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Abstract: This paper is devoted to the derivation and mathematical analysis of new thermostatted
kinetic theory frameworks for the modeling of nonequilibrium complex systems composed by
particles whose microscopic state includes a vectorial state variable. The mathematical analysis
refers to the global existence and uniqueness of the solution of the related Cauchy problem.
Specifically, the paper is divided in two parts. In the first part the thermostatted framework with a
continuous vectorial variable is proposed and analyzed. The framework consists of a system of partial
integro-differential equations with quadratic type nonlinearities. In the second part the thermostatted
framework with a discrete vectorial variable is investigated. Real world applications, such as social
systems and crowd dynamics, and future research directions are outlined in the paper.
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1. Introduction

The mathematical frameworks inferred from nonlinear analysis methods have gained much
attention, in particular for real world applications. The main interest has been focused on the
modeling of a complex living system, which is composed of a large number of entities, called particles,
whose interactions require to be considered in a somehow "holistic" perspective, as they cannot be
envisaged as a simple superposition of the interactions between couples of particles, and the functional
dependence of multiple interactions on binary ones cannot be assumed linear. On the contrary, it cannot
be even conjectured, so that the perturbations produced by surrounding particles make the results of
binary interactions not deterministic. The reader interested to a more deeper understanding of the
complex system is referred to the books [1,2] and paper [3].

In the inert matter case, Maxwell and Boltzmann have introduced and developed the statistical
picture of systems made of a large number of particles, and the kinetic theory of gases [4].
However, it has become ever more apparent that their viewpoint could be exported to almost all
the problems, from both hard and soft sciences, including the active matter which involves systems
of objects/particles/individuals able to express a strategy, see [5] and the references cited therein.
Recently, the mathematical framework of the thermostatted kinetic theory has been proposed in [6,7]
for the modeling of nonequilibrium complex living systems, namely systems subjected to external force
fields. According to this theory, the complex living system is divided into different particle subsystems
consisting of particles expressing the same function or strategy. The strategy is modeled by introducing
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a scalar real variable, called activity variable, and consequently the microscopic state of the particles
includes, but is not limited to, the activity variable. The evolution of each functional subsystem is
depicted by a distribution function defined on the microscopic state of the particles. The particle
evolution is driven by interactions which are particle-conservative (changing into the magnitude of the
activity variable) and nonconservative (proliferation and mutation). A thermostat term is introduced in
order to control the activity energy of the system and to allow the reaching of nonequilibrium stationary
states [8–12]. Depending on the structure of the activity variable, continuous and discrete activity
thermostatted frameworks have been derived. In particular, the continuous thermostatted framework
consists into a system of partial integro-differential equations with quadratic type nonlinearities.
On the other hand, the discrete thermostatted framework is a system of nonlinear ordinary differential
equations. It is worth stressing that changing in the activity variable are modelled by employing the
stochastic game theory [13]. The reader interested in recent applications to biology and pedestrian
dynamics is referred to papers [14–16].

The above described thermostatted kinetic theory method is based on the main assumption that
the evolution of each functional subsystem composing the complex system depends on a strategy
only. On one hand this assumption simplifies the theory, at least from the viewpoint of its formal
development; on the other hand the assumption seems to restrict its application to a rather small
number of particular cases, which do not capture a sufficient number of relevant aspects of real
phenomena. Indeed for a complex living system, the particles composing a functional subsystem can
be able to express simultaneously different functions, for instance this is the case of social-economical
systems where the behavior of agents depends not only on their own wealth, but also on their
predisposition to be "criminals" in terms of evading taxes. Accordingly, the introduction in the particle
microscopic state of several variables modeling different functions is required (vectorial structure).
A first attempt has been proposed in [17,18] for the modeling of human feelings.

The present paper is devoted to the derivation of thermostatted kinetic frameworks with
a vectorial activity structure. Specifically, the paper is divided in two parts: In the first part
the thermostatted framework with a continuous vectorial variable is proposed and analyzed.
The framework consists of a system of partial integro-differential equations with quadratic
nonlinearities. In the second part, the thermostatted framework with a discrete vectorial variable is
investigated. The mathematical analysis refers to the global existence and uniqueness of the solution of
the related Cauchy problem and is gained by employing methods of nonlinear analysis and fixed-point
arguments. To the best of our knowledge, this is the first time that a vectorial activity variable is
proposed for a thermostatted framework. It is worth stressing that the introduction of a vector activity
variable can complicate, especially, the numerical analysis as it increases the already great number of
parameters but allows to obtain a faithful description of reality.

The contents of the present paper are organized into five more sections which follow this
introduction. In detail, Section 2 is devoted to the fundamentals of the scalar thermostatted kinetic
theory framework where the activity is assumed to be a scalar real variable. Section 3 deals with the
generalization of the kinetic equation to the case of a vectorial activity variable and for a complex
system at equilibrium. The related Cauchy problem is analyzed and the existence and uniqueness of
the solution is proven by employing fixed-point arguments. In Section 4, the vectorial thermostatted
framework is proposed for the modeling of nonequilibrium complex systems and the related Cauchy
problem is investigated. The vectorial thermostatted framework in the case of a vectorial discrete
activity variable is proposed and analyzed in Section 5. Finally, Section 6 concludes the paper with a
references to application and future research directions.

2. The Scalar Thermostatted Kinetic Theory Framework

This section deals with the main elements of the thermostatted kinetic theory methods. Specifically,
let C be a complex system composed of n functional subsystems, each of them characterized by particles
which share the same strategy (active particles). The system C is assumed to be homogeneous with
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respect to the mechanical variables, i.e., space and velocity. Accordingly, the microscopic state of the
particles is described by a scalar variable u ∈ Du ⊆ R, called activity variable, which models the particle
strategy. The overall state of the ith functional subsystem, for i ∈ {1, 2, . . . , n}, at the time t is described
by the distribution function fi = fi(t, u) : [0,+∞[×Du → R+. Accordingly fi(t, u) du represents the
number of active particles whose microscopic state at the time t belongs to the elementary volume
[u, u + du]. The overall state of the complex system C is described by the distribution function vector
f(t, u) = ( f1(t, u), f2(t, u), . . . , fn(t, u)). The computation of moments of fi(t, u) allows the definition
of the local and global macroscopic quantities. Specifically, the global pth-order moment reads:

Ep[f](t) =
n

∑
i=1

∫
Du

up fi(t, u) du, p ∈ N.

