the numerical attribute detection and
intelligent analysis of community network communication. The multi-dimensional text feature data
distribution structure model of communication big data numerical attributes is shown in Figure 1.
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Figure 1. Numerical attribute distribution structure model of communication big data.
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According to Figure 1, the output state characteristic quantity of the communication large data

value attribute distribution set in the B model is xj= {xl X2, e X j}T, the sampling is carried out
at a baud rate of more than two times, and the state characteristic distribution of the characteristic
information of the communication large data value attribute characteristic informationis p(xg). The joint
feature mining results of the association rules of the text data are as follows:

(1(6) ~ (0, ()
T Y G0 - h0)m,®

jeN; (k)

)

According to the symbol characteristic quantity of communication big data numerical attribute
transmission, the information is reconstructed, and the bit sequence distribution of communication
big data numerical attribute multi-dimensional big data transmission is obtained by using fuzzy data
clustering analysis technology:

p
x(t) = Y a(0)si(t) +n(t) @)
i=0

The semantic concept set of communication big data numerical attribute characteristic information

is obtained, and rough set scheduling and frequent mining are carried out for the characteristic
information of communication big data numerical attribute. According to the hierarchical characteristics
of data aggregation tree, the classification state characteristic quantity of communication big data
numerical attribute information is z(t), and the rough concept distribution subset of data clustering

center S;(i = 1,2,--- ,L) that meets the convergence condition of semi-supervisory learning is

K

p(yla, 0) = Y iyl Y ) ®)

k=1

According to the above analysis, a grid clustering method is used to classify the communication
big data numerical attribute feature information, and the small disturbance suppression method is
combined to avoid the cluster center disturbance and improve the convergence of the clustering [16-20].
The specific schematic frame diagram is shown in Figure 2:
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Figure 2. SC-FDE (frequency domain equalization) system model.
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2.2. Communication Big Data Numerical Attribute Linear Programming Processing

The cloud extended distributed feature fitting method is used to process the numerical attribute
linear programming of communication big data, and the mutual information feature quantity of big
data numerical attribute of communication is extracted, which is described as follows:

A _. 1 _;
Pi(t) = Z —e ]krRin;e ikr 4)

n=1

The scalar time series of communication big data numerical attribute feature information is x(t),
t=0,1,--- ,n -1, given the information flow of communication big data numerical attribute feature
information. Given the vector group x1, x, - - - x, € C" (m-dimensional complex space), combined with
the linear programming method, the finite set of communication big data numerical attribute feature
information set distribution is obtained as follows:

= = diag{max{lp; |, Ip71}, - max{lp,f1, Ipy1}} )
= diaglp,, - p,)
%y = diaglpf py, -+ pi P ©)

The fault location process of communication big data numerical attribute fuzzy weighted clustering
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Figure 3. Fault location and identification process of intelligent feeder system.

The intelligent distributed feeder system automation management is the basic work for realizing
the whole communication big data system automation management and power fault early warning,
identification, and elimination. When the feeder system breaks down, it can quickly locate and isolate
the fault points by using the system distributed topology structure and equation communication mode
to restore the normal power supply in the non-fault area of the power grid quickly. The overall analysis
of the distributed feeder topology system structure based on the peer-to-peer communication mainly
includes the base station layer, the sub station layer and the terminal layer. The peer-to-peer network
connection is used between each layer, as shown in Figure 4.
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Figure 4. Distributed feeder communication big data architecture.

According to the different functions of nodes, the topology of the feeder system is divided into
base station layer, sub station layer, and terminal layer. However, each node has the same position
in the feeder system, which is not a subordinate relationship but a distributed parallel relationship.
The nodes in the terminal layer are subdivided into feeder monitoring terminal (FTU), switching
terminal (DTU), and distribution terminal (TTU). The base station layer acts as the control center of the
system from the structural design, and is mainly responsible for the system broadcast and information
summary of the power fault information. Similarly, the sub station layer nodes and the terminal
layer nodes also have the system broadcast function of the fault information in the functional design;
the nodes in the terminal layer are mainly responsible for the identification, measurement, and control
of the fault within the area, and the terminal node itself has the function of the system broadcast. It can
also package and transfer the node information to the sub station layer to improve the efficiency of
power grid information transmission.

In the equal communication mode, the feeder topology system adopts the modular design,
mainly including the central processing module, power module, bus communication module, switch
module, and display module. The main module adopts the stm32h7 single chip and 32-bit bus
system, and matches the h12323ds communication chip. This structure design can not only meet the
requirements of the feeder system topology on communication mode, but also improve the power
fault information throughput of the distributed feeder system. The hardware connection design of the
stm32h7 single chip microcomputer is shown in Figure 5.
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Figure 5. Logic structure of feeder system module.

