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Abstract: To certain degree, multi-objective optimization problems obey the law of symmetry,
for instance, the minimum of one objective function corresponds to the maximum of another
objective. To provide effective support for the multi-objective operation of the aerospace product
shell production line, this paper studies multi-objective aerospace shell production scheduling
problems. Firstly, a multi-objective optimization model for the production scheduling of aerospace
product shell production lines is established. In the presented model, the maximum completion time
and the cost of production line construction are optimized simultaneously. Secondly, to tackle the
characteristics of discreteness, non-convexity and strong NP difficulty of the multi-objective problem,
a knowledge-driven multi-objective evolutionary algorithm is designed to solve the problem. In the
proposed approach, structural features of the scheduling plan are extracted during the optimization
process and used to guide the subsequent optimization process. Finally, a set of test instances is
generated to illustrate the addressed problem and test the proposed approach. The experimental
results show that the knowledge-driven multi-objective evolutionary algorithm designed in this
paper has better performance than the two classic multi-objective optimization methods.

Keywords: aerospace shell production scheduling problem; multi-objective optimization;
evolutionary algorithm; knowledge-driven optimization

1. Introduction

Integral shell parts are the core components of aerospace products, which have complex feature
structures and high machining accuracy requirements. With the development of high-density aerospace
products, the tasks of aerospace shell products gradually show the characteristics of multiple models,
multiple states, frequent changes, short development cycles, heavy tasks, high quality and reliability
requirements, and the coexistence of development and batch production. Digital and intelligent
manufacturing methods change the manufacturing model. In a production line, several types of shell
products need to be processed given specific constraints and objectives. An effective production plan
plays an important role for the digital production of aerospace shell products.

The aerospace shell production scheduling problem shares the characteristics of production
scheduling problems and job shop scheduling problems. Due to the importance in practice, researchers
have conducted various studies in this area. In [1], the researchers addressed a type of flexible job
shop scheduling problem where the costs of job earliness, tardiness, and operations were minimized.
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A multistage graph-based heuristic algorithm was developed to solve the problem. The distributed
assembly flexible job shop scheduling problem (DAFJSP) was studied in [2], where an improved
differential evolution simulated annealing algorithm was proposed to solve the problem. In [3], a single
goal flexible JSSP (FJSSP) was solved by a social spider optimization (SSO). In [4], a flexible job shop
scheduling with interval grey processing time was considered and elitism genetic algorithm with
elitism strategy in external memory was proposed as the solution technique. A hybrid sequential
genetic algorithm was designed to solve a flexible job shop scheduling problem with lot streaming
in [5]. In [6], the authors developed a teaching–learning-based algorithm to solve the FJSP with fuzzy
processing time. In [7], a similar problem with fuzzy duration was addressed and a bionic artificial bee
colony algorithm was used to solve the problem. A remanufacturing process with fuzzy processing
time was considered in [8] and a discrete harmony search algorithm was presented as the solution
technique. In [9], the authors employed a list-based search algorithm to solve the FJSP with sequencing
flexibility. In [10], a simulation-based optimization approach was employed to solve a dynamic
FJSP. In [11], the researchers studied the multi-process production scheduling problem, considered
the optimization of renewable energy maximization, and adopted a two-stage robust optimization
to solve the problem of uncertainty. In [12], the researchers addressed the production scheduling
problem considering the status of the machine and equipment, and proposed a model combining the
monitoring of equipment status and production planning and scheduling. In [13], the researchers
studied how to improve manufacturing efficiency through production scheduling in an agent-based
supply chain system. In addition, a large number of scholars have carried out applied research on
production scheduling in various fields, such as the mining industry [14–16], the steel industry [17], the
pharmaceutical industry [18], the chemical industry [19], and other complex production systems [20].

Although there are a lot works addressing job shop scheduling problems, relatively few studies on
aerospace production lines have been reported. Furthermore, most current relative research focuses on
single-objective optimization problems. Specifically, the completion time of tasks, i.e., the makespan,
is the main objective to be optimized. The aerospace product shell production line is a complex
production system. The operation of complex systems requires comprehensive consideration of
multiple indicators to achieve a balance of efficiency, economy and environment. Generally speaking,
efficiency indicators and economic indicators are conflicting. After considering these two objectives
in the optimization process of the aerospace product shell production line, its optimization problem
is transformed into a multi-objective optimization problem, and a series of feasible solutions to be
weighed need to be provided for decision-makers. Thus, in this paper, we address the multi-objective
aerospace shell production scheduling problem (MOASPSP). The existing approaches mentioned in the
above literature were designed for single-objective job shop scheduling problems. These algorithms
are not suitable for the MOASPSP addressed in our paper. To the best of our knowledge, the study
presented in this paper is the first work about a multi-objective model for aerospace shell production
scheduling. Since there is no existing algorithm for solving the problem, a multi-objective approach is
designed and tested for the addressed MOASPSP.