The microscopic state of a particle of C evolves due to the conservative interactions among the
particles. Specifically: A particle of the ith functional subsystem with microscopic state u∗ interacts
with the particle u∗ of the jth functional subsystem and acquires, in probability, the state u of the
particle of the ith functional subsystem. The evolution equation of the ith functional subsystem is
obtained by balancing the inlet/outlet flux into the elementary volume of the microscopic states.
Accordingly:

∂t fi(t, u) = Ji[f](t, u) = Gi[f](t, u)− Li[f](t, u), (1)

where Ji[f] is the operator which models the conservative interactions. In particular, Gi[f] denotes the
following gain-term operator, while Li[f] denotes the following loss-term operator:

Gi[f] =
n

∑
j=1

∫
Du

ηij(u∗, u∗)Aij (u∗, u∗, u) fi(t, u∗) f j(t, u∗) du∗ du∗,

Li[f] = fi(t, u)
n

∑
j=1

∫
Du

ηij(u, u∗) f j(t, u∗) du∗,

where:

• ηij(u∗, u∗) : Du × Du → R+ denotes the interaction rate between the active particle u∗ of the ith
functional subsystem and the active particle u∗ of the jth functional subsystem;

• Aij (u∗, u∗, u) : Du × Du × Du → R+ is the probability density that the particle of the ith functional
subsystem with state u∗ falls into the state u after an interaction with the particle u∗ of the jth
functional subsystem.

The framework (1) thus consists of a system of n partial-integro-differential equations.

Remark 1. The probability density Aij satisfies the following relation which ensures the conservation of the
total number of particles: ∫

Du
Aij (u∗, u∗, u) du = 1 ∀u∗, u∗ ∈ Du. (2)

Assume that an external force field F(u) : Du → Rn acts on the system C. In order to reach
a non-equilibrium stationary state, the overall system is constrained to keep constant the global
activation energy:

E2[f](t) =
∫

Du
u2 f̃ (t, u) du, (3)

where

f̃ (t, u) =
n

∑
i=1

fi(t, u). (4)
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A gaussian-like thermostat has been proposed in order to ensure the conservation of the energy,
see [6,11,16] and the references therein. If Fi(u) = F, for i ∈ {1, 2, . . . , n}, the thermostatted kinetic
equation for the ith functional subsystem reads:

∂t fi(t, u) + ∂u

(
F
(

1− u
∫

Du
u f̃ (t.u) du

)
fi

)
= Ji[f](t, u). (5)

In a compact way, Equation (5) can be rewritten as follows:

∂tf(t, u) + F ∂u ((1− uE1[f](t)) f(t, u)) = J[f](t, u), (6)

where J[f](t, u) = G[f](t, u)− L[f](t, u).

3. A Vector Activity Kinetic Framework

This section is devoted to an important generalization of the mathematical framework (5).
Specifically, the microscopic state of the active particle is now composed by a vector activity variable
u = (u1, u2, . . . , um), where uj ∈ Duj ⊆ R, for j ∈ {1, 2, . . . , m}. Let fi(t, u) be the distribution function
of the ith functional subsystem and f(t, u) = ( f1(t, u), f2(t, u), . . . , fn(t, u))) the distribution function
vector. The local density is defined as follows:

E0[ fi](t) =
∫

Du
fi(t, u) du, (7)

and the global density is:

E0[f](t) =
n

∑
i=1

∫
Du

fi(t, u) du. (8)

The evolution equation of the ith functional subsystem now reads:

∂t fi(t, u) = Ji[f](t, u) = Gi[f](t, u)− Li[f](t, u) (9)

where Gi[f] (gain-term operator) and Li[f] (loss-term operator) now write:

Gi[f] =
m

∑
h=1

n

∑
j=1

∫
Du×Du

ηij((u∗)h, (u∗)h)Aij ((u∗)h, (u∗)h, u)

fi(t, (u∗)h) f j(t, (u∗)h) d(u∗)h d(u∗)h,

(10)

Li[f] = fi(t, u)
m

∑
h=1

n

∑
j=1

∫
Du

ηij(u, (u∗)h) f j(t, (u∗)h) d(u∗)h, (11)

where Aij ((u∗)h, (u∗)h, u), for i, j ∈ {1, 2, . . . , n} and h ∈ {1, 2, . . . , m}, now denotes
the probability density function that the particle of the ith functional subsystem with state
(u∗)h = ((u∗)1, (u∗)2, . . . , (u∗)h, . . . , (u∗)m) acquires the state u after interacting with the particle
(u∗)h = ((u∗)1, (u∗)2, . . . , (u∗)h . . . , (u∗)m) of the jth functional subsystem.

The Cauchy Problem

Let Du = Du1 × Du2 × · · · × Dum , the vectorial Cauchy problem related to the kinetic theory
framework (9) reads: 

∂tf(t, u) = J[f](t, u) (t, u) ∈ [0,+∞[×Du

f(0, u) = f0(u) u ∈ Du

(12)

where f0(u) =
(

f 0
1 (u), f 0

2 (u), . . . , f 0
n(u)

)
: Du → (R+)

n denotes the initial data function.
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The Cauchy problem (12) is analyzed under the following assumptions:

H1. The interaction rate ηij is a bounded function of its arguments, namely there exists η > 0 such
that ηij ≤ η;

H2. Let h ∈ {1, 2, . . . , m}, the transition probability function Aij ≥ 0 is such that:∫
Du
Aij ((u∗)h, (u∗)h, u) du = 1 ∀(u∗)h, (u∗)h ∈ Du.

Remark 2. The assumption H2 ensures that the framework (9) is conservative, namely E0[ fi](t), for
i ∈ {1, 2, . . . , n}, is constant. In particular, it is assumed that E0[ fi] = 1.