The stm32h7 single chip microcomputer is responsible for the control and information processing
functions of the distributed feeder system. The chip is connected with other system modules through
RS485 bus and can bus, and receives and transmits fault information of the feeder system, analog
system calculation, control switch, and analysis message, among others. The stm32h7 single chip
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microcomputer has good compatibility and rich interfaces. RS232 communication interface is selected
as the bus communication module as the remote data exchange window with the sub station layer
and the terminal layer. The operation information of each module of the distributed feeder system is
displayed more intuitively through the display module. The stable operation of the distributed feeder
system based on the equal communication requires a reliable power supply module. Because the
design of the feeder system is mainly aimed at the overhead line, the AC power supply is selected to
facilitate the stable operation of the information control system. Under the normal working condition,
the working power supply of the distributed feeder topology structure is also responsible for the stable
power supply of the PT line. The power module is also equipped with a battery as the standby power
supply. When the AC power supply fails, the battery can guarantee the normal operation of the system
for a short time.

The piecewise sample combination design of the fusion data is carried out [21,22], and when the
time interval of association rule set feature extraction of communication big data numerical attribute
feature information is O(d) of O(N'/%), data clustering space sn& — tanh& obtains validation that the
boundary value convergence condition of accurate clustering of communication big data numerical
attribute feature information is satisfied.

2]

Y<Pr Q/ﬁ) = Y[”ed(Pr Q/ﬁ)r Q/ﬁ] (8)

Three kinds of kernel functions have been designed to represent the linear kernel function,
random distribution characteristic kernel function, and uniform distribution kernel function of big

If C,(x*) =0, then

data numerical attribute feature information clustering. The expressions are, respectively, as follows:

K(xj, xj) =< xi, x> )
K(Xi,x]') = (< Xi, Xj > +1)d (10)
K(x;, %) = exp(llx; = xjlI*/20%) (11)

According to the above three kernel functions, the linear programming design of accurate clustering
of big data numerical attribute feature information is carried out, and the convergence control ability
in the process of data clustering is improved by combining the semi-supervised learning algorithm.

3. Big Data Fuzzy Weighted Clustering Optimization

On the basis of using cloud extended distributed feature fitting method to deal with big data
numerical attribute linear programming, the optimal design of big data fuzzy weighted clustering
algorithm is carried out. In this paper, a big data fuzzy weighted clustering algorithm based on
cloud computing was proposed. The mutual information feature quantity of communication big data
numerical attribute is extracted, and the characteristic distribution value of geometric neighborhood
(t, f) of communication big data numerical attribute clustering in nonlinear space is obtained.

f(x)—{ f(x),x € Levf 12)

a,x € Levf

Combined with fuzzy C-means clustering and linear regression analysis, the statistical analysis of
numerical attribute feature information of communication big data is carried out. In the clustering
space matrix (x1,xp, -+, X, ), the basis vector G = [Exx¢lA] of data fuzzy weighted clustering is obtained
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in order to construct the joint disturbance feature equation group of communication big data numerical
attribute feature information clustering.

HIZC
lZ(Hac) =1- —max(Huc)+l (13)
max(Hg) = log, k

On the basis of the above analysis of the boundary value convergence conditions for accurate
clustering of numerical attribute characteristic information of communication big data, the stable
convergence of the fuzzy weighted clustering mathematical model of the whole data is guaranteed.
Using a semi-supervised learning method, the boundary solution vector function of numerical attribute
feature information clustering of communication big data is constructed as follows:

JoF
w]‘i(k-i-l) = wﬂ(k) —O(W (14)
ji
JoF
zj(k+1) = z;(k) - a% (15)
)

Combined with fuzzy C-means clustering and linear regression analysis [23,24], the statistical
analysis of big data’s numerical attribute feature information is carried out, and the statistical feature
equation is described as follows:

(t) = Ax(t) + Bx(t— di () — da(t)) (16)

in which x(t) = ¢(t),t € [-h,0]. In order to realize data optimization clustering, a new training vector
is input in a finite-dimensional space:

x(t) = (xo(t), x1(£), -+, 21 ()" (17)

For the method, the convergence constraint control of the iterative process is carried out by
adopting the cloud computing and the adaptive quantitative recursive analysis, and the spatial
clustering of the data fuzzy weighted clustering center is obtained as follows:

T
N

d:

=) (it —wij(t)? j=0,1,-+ ,N-1 (18)

Il
o

wherein, w; = (a)oj, w1, ,a)k_lrj)T. The fault location algorithm based on the network topology
is used to form the topology tree structure of all nodes in the intelligent feeder network, and the
cluster center is selected according to the optimal location of the nodes to form a number of node
clusters [25-28]. During fault location, firstly traverse the cluster center node of each cluster. When the
information is obtained from the cluster center node, there is abnormal node state in the cluster; then,
traverse all nodes in the cluster, and then identify the location of the fault node and isolate the fault
area, and synchronously transfer the fault information to other cluster center nodes [29-32]. When the
clustering center satisfies the convergence condition of the semi-supervised learning, the detection
statistic of the characteristic information of the large-data value of the communication satisfies the
clustering convergence condition, and the implementation process of the large-data fuzzy weighted
clustering algorithm designed in this paper is obtained, as shown in Figure 6.
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Figure 6. Data clustering output.

