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Abstract: Vibrations of single-layered graphene sheets subjected to a longitudinal magnetic field are
considered. The Winkler-type and Pasternak-type foundation models are employed to reproduce the
surrounding elastic medium. The governing equation is based on the modified couple stress theory
and Kirchhoff–Love hypotheses. The effect of the magnetic field is taken into account due to the
Lorentz force deriving from Maxwell’s equations. The developed approach is based on applying
the Ritz method. The proposed method is tested by a comparison with results from the existing
literature. The numerical calculations are performed for different boundary conditions, including the
mixed ones. The influence of the material length scale parameter, the elastic foundation parameters,
the magnetic parameter and the boundary conditions on vibration frequencies is studied. It is
observed that an increase of the magnetic parameter, as well as the elastic foundation parameters,
brings results closer to the classical plate theory results. Furthermore, the current study can be applied
to the design of microplates and nanoplates and their optimal usage.

Keywords: Ritz method; modified couple stress theory; magnetic field; elastic foundation

1. Introduction

The application of micro and nanoscale structures in the high tech industry as elements of
nano-electromechanical systems (NEMS), micro-electromechanical systems (MEMS), resonators,
sensors, energy storage systems, DNA detectors, drug delivery [1–5] has been attracted the interest of
scientists. The above-mentioned applications of micro/nanoplates are associated with their excellent
mechanical, electrical, magnetic and chemical properties. It results from the study of the vibrational
characteristics of micro/nanoplates that the ways of their optimization play an important role.
The experimental and theoretical investigations lead to a conclusion that when the thickness of
the element is in a micro or nanoscale, a size dependence effect of a material appears and significantly
affects the mechanical behavior of such objects [6–8] and the classical theory for a small-scale structure
analysis can not be used. Thus, in the study of the micro and nano-elements, higher-order continuum
theories have been applied, for example, the theory of micropolar elasticity by Cosserat and Cosserat [9],
the couple stress theory by Mindlin and Tiersten [10], Toupin [11], Koiter [12], the nonlocal elasticity
theory by Eringen [13], strain gradient theory by Lam et al. [6] and the modified couple stress theory
proposed by Yang et al. [14].

Recently, the modified couple stress theory was employed to various small-scale plate and beam
problems. For instance, Tsiatas in [15] proposed a new Kirchhoff plate model for the static analysis
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of isotropic microplates. Yin et al. [16], Simsek et al. [17], Jomehzadeh et al. [18] employed the
modified couple stress theory to vibrations analysis of rectangular and circular microplates with
various boundary conditions. Moreover, Tsiatas and Yiotis [19] applied the modified couple stress
theory to an orthotropic plate analysis. Ziaee [20] explored the linear vibrations of a rectangular plate
with an internal square hole in a thermal environment using the Ritz method. Investigation of bending,
buckling and vibrations of an orthotropic skew plate was performed by Tsiatas and Yiotis [21].

Furthermore, the investigation regarding the embedded plate behavior includes the work of
Akgöz and Civalek [22] (where the free vibrations of a single-layered graphene sheet resting on
an elastic matrix as the Pasternak foundation are investigated), the work of Bastami [23] (where
the nonlocal elasticity theory is used and the proposed approach is based on the Ritz method).
Mohammadi [24,25] investigated thermo-mechanical vibrations and vibrations under the biaxial
in-plane preload of orthotropic graphene sheet embedded in an elastic medium based on the nonlocal
elasticity theory. Behfar and Naghdabadi in [26] studied vibrations of multi-layered nanoplates
embedded into the elastic medium with the constant Van der Waals force acting between nanoplates.

The action of the magnetic field has a significant influence on the exposed micro and nanostructure.
This fact was shown experimentally for carbon nanotubes by Choi et al. [27], Lee et al. [28] and
graphenes by Faugeras et al. [29], Wang et al. [30]. The numerical investigation regarding the effect of
the magnetic force on vibration characteristics of the micro/nanoplate is performed in a large number
of studies. Transverse vibrations of embedded single-layered graphene sheets affected by an in-plane
magnetic field were studied by Murmu et al. [31], Kiani [32], using the nonlocal elasticity theory.
Ghorbanpour Arani et al. [33] investigated the 2D-magnetic field and biaxial in-plane preload effects
on the vibration of double-bonded orthotropic graphene sheets, whereas orthotropic double-nanoplate
system subjected to an in-plane magnetic field was analyzed by Atanasov et al. [34].