Let i ∈ {1, 2, . . . , n}. The integral Volterra formulation of (12) is:

fi(t, u) =
∫ t

0

(
m

∑
h=1

n

∑
j=1

∫
Du×Du

ηij((u∗)h, (u∗)h)Aij ((u∗)h, (u∗)h, u)

× fi(τ, (u∗)h) f j(τ, (u∗)h) d(u∗)h d(u∗)h

)
dτ

−
∫ t

0
fi(τ, u)

(
m

∑
h=1

n

∑
j=1

∫
Du

ηij(u, (u∗)h) f j(τ, (u∗)h) d(u∗)h

)
dτ

+ f 0
i (u).

(13)

Definition 1. Let f (t, u) : [0,+∞[×Du → R+. The set E0 (Du) is defined as follows:

E0 (Du) =
{

f (t, u) ∈ C
(
[0,+∞[; L1 (Du)

)
: E0[ f ](t) = 1

}
. (14)

Theorem 1. Assume that H1 and H2 hold true. If f 0
i (u) ∈ E0 (Du), for i ∈ {1, 2, . . . , n}, then there exists a

unique function fi (t, u) ∈ E0 (Du), for i ∈ {1, 2, . . . , n}, which is solution of the Cauchy problem (12).

Proof. Using Equations (10) and (11), (9) becomes:

∂t fi(t, u) + Pi[f] fi(t, u) = Gi[f], (15)

where

Pi[f] =
m

∑
h=1

n

∑
j=1

∫
Du

ηij(u, (u∗)h) f j(t, (u∗)h) d(u∗)h.

Setting

γu(t) =
∫ t

0
Pi[f](s, u) ds,

if there exists a solution of the Cauchy problem (12) then (15) becomes:

fi(t, u) = f 0
i (u) exp (−γu(t)) +

∫ t

0
exp (γu(s)) Gi[f](s, u) ds.

Accordingly fi, for i ∈ {1, 2, . . . , n}, is a non negative function.
Let T > 0 and T [f] = (T1[ f1], T2[ f2], . . . , Tn[ fn]) the following operator:
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Ti [ fi] (t, u) =
∫ t

0

(
m

∑
h=1

n

∑
j=1

∫
Du×Du

ηij((u∗)h, (u∗)h)Aij ((u∗)h, (u∗)h, u)

× fi(τ, (u∗)h) f j(τ, (u∗)h) d(u∗)h d(u∗)h

)
dτ

−
∫ t

0
fi(τ, u)

(
m

∑
h=1

n

∑
j=1

∫
Du

ηij(u, (u∗)h) f j(τ, (u∗)h) d(u∗)h

)
dτ

+ f 0
i (u).

(16)

The main step is to prove that the operator T[f](t, u) is a contraction in the Banach space(
C
(
[0, T]; L1 (Du)

))n.
Let f ∈

(
C
(
[0, T]; L1 (Du)

))n, by assumption H1 one has:

∥∥Ti[ fi]
∥∥

L1(Du)
=
∫

Du

∣∣∣∣∣
∫ t

0

(
m

∑
h=1

n

∑
j=1

∫
Du×Du

ηij((u∗)h, (u∗)h)Aij ((u∗)h, (u∗)h, u)

× fi(τ, (u∗)h) f j(τ, (u∗)h) d(u∗)h d(u∗)h

)
dτ

−
∫ t

0
fi(τ, u)

(
m

∑
h=1

n

∑
j=1

∫
Du

ηij(u, (u∗)h) f j(τ, (u∗)h) d(u∗)h

)
dτ + f 0

i (u)

∣∣∣∣∣ du

≤ η
∫

Du

[ ∫ t

0

(
m

∑
h=1

n

∑
j=1

∫
Du×Du

Aij | fi(τ, (u∗)h)|
∣∣ f j(τ, (u∗)h)

∣∣ d(u∗)h d(u∗)h

)

× dτ

]
du + η

∫
Du

[∫ t

0
| fi(τ, u)|

(
m

∑
h=1

n

∑
j=1

∫
Du

∣∣ f j(τ, (u∗)h)
∣∣ d(u∗)h

)
dτ

]
du

+
∫

Du

∣∣∣ f 0
i (u)

∣∣∣ du.

(17)

By assumptions H1 and H2 and the fact that f 0
i (u) ∈ L1 (Du), ∀i ∈ {1, 2, . . . , n}, and E0[ fi] = 1,

Equation (17) becomes:

‖Ti[ fi]‖L1(Du) ≤ η
∫ t

0

m

∑
h=1

(
n

∑
j=1

∫
Du×Du

| fi(τ, ((u∗)h))|
∣∣∣ f j(τ, (u∗)h)

∣∣∣
×
(∫

Du

Aij ((u∗)h, (u∗)h, u) du
)

d(u∗)h d(u∗)h

)
dτ

+ η
∫ t

0
| fi(τ, u)|

 m

∑
h=1

n

∑
j=1

∫
Du

∣∣∣ f j(τ, (u∗)h)
∣∣∣ d(u∗)h

 dτ du

+
∫

Du

∣∣∣ f 0
i (u)

∣∣∣ du

≤ η
∫ t

0

(∫
Du

| fi(τ, ((u∗)h))| d(u∗)h

)

×

 n

∑
j=1

m

∑
h=1

∫
Du

∣∣∣ f j(τ, (u∗)h)
∣∣∣ d(u∗)h

 dτ

+ ηmn
∫ t

0

(∫
Du

| fi(τ, u)| du
)

dτ +
∥∥∥ f 0

i

∥∥∥
L1(Du)

≤ 2ηmn
∫ T

0
‖ fi(t, u)‖L1(Du)

dt + 1.

(18)
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Then, by using Equation (18), one has:

‖T [f]‖(C([0,T];L1(Du)))
n = max

i∈{1,2,...,n}

(
max

t∈[0,T]
‖Ti[ fi]‖L1(Du)

)
≤ 2ηmnT + 1.