4. Simulation Experiment Analysis

In order to test the performance of this method in the clustering of numerical attribute information
of communication big data and verify the effectiveness and feasibility of this method, simulation
experiments were carried out. On the basis of the Deep Web database and MATLAB, we empirically
designed a fuzzy weighted clustering algorithm. The attribute of the big data sample was set to 6,
and the initial confidence level of data fuzziness was. The clustering was 95%, the critical value was
1.24, and the judgment threshold was 0.13. The embedding dimension of the feature space distribution
was set to M = 4, the data length of the test sample was set at2000 years, and the simulation time
was120s. The method of this paper was used to compare study [2] and study [3] for experimental and
comparative analysis. The main parameters of the experiment are shown in Table 1.

Table 1. Simulation experiment parameters.

Parameter Name Description or Value
Total node value 400
Spacing between nodes 50-100 m
Queue control Optimize queue
Experimental wireless channel model MICAZE
Experimental time Longest 900 s
Experimental range 1000 x 1000 m

According to the above simulation environment and parameter settings, big data fuzzy weighted
clustering analysis communication big data numerical attribute Mu executed one-dimensional text,
and the original data distribution is shown in Figure 7.
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Taking the data of Figure 7 as the research object, the fuzzy weighted clustering of the data was
carried out, with the data classification being carried out by using cloud computing and adaptive

quantitative recurrent classifiers. The clustering output results are shown in Figure 8.

0.6 . . 0.9 1

Figure 8. Big data fuzzy weighted clustering output.

Figure 8 shows that big data fuzzy weighted clustering can be effectively realized by using this
method; the accuracy of data classification was high, and the error rate was small. The performance of
big data fuzzy weighted clustering was tested by different methods.

The comparison results are shown in Figure 9. It can be seen from Figure 9 that the fuzzy weighted
clustering error rate of big data was lower than that of the other two comparison methods after

adopting this method, which proved that this method has obvious application advantages.
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Figure 9. Performance comparison of fuzzy weighted clustering of data.
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In order to test the effect of frequency domain equalization of communication security, this paper
compared study [2] and study [3], and compared the performance of this method in the routing protocol
that uses node location information to make decisions, finding that the performance of this method
was better in the network with high dynamic topology caused by node movement. The comparison
results of the average energy consumption of the three methods for successful transmission of a single
packet are shown in Figure 10.

20

-
o

—
o

I
=

—B—Literature [2] method
—<— Literature [3] method
—A— Atticle method

Energy consumption/J

0.6

04
0 | | | | | | |

Number of data / Piece

Figure 10. Comparison results of three methods of average energy consumption for successful
transmission of a single packet.

It can be seen from Figure 10 that in the comparison of the three methods for successfully receiving
the average energy consumption of a single packet, the unit energy consumption of study [2] and
study [3] was more, and the text energy consumption was the least, and thus the method in this paper
is the best for the communication security frequency-domain equalization control effect. When the
communication channel was wealk, its noise had a great influence on the capacity of the communication
channel. However, when the minimum mean square error equalization was used, the optimal energy
constraint and frequency-domain equalization were controlled to ensure the optimal energy in the
frequency domain equalization control, and the average energy consumption control of a single data
packet was successfully transmitted. The communication channel information obtained by channel
estimation was equalized in the frequency domain. The communication channel had three Rayleigh
paths, and the specific communication channel equalization energy control results are shown in
Figure 11.

40
2 30
g
8
L% 99 | —@ Literature [2] method
—— Literature [3] method
—g— Article method
10 | | | | |

2 4 6 8 10 12 14 16
Number of data / Piece

Figure 11. Results of communication channel equalization energy control.
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It can be seen from Figure 11 that the bit error rate of the communication channel control conducted
by study [2] and study [3] was higher, whereas that of the communication channel equalization energy
control conducted by this method was lower, showing a downward trend. Using this method to balance
the energy of the communication channel can optimize the system well, and its security performance
is good. Because of the small energy loss, the life of communication network can be greatly extended.

From what has been discussed above, the information fusion performance of big data numerical
attribute information clustering processing was better, the automatic search ability of data clustering
center was stronger, and the fuzzy weighted clustering retrieval ability of communication big data
numerical attribute was improved. This method had good application value in cloud computing
analysis and clustering of communication data.

5. Conclusions

In this paper, a big data clustering algorithm based on cloud computing was proposed.
The cloud extended distributed feature fitting method was used to process the numerical attribute
linear programming of communication big data, and the mutual information feature quantity of
communication big data numerical attribute was extracted. Combined with fuzzy C-means clustering
and linear regression analysis, the statistical analysis of big data numerical attribute feature information
was carried out, and the associated attribute sample set of communication big data numerical attribute
cloud grid distribution was constructed. Cloud computing and adaptive quantitative recurrent
classifiers were used for data classification, and block template matching and multi-sensor information
fusion were combined to search the clustering center automatically to improve the convergence
of clustering. The simulation results showed that the information fusion performance of big data
numerical attribute feature information clustering processing was better, and the automatic search
ability of data clustering center was strong, which improved the fuzzy weighted clustering retrieval
ability of communication big data numerical attributes. This method had good application value in
cloud computing analysis and clustering of communication data.
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