Analysis of published results has shown that the vibrations of an embedded graphene sheet
subjected to a magnetic influence were studied within the nonlocal elasticity theory. However,
the literature review indicates the novel results of the investigation associated with the modified
couple stress theory. The study requires an account of a two-parameter elastic foundation, which is
a combination with the acting Lorentz force can have an effect on the studied characteristics. In this
paper we will apply the Ritz method for small-scale linear vibrations of plates. It should be noted that
the application of the Ritz method allows us to study micro and nano rectangular plates in a magnetic
field satisfying various boundary conditions, including the mixed ones (for example, two sides are
simply supported and two sides are clamped), while reviewed works [31–34] are restricted to the study
of the plates with the simply supported boundary conditions. It is important to note that in our work
we presented the variational formulation of the considered problem.

The mathematical formulation of the problem is based on the modified couple stress theory and
the Kirchhoff–Love hypotheses. In order to simulate the surrounding elastic medium, the Winkler-type
and the Pasternak-type foundation models are used.

The paper is organized in the following way. In the first section, a short review of the existing
results is outlined. The mathematical statement of the problem is given in the second section, whereas
the next section is aimed at describing an action of the Lorentz force. The application of the Ritz
method is reported in the fourth section and linear frequencies of small-scale plates obtained by the
Navier method are presented in the fifth section. Results of a verification and numerical analysis are
provided in the sixth section. The last section is aimed at the description of conclusions.

2. Formulation of the Problem

The present study is based on the modified couple stress theory which contains only one additional
material length scale parameter and a symmetric couple stress tensor. According to this theory,
the strain energy of an orthotropic plate has the following form

U =
1
2

∫
V

(
σijεij + mijχij

)
dV, i, j = x, y, z, (1)



Symmetry 2020, 12, 515 3 of 13

where σij, εij, mij, χij are components of stress tensor, strain tensor, diviatory part of the couple stress
tensor and symmetric curvature tensor, respectively. Moreover, in (1) components of strain tensor are
defined as

εij =
1
2
(
ui,j + uj,i

)
, (2)

where vector U = (ux, uy, uz) stands for the vector of displacements. The components of curvature
tensor are

χij =
1
2
(
θi,j + θj,i

)
, (3)

with
θi =

1
2

eijkuk,j, (4)

and eijk stands for a permutation symbol. Based on the Kirchhoff–Love theory, displacements of the
plate in x, y and z directions have the following form

ux (x, y, z, t) = −z
∂w (x, y, t)

∂x
, uy (x, y, z, t) = −z

∂w (x, y, t)
∂y

,

uz (x, y, z, t) = w (x, y, t) ,
(5)

where w(x, y, t) is displacement of points of the middle plane in z direction and t denotes time.
The strain-displacement relations are expressed as

εxx = −z
∂2w
∂x2 , εyy = −z

∂2w
∂y2 , εxy = −2z

∂2w
∂x∂y

. (6)

The components of the rotation vector (4) taking into account (5) are as follows

θx =
∂w
∂y

, θy = −∂w
∂x

, θz = 0, (7)

and components of the curvature tensor (3) take the form

χxx =
∂2w
∂x∂y

, χyy = − ∂2w
∂x∂y

, χxy =
1
2

(
∂2w
∂y2 −

∂2w
∂x2

)
, χxz = χyz = χzz = 0. (8)

The constitutive relations for an orthotropic plate have the following form

σxx =
E1

1− ν1ν2

(
εxx + ν2εyy

)
, σyy =

E2

1− ν1ν2

(
εyy + ν1εxx

)
, σxy = Gεxy,

mij = 2Gl2χij.
(9)

In the last expressions E1, E2 are Young’s modules, ν1, ν2 are Poisson’s ratios with ν1E2 = ν2E1,
G is shear modulus, l stands for the material length scale parameter. Thus, the strain energy of an
orthotropic microplate can be expressed with respect to displacements in the following way

U =
1
2

∫ ∫
Ω
((D11 + DL)

(
∂2w
∂x2

)2

+ (D22 + DL)

(
∂2w
∂y2

)2

+ 2(D12 − DL)
∂2w
∂x2

∂2w
∂y2 +

+4(D66 + DL)