(19)

T is thus an operator of
(
C
(
[0, T]; L1 (Du)

))n into itself.
Let f1, f2 ∈

(
C
(
[0, T]; L1 (Du)

))n such that f 1
i (t, u), f 2

i (t, u) ∈ C
(
[0, T]; L1 (Du)

)
, for i ∈

{1, 2, . . . , n}. Bearing the expression (16) of the operator T in mind and the fact that E0[ fi] = 1,
by straightforward calculations one has:

∥∥Ti[ f 1
i ]− Ti[ f 2

i ]
∥∥

L1(Du)
=
∫

Du

∣∣∣∣∣
∫ t

0

(
m

∑
h=1

n

∑
j=1

∫
Du×Du

ηij((u∗)h, (u∗)h)

Aij ((u∗)h, (u∗)h, u) f 1
i (τ, (u∗)h) f 1

j (τ, (u∗)h) d(u∗)h d(u∗)h

)
dτ

−
∫ t

0
f 1
i (τ, u)

(
m

∑
h=1

n

∑
j=1

∫
Du

ηij(u, (u∗)h) f 1
j (τ, (u∗)h) d(u∗)h

)
dτ + f 0

i (u)

−
∫ t

0

(
m

∑
h=1

n

∑
j=1

∫
Du×Du

ηij((u∗)h, (u∗)h)Aij ((u∗)h, (u∗)h, u)

× f 2
i (τ, (u∗)h) f 2

j (τ, (u∗)h) d(u∗)h d(u∗)h

)
dτ +

∫ t

0
f 2
i (τ, u)

×
(

m

∑
h=1

n

∑
j=1

∫
Du

ηij(u, (u∗)h) f 2
j (τ, (u∗)h) d(u∗)h

)
dτ − f 0

i (u)

∣∣∣∣∣ du

≤ η
∫

Du

∣∣∣∣∣
∫ t

0

m

∑
h=1

n

∑
j=1

( ∫
Du×Du

Aij ((u∗)h, (u∗)h, u)

×
(

f 1
i (τ, (u∗)h) f 1

j (τ, (u∗)h)− f 2
i (τ, (u∗)h) f 2

j (τ, (u∗)h)
)

d(u∗)h d(u∗)h

)
dτ

∣∣∣∣∣ du

+ η
∫

Du

∣∣∣∣∣
∫ t

0
f 1
i (τ, u)

m

∑
h=1

n

∑
j=1

∫
Du

f 1
j (τ, (u∗)h) d(u∗)h

− f 2
i (τ, u)

m

∑
h=1

n

∑
j=1

∫
Du

f 2
j (τ, (u∗)h) d(u∗)h dτ

∣∣∣∣∣du.

(20)

By using the triangular inequality, (20) is:
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∥∥Ti[ f 1
i ]− Ti[ f 2

i ]
∥∥

L1(Du)

≤ η
∫

Du

∣∣∣∣∣
∫ t

0

m

∑
h=1

n

∑
j=1

( ∫
Du×Du

Aij ((u∗)h, (u∗)h, u)
(

f 1
i (τ, (u∗)h)

× f 1
j (τ, (u∗)h)− f 1

i (τ, (u∗)h) f 2
j (τ, (u∗)h) + f 1

i (τ, (u∗)h) f 2
j (τ, (u∗)h)

− f 2
i (τ, (u∗)h) f 2

j (τ, (u∗)h)
)

d(u∗)h d(u∗)h

)
dτ

∣∣∣∣∣ du

+ ηmn
∫ T

0

∫
Du

∣∣∣ f 1
i (t, u)− f 2

i (t, u)
∣∣∣ du dt

≤ η
∫

Du

∣∣∣∣∣
∫ t

0

m

∑
h=1

n

∑
j=1

( ∫
Du×Du

Aij ((u∗)h, (u∗)h, u) f 1
i (τ, (u∗)h)

×
(

f 1
j (τ, (u∗)h)− f 2

j (τ, (u∗)h)
)

d(u∗)h d(u∗)h

)
dτ

∣∣∣∣∣ du

+ η
∫

Du

∣∣∣∣∣
∫ t

0

m

∑
h=1

n

∑
j=1

( ∫
Du×Du

Aij ((u∗)h, (u∗)h, u) f 2
j (τ, (u∗)h)

×
(

f 1
i (τ, (u∗)h)− f 2

i (τ, (u∗)h)
)

d(u∗)h d(u∗)h

)
dτ

∣∣∣∣∣ du

+ ηmn
∫ T

0

∫
Du

∣∣∣ f 1
i (t, u)− f 2

i (t, u)
∣∣∣ du dt.

(21)

By assumption H2 and the fact that E0[ fi] = 1, for i ∈ {1, 2, . . . , n}, for the first term of (21)
one has:

∫
Du

∣∣∣∣∣
∫ t

0

m

∑
h=1

n

∑
j=1

( ∫
Du×Du

Aij ((u∗)h, (u∗)h, u) f 1
i (τ, (u∗)h)

×
(

f 1
j (τ, (u∗)h)− f 2

j (τ, (u∗)h)
)

d(u∗)h d(u∗)h

)
dτ

∣∣∣∣∣ du

=
∫

Du

∣∣∣∣∣
∫ t

0

( ∫
Du×Du

Aij ((u∗)h, (u∗)h, u) f 1
i (τ, (u∗)h)

×
m

∑
h=1

n

∑
j=1

(
f 1
j (τ, (u∗)h)− f 2

j (τ, (u∗)h)
)

d(u∗)h d(u∗)h

)
dτ

∣∣∣∣∣ du

≤
∫ t

0

∣∣∣∣∣
(∫

Du
f 1
i (τ, (u∗)h) d(u∗)h

)

×
[

m

∑
h=1

n

∑
j=1

(∫
Du

f 1
j (τ, (u∗)h) d(u∗)h

)

−
m

∑
h=1

n

∑
j=1

(∫
Du

f 2
j (τ, (u∗)h) d(u∗)h

)]∣∣∣∣∣ dτ

≤ 0.

(22)

Then by (22), the relation (21) becomes:
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∥∥Ti[ f 1
i ]− Ti[ f 2

i ]
∥∥

L1(Du)

≤ η
∫

Du

∣∣∣∣∣
∫ t

0

m

∑
h=1

n

∑
j=1

( ∫
Du×Du

Aij ((u∗)h, (u∗)h, u) f 2
j (τ, (u∗)h)

×
(

f 1
i (τ, (u∗)h)− f 2

i (τ, (u∗)h)
)

d(u∗)h d(u∗)h

)
dτ

∣∣∣∣∣ du

+ ηmn
∫ T

0

∫
Du

∣∣∣ f 1
i (t, u)− f 2

i (t, u)
∣∣∣ du dt

≤ η
∫ t

0

((
m

∑
h=1

n

∑
j=1

∫
Du

f 2
j (τ, (u∗)h) d(u∗)h

)

×
(∫

Du

∣∣∣ f 1
i (τ, (u∗)h)− f 2

i (τ, (u∗)h)
∣∣∣ ) d(u∗)h

)
dτ

+ ηmn
∫ T

0

∫
Du

∣∣∣ f 1
i (t, u)− f 2

i (t, u)
∣∣∣ du dt

≤ 2ηmn
∫ T

0

∫
Du

∣∣∣ f 1
i (t, u)− f 2

i (t, u)
∣∣∣ du dt.

(23)

Bearing all of the above in mind, one has:∥∥T[f1]− T[f2]
∥∥
(C([0,T];L1(Du)))

n

= max
i∈{1,2,...,n}

(
max

t∈[0,T]

∫
Du

∣∣∣Ti[ f 1
i ]− Ti[ f 2

i ]
∣∣∣ du

)
≤ max

i∈{1,2,...,n}

(
max

t∈[0,T]
2ηnm

∫ T

0

∫
Du

∣∣∣ f 1
i (t, u)− f 2

i (t, u)
∣∣∣ du dt

)
≤ 2ηmnT

∥∥∥f1 − f2
∥∥∥
(C([0,T];L1(Du)))

n .

(24)

Thus, the operator T is a contraction for T <
1

2ηmn
. The local existence and uniqueness of a non

negative solution of problem (12) is proved by a Banach fixed-point theorem, see ([19] Chapter 1).
The local solution of the Cauchy problem (12) can be extended, by prolongation, for all T ∈

[0,+∞[, see ([20] Chapter 2).

4. A Vector Activity Thermostatted Kinetic Framework

This section is devoted to the derivation of a thermostatted kinetic theory framework in the
case of a vector activity variable u = (u1, u2, . . . , um) ∈ Du = Du1 × Du2 × · · · × Dum . The system
is composed by n functional subsystems and subjected to an external force field F (u) : Du → (R+)

n ,
such that Fi(u) is the ith component of the external force field acting on the ith function subsystem.
In what follows F is assumed constant, i.e., Fi(u) = F, for all i ∈ {1, 2, . . . , n}. The thermostatted kinetic
framework reads:

∂t fi(t, u) +
m

∑
j=1

∂uj

(
F fi(t, u)− αuj fi(t, u)

)
= Ji[f](t, u), (25)

where α, called the thermostat term, is obtained by conservation of the following moment (global
activation energy):

E2[f](t) :=
n

∑
i=1

m

∑
h=1

∫
Du

u2
h fi(t, u) du. (26)
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The conservation of (26) implies that:

dE2[f]
dt

(t) = 0, (27)

and then:

n

∑
i=1

m

∑
h=1

∫
Du

u2
h

∂ fi
∂t

(t, u) du = 0. (28)

The following assumption is added.

H3. Let h ∈ {1, 2, . . . , m}, it is assumed that:∫
Du

u2
hAij ((u∗)h, (u∗)h, u) du = (u∗)2

h, ∀(u∗)h(u∗)h ∈ Du.

Multiplying Equation (25) for u2
h, integrating on Du and summing on i ∈ {1, 2, . . . , n} and

h ∈ {1, 2, . . . , m}, using (28) and the following consequence of the assumption H3:∫
Du

u2
h Ji[f](t, u) du = 0, ∀h ∈ {1, 2, . . . , m}, i ∈ {1, 2, . . . , n},

one has (integrating by parts):

m

∑
h=1

n

∑
i=1

∫
Du

(
Fuh fi(t, u)− αu2

h fi(t, u)
)

du = 0.

Without loss of generality E2[f](t) = 1 is assumed. Defining E1[f](t) := E1,1,...,1[f](t),
straightforward calculations show:

α =
m

∑
h=1

n

∑
i=1

∫
Du

uhF fi(t, u) du

= F

(
m

∑
j=1

n

∑
i=1

∫
Du

uh fi(t, u) du

)
= FE1[f](t),

where

E1[f](t) =
m

∑
j=1

n

∑
i=1

∫
Du

uh fi(t, u) du.

Bearing all of the above in mind, the thermostatted kinetic framework for the functional subsystem
fi(t, u), for i ∈ {1, 2, . . . , n}, reads:

∂t fi(t, u) +
m

∑
j=1

∂uj

(
F
(
1− ujE1[f](t)

)
fi(t, u)

)
= Ji[f](t, u). (29)

The Cauchy Problem

The vectorial Cauchy problem for the vector activity thermostatted framework (29) reads:
∂tf(t, u) + F · ∇u ((1− uE1[f](t)) f(t, u)) = J[f](t, u) (t, u) ∈ [0,+∞[×Du

f(0, u) = f0(u) u ∈ Du

(30)
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where f0(u) is the initial data function.

Definition 2. Let f(t, u) = ( f1(t, u), f2(t, u), . . . , fn(t, u)) ∈ Rn, then one defines the following set:

K(Du) =
{

f(t, u) : [0,+∞[×Du →
(
R+
)n : E0[f](t) = E2[f](t) = 1

}
. (31)

The existence and uniqueness theorem for the Cauchy problem (30) is obtained by a generalization
of the method employed in [6].