(
∂2w
∂x∂y

)2

)dxdy,

(10)

where

D11 =
E1h3

12(1− ν1ν2)
, D22 =

E2h3

12(1− ν1ν2)
, D12 = ν1D22, D66 =

Gh3

12
, DL = l2Gh. (11)
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In (11) h denotes the thickness of the plate. Using Hamilton’s principle, the governing equation
describing vibration process of micro-scale plates resting on the two parameters foundation and
subjected to transverse external load, can be obtained in the following form:

(D11 + DL)
∂4w
∂x4 + (D22 + DL)

∂4w
∂y4 + 2(D12 + 2D66 + DL)

∂4w
∂x2y2 +

+kWw− kGx

∂2w
∂x2 − kGy

∂2w
∂y2 = ql − ρh

∂2w
∂t2 ,

(12)

where kW and kGx , kGy are the Winkler and shear modules of the elastic surrounding medium,
respectively, ql is the external load, ρ is the density of the plate.

Equation (12) is supplemented with the boundary conditions. The part of the boundary is
supposed to be simply supported:

w = 0, Mn = 0, (13)

and clamped:

w = 0,
∂w
∂n

= 0. (14)

In (13) and (14) Mn is a bending moment, whereas n stands for a normal vector to the boundary.

3. Influence of the Magnetic Field

The choice of an appropriate external load plays a crucial role in changing the vibration
characteristics of the considered micro/nanoplate. The necessary effect can be achieved by exposing
the plate to a magnetic field. In this paper the plate subjected to the in-plane uni-axial magnetic
field [31–34], see Figure 1, defined by the vector of magnetic field strength

H = (Hx, 0, 0) (15)

is considered. Distributing vector of the magnetic field~h is defined using Maxwell’s relations:

~h =
[
5,
[
~U, ~H

]]
. (16)

kG

kw

z

x
Hx

y

Figure 1. Rectangular plate resting on an elastic foundation.

Substituting (15) into (16) gives the following form of the distributing vector:

~h =

(
−Hx

∂uy

∂y
− Hx

∂uz

∂z
, Hx

∂uy

∂x
, Hx

∂uz

∂z

)
. (17)
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The current density~J is defined as follows

~J =
[
5,~h

]
, (18)

and can be expressed as

~J = (Hx
∂2uz

∂x∂y
− Hx

∂2uy

∂x∂z
,−Hx

∂2uz

∂x2 − Hx
∂2uy

∂y∂z
−

−Hx
∂2uz

∂z2 , Hx
∂2uy

∂x2 + Hx
∂2uy

∂y2 + Hx
∂2uz

∂y∂z
).

(19)

Thus, the Lorentz force can be written as

f = ( fx, fy, fz) = η[~J, ~H], (20)

where η is the magnetic permeability. It should be pointed out that the transverse vibrations are
studied, so we have taken into account the third coordinate fz. Formula (20) yields

fz = ηH2
x

(
∂2uz

∂x2 +
∂2uy

∂y∂z
+

∂2uz

∂z2

)
. (21)

Reflecting Kirchhoff–Love hypotheses, the transverse component fz is recast to the following form

fz = ηH2
x

(
∂2w
∂x2 −

∂2w
∂y2

)
. (22)

Thus, the magnetic field produces the force expressed by the following formula

ql =
∫ h

2

−h
2

fzdz = ηH2
xh
(

∂2w
∂x2 −

∂2w
∂y2

)
. (23)

4. Application of the Ritz Method

The variational formulation of the considered problem using (10), (23) and carrying out the
integration by parts yields the following functional:

∫ a
2

−a
2

∫ b
2

−b
2

[(D11 + DL)

(
∂2w
∂x2

)2

+ (D22 + DL)

(
∂2w
∂y2

)2

+ 2(D12 − DL)
∂2w
∂x2

∂2w
∂y2 +

+4(D66 + DL)

(
∂2w
∂x∂y

)2

+ ηH2
xh

((
∂w
∂x

)2
−
(

∂w
∂y

)2
)
+

+kWw2 + kGx

(
∂w
∂x

)2
+ kGy

(
∂w
∂y

)2
− ρhw2]dxdy.