Theorem 2. Assume that H1, H2 and H3 hold true. If F is constant and f0 ∈
(

L1(Du)
)n ∩K (Du), then there

exists a unique function f ∈
(
C
(
[0,+∞[; L1 (Du)

))n ∩K (Du) which is solution of the Cauchy problem (30).

Proof. Let f be a solution of the Cauchy problem (30) and

E+
1 =

−η +
√

η2 + 4mF2

2F
,

E−1 =
−η −

√
η2 + 4mF2

2F
,

E0
1 = E1[f](0) = E1[f0] =

m

∑
j=1

n

∑
i=1

∫
Du

uj f 0
i (u) du.

Using the same arguments of Theorem 2.3 of [6], one has:

E1[f](t) =
E+

1
(
E−1 −E0

1
)
−E−1

(
E+

1 −E0
1
)

e−
√

η2+4mF2

F t

(
E−1 −E0

1
)
−
(
E+

1 −E0
1
)

e−
√

η2+4mF2

F t

. (32)

The right hand side of (32) is denoted by Ē1[f](t).
The Cauchy problem (30) can be written as follows:

∂t fi(t, u) +
m

∑
j=1

F∂uj

((
1− ujĒ1[f](t)

)
fi(t, u)

)
= Ji[f](t, u),

and by straightforward calculations, one has:

∂t fi(t, u) +
m

∑
j=1

F
(
1− ujĒ1[f](t)

)
∂uj fi(t, u) +

(
η −mFĒ1[f](t)

)
fi(t, u)

= Gi[f](t, u).

(33)

Let Uj(t, uj), ∀j ∈ {1, 2, . . . , m}, the following characteristic curve:

Uj(t, uj) = ϕ(uj) = uje−λ(t) + Fe−λ(t)
∫ t

0
eλ(s) ds, (34)

where

λ(t) = F
∫ t

0
Ē1[f](s) ds.

The family U =
(
Uj
)

j is the collection of characteristic curves along which Equation (33) is
integrated and it becomes:
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d
dt

fiU +
(
η −mFĒ1[f](t)

)
fiU = GiU [f], (35)

where

fiU(t, u) = fi (t, U(t, u)) ,

and

GiU = G[f] (t, U(t, u)) .

The function e−λ(t) is the Jacobian of the transformation (34); then uj can be seen as function of Uj
as follows:

uj = ϕ−1
t
(
Uj
)
= Ujeλ(t) −mF

∫ t

0
eλ(s) ds, j ∈ {1, 2, . . . , m}.

Let Λ(t) be the following function:

Λ(t) =
∫ t

0

(
η −mFĒ1[f](t)

)
ds = m (ηt−mλ(t)) .

Equation (35) can be written as follows:

fiU(t, u) = e−Λ(t) fiU(0, u) + e−Λ(t)
∫ t

0
eΛ(τ)GiU [f](τ, u) dτ.

Let

Φ f i
0
[f] = e−Λ(t) f0i

(
ϕ−1

t (u)
)
+ e−Λ(t)

∫ t

0
eΛ(t)Gi[f]

(
τ, ϕτ ◦ ϕ−1

τ (u)
)

,

where
ϕt(u) =

(
ϕt(uj)

)
j , ϕ−1

t (u) =
(

ϕ−1
t (uj)

)
j
,

and

ϕt ◦ ϕ−1
t (u) =

(
ϕt ◦ ϕ−1

t (uj)
)

.

Equation (35) becomes:

fi(t, u) = Φ f 0
i
[f](t, u), ∀i ∈ {1, 2, . . . , n}. (36)

Bearing all above in mind, using the same arguments of Theorem 2.3 of [6], since E0[f0] = 1, the
following successive approximations sequence f (1)i (t, u) = 0

f (n)i (t, u) = Φ f 0
i
[ f (n−1)

i ](t, u) n > 1

converges to a non negative function fi(t, ·) in L1 (Du) for i ∈ {1, 2, . . . , n}, and the limit function
f(t, ·) = ( fi(t, ·))i is such that E0[f](t) = 1.

Consider now, for all i ∈ {1, 2, . . . , n}, the following successive approximations sequence:g(1)i (t, u) = f0i (u)

g(n)i = Φ f 0
i
[g(n−1)

i ](t, u), n > 1
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such that E0[g(n)] = E2[g(n)] = 1.
Then gn ∈ (K (Du))

n for all n ≥ 1 and E1[g(n)] = Ē1[f](t).
The last sequence converges to the previous function f which is solution of problem (30) in(

L1 (Du)
)n.

Let f̂ be another solution of problem (30). Since Gi and Φ f 0
i

are positive operators, one has:

f (n)i (t, u) ≤ f̂i(t, u), ∀i ∈ {1, 2, . . . , n}, ∀n > 1,

then by convergence

fi(t, u) ≤ f̂i(t, u), ∀i ∈ {1, 2, . . . , n}.

The f and f̂ as solutions of problem (30) are such that

E0[f](t) = E0[f̂](t) = 1,

it means that

fi(t, u) = f̂i(t, u), ∀i ∈ {1, 2, . . . , n},

and then f(t, u) = f̂(t, u).

5. The Vectorial Discrete Thermostatted Kinetic Framework

This section is devoted to the definition and analysis of a vectorial discrete thermostatted kinetic
framework. Specifically, let C be a homogeneous complex system with respect to the mechanical
variables. The system is assumed to be composed of particles whose microscopic state consists of
a vectorial activity variable which can attain a discrete vector value u ∈ I = {u1, u2, . . . , un}, where
ui =

(
u1

i , u2
i , . . . , um

i
)
∈ Ii ⊆ Rm, for i ∈ {1, 2, . . . , n}.

The overall distribution function of the system is denoted by f(t) =
[

fij(t)
]

i,j, where fij(t) :=

f (t, uj
i), for i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}.
The discrete pth-order moment is:

Ep [f] (t) =
n

∑
i=1

m

∑
j=1

(
uj

i

)p
fij(t), p ∈ N. (37)

The evolution equation of the (i, j)th functional subsystem, for i ∈ {1, 2, . . . , n} and
j ∈ {1, 2, . . . , m}, reads:

d fij

dt
(t) = Jij[f](t) = Gij[f](t)− Lij[f](t), (38)

where

Gij[f](t) =
n

∑
i1=1

n

∑
i2=1

m

∑
j1=1

m

∑
j2=1

ηi1 j1,i2 j2B
ij
i1 j1,i2 j2

fi1 j1(t) fi2 j2(t), (39)

denotes the gain-term particles and

Lij[f](t) = fij(t)
n

∑
i2=1

m

∑
j2=1

ηij,i2 j2 fi2 j2(t), (40)

denotes the loss-term particles.
The function Bij

i1 j1,i2 j2
denotes, for j, j1, j2 ∈ {1, 2, . . . , m} and i, i1, i2 ∈ {1, 2, . . . , n}, the transition

probability density that the particle with state uj1
i1

acquires the state uj
i after interacting with the

particle uj2
i2

.
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The vectorial discrete thermostatted kinetic framework is:

df
dt
(t) = J[f](t) = G[f](t)− L[f](t). (41)

The complex system C evolves under the action of the external force field F(t) =[
Fij(t)

]
i∈{1,2,...,n},j∈{1,2,...,m}, and a dissipative term (discrete thermostat term) is introduced in order

to keep the pth-order moment constant. Accordingly, the evolution equation of the distribution function fij
now reads:

d fij

dt
(t) = Jij[f](t) + Fij(t)− α fij(t). (42)

The thermostat term α is obtained by imposing the conservation of the following pth-order moment:

Ep[f](t) = E0
p 6= 0, ∀t > 0.

Accordingly
d
dt

Ep[f](t) = 0,

which means that
n

∑
i=1

n

∑
j=1

(
uj

i

)p d fij

dt
(t) = 0. (43)

Equations (42) and (43) and straightforward calculations and show that:

α = α
(
J[f],Ep[f], f

)
=

n

∑
i=1

m

∑
j=1

((
(uj

i)
p Jij[f]

)
+
(
(uj

i)
pFij

))
n

∑
i=1

m

∑
j=1

(
uj

i

)p

=

n

∑
i=1

m

∑
j=1

(
(uj

i)
p (Jij[f] + Fij

))
Ep[f]

=

(
〈Up, J[f] + F〉F

Ep[f]

)
,

(44)

where Up :=
[
(uj

i)
p
]

i∈{1,2,...,n},j∈{1,2,...,m}
and 〈Up, J[f] + F〉F denotes the Frobenius inner product.

Given two matrices A, B ∈ Rm,n, the Frobenius inner product of A and B is defined as follows:

〈A, B〉F =
n

∑
i=1

m

∑
j=1

AijBij.

between Up and J[f] + F. Accordingly, for i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}, the vectorial discrete
thermostatted kinetic theory framework (42) is written as follows:

d fij

dt
(t) = Jij[f](t) + Fij(t)−

〈Up, J[f] + F〉F
Ep[f]

fij(t). (45)

Equation (45) consists of a system of n×m nonlinear ODEs with quadratic nonlinearities.
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The Cauchy Problem

The vectorial Cauchy problem for the vector activity discrete thermostatted framework (45) reads:
df
dt
(t) = J[f](t) + TF[f](t) t ∈ [0,+∞[

f(0) = f0
(46)

where f0 =
[

f 0
ij

]
i∈{1,2,...,n},j∈{1,2,...,m}

is the initial data and TF[f] the following operator:

TF[f] = F−
(
〈Up, J[f] + F〉F

Ep[f]

)
f. (47)

Definition 3. Let f(t) =
[

fij(t)
]
∈ Rn,m, then

Rp
f ≡ R

p
f

(
R+;E0

p

)
=
{

f(t) =
[

fij(t)
]
∈
(
C
(
[0,+∞[;R+

))n×m : Ep[f](t) = E0
p

}
. (48)

The mathematical analysis of the Cauchy problem (46) is performed under the following
assumptions (see [21] and references therein):

H′1. There exists a constant k > 0 such that ηij,i1 j1 ≤ k, for all i, i1 ∈ {1, 2, . . . , n} and j, j1 ∈
{1, 2, . . . , m};

H′2. Let i1, i2 ∈ {1, 2, . . . , n} and j1, j2 ∈ {1, 2, . . . , m}, then:

n

∑
i=1

m

∑
j=1
Bij

i1 j1,i2 j2
= 1, ∀i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , m}; (49)

H′3. uj
i ≥ 1, for i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m};

H′4. There exists F > 0 such that Fij(t) ≤ F, for i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}.

Let A ∈ Rn,n, in what follows the quantity ‖A‖1 denotes the following norm:

‖A‖1 :=
n

∑
i=1

m

∑
j=1

∣∣Aij
∣∣ . (50)

Theorem 3. Assume that H′1, H′2, H′3 and H′4 hold true. If f0 ∈ Rp
f , then there exists a unique non negative

function f ∈ Rp
f which is solution of the Cauchy problem (46).

Proof. By using the same arguments of theorem 4.1 of [21], there exists a constant c1 > 0, depending on
the parameters of the system (46) such that:

‖J[f]− J[g]‖1 ≤ c1E0
p ‖f− g‖1 , ∀f, g ∈ Rp

f , (51)

and there exists another constant c2, also depending on the parameters of the system (46), such that:

‖T[f]− T[g]‖1 ≤
(

F
‖Up‖1

E0
p

+ c2E0
p + c1E0

p‖Up‖1

)
‖f− g‖1 , (52)

for all f, g ∈ Rp
f . By (51) and (52), it is possible to conclude that the operators J[f] and T[f] are locally

Lipschitz in f, uniformly with respect to t. The existence and uniqueness of a function f(t) =
[

fij(t)
]
∈

Rn,m local solution of the Cauchy problem (46) is thus ensured. The local solution of the Cauchy
problem (46) can be extended for all t ∈ [0,+∞[, see ([20] Chapter 2).
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It remains to prove that f ∈ Rp
f . Rewriting Equation (46) in integral form, for 0 < t ≤ T, one has:

f(t) = f0 +
∫ t

0

df
ds

(s) ds

= f0 +
∫ t

0

(
J[f] + F(s)−

(
〈Up, J[f] + F〉F

Ep[f]

)
f(s)

)
ds,

(53)

and

fij(t) = f 0
ij +

∫ t

0

d fij

ds
(s) ds

= f 0
ij +

∫ t

0

(
Jij[f] + Fij(s)−

(
〈Up, J[f] + F〉F

Ep[f]

)
fij(s)

)
ds.