(24)

According to the Ritz method, the deflection of the plate is represented as

w =
n

∑
i=1

ciwi(x, y). (25)
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In (25) ci stand for unknown coefficients, wi = gφi, and g is shape function selected depending
on the boundary conditions and shape of the plate, whereas φi is a system of the power polynomials.
For the rectangular plate with sides a and b, the shape function is taken as

g(x, y) = (x +
a
2
)p(x− a

2
)q(y +

b
2
)r(y− b

2
)s, (26)

where p, q, r, s depend on the boundary conditions. In order to find minimum of the functional (24),
we substituted (25) in (24), and the partial derivatives with respect to unknown coefficients are equated
to zero, giving the following algebraic system of equations

({kij} −ω2{mij}){ci} = 0, (27)

where elements of the matrices are defined as

kij =
∫ a/2

−a/2

∫ b/2

−b/2
[(D11 + DL)

∂2wi
∂x2

∂2wj

∂x2 + (D22 + DL)
∂2wi
∂y2

∂2wj

∂y2 +

+(D12 − DL)(
∂2wi
∂x2

∂2wj

∂y2 +
∂2wi
∂y2

∂2wj

∂x2 ) + 4(D66 + DL)
∂2wi
∂x∂y

∂2wj

∂x∂y
+

+kWwiwj + kGx

∂wi
∂x

∂wj

∂x
+ kGy

∂wi
∂y

∂wj

∂y
+ ηH2

xh(
∂wi
∂x

∂wj

∂x
− ∂wi

∂y
∂wj

∂y
)]dxdy,

mij = ρh
∫ a/2

−a/2

∫ b/2

−b/2
wiwjdxdy, i, j = 1..n.

(28)

System (27) has nonzero solutions if its determinant is 0, which gives an equation for determining
the frequency spectrum.

5. Solution by the Navier Method

According to the Navier method, the deflection of simply supported rectangular graphene
sheet with length of the sides a and b is taken as in [24,35], and the linear frequency of the
embedded small-scale plate effecting by in-plane uni-axial magnetic field can be calculated by the
following formula

ω2
mn ==

1
ρh

[(D11 + DL)
(mπ

a

)4
+ (D22 + DL)

(nπ

b

)4
+

+2(D12 + 2D66 + DL)
(mπ

a

)2 (nπ

b

)2
+

+kW + kGx

(mπ

a

)2
+ kGy

(nπ

b

)2
+ ηhH2

x(
(mπ

a

)2
−
(nπ

b

)2
)].

(29)

6. Results and Discussions

In this work we investigated the model studied in [31,32], but in a contrast to the mentioned
works, we used the modified couple stress theory, which allowed us to obtain the new results. In order
to establish the validity of the current work we considered several vibration problems, which represent
a simplification of the current model by using the classical plate theory (the material length scale
parameter is neglected) and vanishing the magnetic influence. For each considered problem analysis
of convergence of the results was performed and it was made a conclusion about a sufficient amount
of terms in the series expansion (25). In Table 1 frequencies of the isotropic square plate with various
boundary conditions are presented. Calculations are performed for the following types of the boundary
conditions: all edges are simply supported (SSSS), three edges are simply supported and one is clamped
(SSSC), two opposite sides are simply supported, the other two ones are clamped (SCSC), two opposite
sides are simply supported, one is clamped and one is free (SCSF), the sides except one are simply
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supported and one is free (SSSF). We assumed that kGx = kGy = kG [25]. In this study, the dimensionless
frequency parameter and the dimensionless Winkler and shear parameters are defined as follows

Ω = ωa2

√
ρh

D11
, KW = kW

a4

D11
, KG = kG

a2

D11
. (30)

Analysis was performed for ν = 0.3, h/a = 0.01, l/h = 0. Here it should be noted that for isotropic
case E = E1 = E2, ν = ν1 = ν2, G = E/(2(1 + ν)). The solution by the Ritz method proposed in the
paper is denoted as RS.

Table 1. Dimensionless frequencies Ω of isotropic square plate for various foundation parameters and
boundary conditions.

Method KW KG SSSS SSSC SCSC SCSF SSSF

[36]

0

0
19.737 23.643 28.944 12.693 11.69

[37] 19.735 23.659 28.995 - 11.677
RS 19.739 23.646 28.949 12.687 11.418
[36]

100
48.615 51.318 54.674 37.977 37.152

[37] 48.547 51.253 54.617 - 37.102
RS 48.615 51.323 54.679 37.981 37.129
[36]

1000
141.873 144.2 146.719 112.481 111.745

[37] 140.182 142.439 144.877 - 110.424
RS 141.873 144.479 146.74 112.672 111.746
[36]

100

0
22.126 25.671 30.623 16.149 15.383

[37] 22.125 25.687 30.672 - 15.373
RS 22.127 25.673 30.628 16.155 15.178
[36]