(54)

By multiplying both sides of (54) by (uj
i)

p and taking the sum on i ∈ {1, 2, . . . , n} and j ∈
{1, 2, . . . , m}, one has:

n

∑
i=1

m

∑
j=1

(uj
i)

p fij(t) =
n

∑
i=1

m

∑
j=1

(uj
i)

p f 0
ij +

∫ t

0

n

∑
i=1

m

∑
j=1

(uj
i)

p Jij[f](s) ds

+
∫ t

0

n

∑
i=1

m

∑
j=1

(uj
i)

pFij ds−
∫ t

0

n

∑
i=1

m

∑
j=1

(
〈Up, J[f] + F〉F

Ep[f]

)
(uj

i)
p fij(s) ds.

(55)

Now, straightforward calculations yield:

n

∑
i=1

m

∑
j=1

(uj
i)

p fij = E0
p +

∫ t

0

n

∑
i=1

m

∑
j=1

(
(uj

i)
p (Jij[f](s) + Fij(s)

))
ds

−
∫ t

0

n

∑
i=1

m

∑
j=1

(
(uj

i)
p
(
〈Up, J[f] + F〉F

Ep[f]

))
fij(s) ds

= E0
p +

∫ t

0

n

∑
i=1

m

∑
j=1

(
(uj

i)
p (Jij[f](s) + Fij(s)

))
ds

−
∫ t

0

(
n

∑
i=1

m

∑
j=1

(
(uj

i)
p fij(s)

)( 〈Up, J[f] + F〉F
Ep[f]

))
ds

= E0
p +

∫ t

0

(
n

∑
i=1

m

∑
j=1

(
(uj

i)
p (Jij[f](s) + Fij(s)

))
− 〈Up, J[f] + F〉F

)
ds.

(56)

Since the integrand function of Equation (56) vanishes for all s and the pth-order moment is
conserved, the following relation holds true:

n

∑
i=1

m

∑
j=1

(uj
i)

p fij(t) = Ep[f](t) = E0
p.

Then f(t) ∈ Rp
f . Using the same arguments of theorem 4.1 of [21] it is possible to conclude the

non-negativity of the solution. Indeed, let

Qij[f, F](t) = Gij[f](t) + Fij(t), Pij[f, α] =
n

∑
i2=1

m

∑
j2=1

ηij,i2 j2 fi2 j2(t) + α,

then the Cauchy problem Equation (46)1 becomes:
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d fij

dt
(t) + fij(t)Pij[f, α](t) = Qij[f, F](t). (57)

Finally, setting

γij(t) =
∫ t

0
Pij[f, α](s) ds,

the solution of Equation (57), for i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}, is:

fij(t) = f 0
ij exp

(
−γij(t)

)
+
∫ t

0
exp

(
γij(s)− γij(t)

)
Qij[f, F](s) ds,

which shows the non negativity of the solution of the Cauchy problem (46).

6. Conclusions and Research Perspectives

The present paper has been devoted to enhance the capability of the thermostatted kinetic
framework to model real world complex systems by introducing a vector-valued activity variable
structure. As shown in the paper, the introduction of such a vector-valued variable does not affect
the validity of well-known existence and uniqueness theorems of the Cauchy problem, both in
the continuous and in the discrete framework. In particular, the main results have been obtained
by assumptions on the transition probability density, the interaction rate and the external force
field. The proposed mathematical frameworks can be thus considered as a general paradigm for the
derivation of specific models for complex living systems.

As already mentioned, the main interest for introducing a vectorial structure in the thermostatted
kinetic theory framework refers to the applications. Specifically, the applications deal with the modeling
of complex living systems where each particle (cell, pedestrian, animal) expresses different functions,
e.g., in criminality [22,23], social dynamics [24,25], crowd modeling [26,27], virus spread [28,29] and
animal behaviors [30].

From the research perspectives point of view, different theoretical and applied issues could be
investigated. Firstly, the evolution of the vectorial activity variable has been chosen additive, namely for
each variable a transition probability density is defined and the overall contribution to each functional
subsystem is considered as the sum of every transition density function. A research perspective
can be addressed to a multiplicative evolution, thus increasing the nonlinearity in the framework.
Another research perspective refers to the introduction of a time-fractional derivative, in this case
some singularity can appear as in [31], and time delays [32]. In particular, an open problem is the
mathematical proof of the existence of the nonequilibrium stationary state [33] and the convergence of
stationary solutions to the nonequilibrium state.

It is worth stating that the proposed vectorial thermostatted kinetic theory frameworks are based
on the assumption that the system is homogeneous with respect to the space and velocity variables.
Even if this assumption is robust with respect to the envisaged applications, from the theoretical
viewpoint the introduction of the space and velocity dynamics needs to be carefully introduced.
The vectorial thermostatted frameworks proposed in this paper can be further generalized in order
to include the role of nonconservative and mutative interactions. From the mathematical viewpoint,
the distribution function may blow up or decay to zero in finite time, thus losing the global existence of
the solution. The vectorial frameworks proposed in this paper can also be generalized to open complex
living systems, namely systems where the external actions are introduced at the same scale of the
particles. Another research perspective is to investigate the type of interactions and/or external action
which lead a to desired macroscopic behavior; the formulation of a problem in the inverse theory
framework can be thus envisaged [34].
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Finally, an important research direction is the possibility to derive the macroscopic equations by
means of hydrodynamic limits, see [35] and the references cited therein.
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