100
49.633 52.283 55.581 39.272 38.474

[37] 49.566 52.22 55.524 - 38.426
RS 49.633 52.289 55.586 39.276 38.453
[36]

1000
142.225 144.547 147.06 112.925 112.192

[37] 140.538 142.789 145.222 - 110.876
RS 142.225 144.824 147.081 113.115 112.193
[36]

1000

0
37.276 39.483 42.869 34.075 33.714

[37] 37.274 39.493 42.902 - 33.708
RS 37.277 39.485 42.873 34.073 33.621
[36]

100
57.995 60.278 63.160 49.419 48.789

[37] 57.936 60.222 63.109 - 48.749
RS 57.995 60.283 63.165 49.420 48.771
[36]

1000
145.355 147.627 150.088 116.842 116.134

[37] 143.704 145.906 148.288 - 114.862
RS 145.355 147.899 150.109 117.026 116.135

The orthotropic square plate with a free edge and others clamped edges are studied for the
following mechanical and geometrical data [21]:

D22/D11 = 1/2, D12/D11 = 0.3, D66/D11 = 1/3, ν2 = 0.3, h = 100µm, h/a = 0.01. (31)

The obtained results are reported in Table 2.
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Table 2. Dimensionless frequencies Ω of the orthotropic square small-scale plate for different thickness ratios.

Method l/h ω1 ω2 ω3

[21]
0

17.543 36.034 45.660
[38]

0
17.860 36.295 45.683

RS 17.880 36.299 45.704
[21] 0.1 18.432 37.326 47.920
RS 18.687 37.441 47.734
[21] 0.2 20.697 40.921 53.832
RS 20.802 40.629 53.060
[21] 0.3 23.745 46.228 62.111
RS 23.717 45.350 60.470
[21] 0.4 27.258 52.708 71.983
RS 27.114 51.122 69.194

In the next case study we considered the simply supported orthotropic rectangular graphene
sheet with the following mechanical parameters [24]:

E1 = 1765 GPa, E2 = 1588 GPa, G = 678.85 GPa, ρ = 2300 kg/m3, ν1 = 0.3, ν2 = 0.27, (32)

and the geometrical parameters h = 100µm, h/a = 0.01, b/a = 1.5. Table 3 contains the values
of dimensionless frequency Ω obtained for the magnetic parameter MP = 0, 25, 50, where the
dimensionless magnetic parameter is introduced as follows

MP =
ηhH2

xa2

D11
, (33)

and the dimensionless Winkler and shear modules KW = 100, KG = 10. The results are calculated by
the Ritz (RS) and Navier (NS) methods.

Table 3. Dimensionless frequencies Ω of the orthotropic rectangular small-scale plate for different
thickness ratios and magnetic parameters, SSSS.

Method MP l/h

0 0.2 0.4 0.6 0.8 1
RS 0 21.0203 21.8251 24.0784 27.4257 31.5203 36.1088
NS 21.0205 21.8253 24.0788 27.4262 31.5209 36.1096
RS 25 24.0608 24.767 26.7739 29.8201 33.6244 37.9594
NS 24.0612 24.7674 26.7744 29.8207 33.6251 37.9602
RS 50 26.7581 27.3948 29.2218 32.0361 35.6043 39.7239
NS 26.7585 27.3953 29.2223 32.036 35.6051 39.7248

For a rectangular plate with mechanical properties (32) and h = 100µm, h/a = 0.01, b/a = 1.5,
the effect of magnetic field was investigated versus the thickness ratio l/h. The results are presented
for plates with all simply supported edges (Figure 2) and clamped edges (Figure 3). In both cases,
it can be seen an increase in the dimensionless frequency Ω (30), with an increase of both: the magnetic
parameter as well as the material length scale parameter. The similar influence of the magnetic field was
reported in [31,32] based on the nonlocal elasticity theory for simply supported boundary conditions.
The largest values of frequency parameter are characteristic of the plate with clamped edges. Herewith
an increase within the magnetic parameter leads to a decrease in the difference in the results between
the classical and the modified couple stress theory. Thus, inter-atomic bonds of the micro/nanoplates
influence the vibration behaviour less for higher values of the magnetic field strength.
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Figure 2. Dimensionless frequencies Ω in terms of MP and l/h with SSSS boundary conditions.

Figure 3. Dimensionless frequencies Ω in terms of MP and l/h with CCCC boundary conditions.

To study the effect of the elastic foundation using the Winkler-type model, the Winkler modulus
parameter KW is taken within the range of 0..400 as in [23,25]. The results are presented for the
thickness ratio l/h = 0, 0.2, 0.4, 0.6, 0.8, 1, MP = 0, KG = 0 and simply supported boundary conditions
(Figure 4). Analysing the results it can be noticed that by an increase of the Winkler modulus, the value
of the frequency increases for all values of l/h and the difference in results from the classical theory
becomes smaller. Taking the shear modulus factor KG in the range 0–10 [23,25], we studied influence
of the Pasternak-type foundation on the vibration frequency parameter (Figure 5). Calculations are
performed by varying l/h = 0, 0.2, 0.4, 0.6, 0.8, 1 for fixed MP = 0, KW = 100. Obtained results show
an increase of the dimensionless frequency with an increase of the shear modulus. The small scale
effect was investigated, changing the type of boundary conditions (Figure 6). Here four types of
symmetrical boundary conditions are considered: SSSS, CCCC, CSCS (x = −a/2; a/2 are clamped,
y = −b/2; b/2 are simply supported), SCSC (x = −a/2; a/2 are simply supported, y = −b/2; b/2 are
clamped). The graphene sheet is exposed to the magnetic field with the magnetic parameter MP = 10.
We also consider that the Winkler modulus and the shear modulus of the surrounding elastic medium
equal to 100 and 10, respectively. Analysis of results allows concluding that an increase in the clamped
part of the boundary implies an increase in the frequency value and the greatest values are reached
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under CCCC boundary conditions. The difference in the results with an increase in the thickness ratio
l/h is more significant for clamped boundary conditions.

0 100 200 300 400
10

15

20

25

30

35

40

45
 l/h=0
 l/h=0.2
 l/h=0.4
 l/h=0.6
 l/h=0.8
 l/h=1

KW

Figure 4. Dimensionless frequencies Ω depending on Winkler modulus for different thickness ratios
l/h and SSSS boundary conditions (b/a = 1.5, KG = 0, MP = 0).

0 2 4 6 8 10
10

15

20

25

30

35

40

45

 l/h=0
 l/h=0.2
 l/h=0.4
 l/h=0.6
 l/h=0.8
 l/h=1

KG

Figure 5. Dimensionless frequencies Ω depending on shear modulus for different thickness ratios l/h
and SSSS boundary conditions (b/a = 1.5, KW = 100, MP = 0).
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0,0 0,2 0,4 0,6 0,8 1,0
10

20

30

40

50

60

70

 SSSS
 CSCS
 SCSC
 CCCC

l/h

Figure 6. Dimensionless frequencies Ω for various types of the boundary conditions (b/a = 1.5, KW =

100, KG = 10, MP = 10).

7. Concluding Remarks

The small-scale analysis of a single-layered rectangular orthotropic plate exposed to a magnetic
field is performed. The considered plate is embedded in an elastic medium modeled as the Winkler
and the Pasternak foundation. The study is based on the modified couple stress theory and the
Kirchhoff–Love hypotheses. The influence of the magnetic field is derived by the Lorentz force.
The proposed approach uses the Ritz method. The variational formulation of the considered problem
is given, which can be used for future investigation of plates with more complicated shape by changing
the shape functions and a region of integration.

The results of the numerical investigation contain the analysis of an influence of the boundary
conditions, the magnetic parameter, the parameters of elastic foundation on vibration frequencies.
It is concluded that the frequency of a plate is sensitive to the material length scale parameter.
The magnetic field plays an important role and significantly increases the vibration frequencies.
Simultaneously it is observed that for higher values of the magnetic field strength the effect of the
length scale parameter decreases. Thus, the small-scale effect is dampened by an increase in magnetic
field strength. An increase in the clamped part of the boundary leads to an increase in the frequency
values and a more pronounced small-scale effect. The biggest values of frequencies appear for a plate
with all clamped edges.
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Abbreviations

The following abbreviations are used in this manuscript:

NEMS nano-electro mechanical systems
MEMS micro-electro mechanical systems
SSSS all edges are simply supported
CCCC all edges are clamped
SSSC three edges are simply supported and one is clamped
SCSC two opposite sides are simply supported, the other two ones are clamped
SCSF two opposite sides are simply supported, one is clamped and one is free
SSSF the sides except one are simply supported and one is free
CSCS two opposite sides are clamped , the other two ones are simply supported
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