The rest of this paper is organized as follows. In Section 2, the MOASPSP is described and
formulated. To solve the problem, a knowledge-driven multi-objective evolutionary algorithm is
developed and presented in Section 3. Experimental analysis is conducted in Section 4. Finally, we
summarize the conclusions of this study and provide a future research direction.

2. Multi-Objective Aerospace Shell Production Scheduling Problem

2.1. General Problem Description

An aerospace shell production scheduling problem (ASPSP) can be described as follows: In an
aerospace shell product production line, there are several types of machines. Each type of machine has
a specific amount. The workshop’s production task consists of a set of independent jobs. Each job has
a sequence of operations. Each operation can be processed by a specific type of machine. To achieve
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certain targets, all operations should be properly assigned to available machines. Furthermore, the
sequence of operation processing needs to be decided.

2.2. Mathematical Formulation

In this subsection, mathematical formulation of the addressed problem is presented. To describe
the problem conveniently, we use notations as presented in Table 1.

Table 1. Notations for problem formulation.

Symbol Description

n Number of jobs.
e Number of machine types.
i Index of jobs, i = 1, 2, . . . , n
j Index of machine types, j = 1, 2, . . . , e
aj Machine amount of type j

j,m Index of machine for type j, m = 1, 2, . . . , aj
Cj The unit cost of machine type j.

machinej,m The mth machine for the type j.
J The set of jobs, J = {J1, J2, . . . , Jn}
Fi The finish time of job i.
qi The number of operations for job i.
k The index of operation for job i.

Oi The set of operation for job i
O The set of all operations, O = {O1, O2, . . . , On}

opri,k The kth operation of job i.
Mach_typei,k The type of machine that can process operation opri,k.

di,k The duration of operation opri,k.
sti,k The start time of operation opri,k.
eti,k The end time of operation opri,k.

xi,k,j,m Machine assignment index of operation opri,k to machinej,m.
M The set of machines deployed in the production line.
s Index of machine in the set of M, s = 1, 2, . . . , |M|

yt
j,m,i,k At time t, whether a machine machinej,m is processing operation opri,k.

In aerospace shell production lines, there are n independent jobs. The set of jobs is denoted
as J = {J1, J2, . . . , Jn}. Each job Ji includes a sequence of operations, denoted as Oi. The number of
operations for job Ji is qi. The duration of each duration opri,k is represented as di,k. There are t types of
machine in the production line. Each type of machine consists of aj available machines. The unit cost
for machine type j is Cj. Each operation will be processed by a specific type of machine, denoted as
Mach_typei,k.

In the problem formulation, there are several reasonable assumptions, as follows.

(1) Each operation must be processed once and only once on each machine.
(2) The same job contains a specific sequence of operations, which must be processed in the order of

the operations.
(3) There are no dependencies between operations belonging different jobs.
(4) Operations scheduled to designated machines have a deterministic processing time.
(5) Each machine can only process a single operation at a specific time duration.
(6) Once processing is started, it cannot be interrupted.
(7) The situation of a machine failure is not considered.
(8) There are no differences between machines that can perform the same operation.
(9) A machine can start the processing of another operation immediately after completing

one operation.
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2.3. Multi-Objective Model

In practical multi-objective optimization problems, some objectives are consistent and can be
converted into single objective by weighting. For instance, in our previous research, the objective of
optimization is to minimize the makespan and the sum of the waiting times between operations [21].
The makespan of a schedule and the sum of the waiting time between operations are consistent to a
certain extent. However, some objectives are in conflict with each other to some extent. On one hand,
makespan is the main objective for an ASPSP. On the other hand, in the actual production scheduling
process, the cost of production line construction needs to be considered. Intuitively, the more machine
equipment deployed on the production line, the larger its production capacity, and the shorter the
production completion time when completing the same batch of tasks. On the other hand, the cost of
production line construction is also higher. In other words, for an ASPSP, the makespan and the cost
are two conflicting objectives. Decision-makers should make a tradeoff between these objectives and
select the final schedule from a set of feasible solutions. By simultaneously considering makespan and
cost, an ASPSP is modeled as a multi-objective ASPSP, termed as MOASPSP.

Measures of makespan and cost are presented as follows. For each job Ji, its finish time is denoted
as Fi. The makespan of a schedule indicates the maximum of finish times for all jobs and can be
represented as max{Fi|i = 1, 2, . . . , n}. In this paper, another objective is the cost of the production
line. Please note that the cost refers to fixed cost of the production line, i.e., the cost of deploying
machines in the production line. We denote the set of machines in a production line as M. The number
of machines in the production line is |M|. Then, the cost can be calculated as follows:

Cost =
|M|∑
s=1

Cmachines |machines ∈M (1)

where machines represents the sth machine in the set M, and Cmachines is the unit cost of machines.
Then, the mathematical model of a MOASPSP can be given as follows:

obj. minf 1 = max{Fi|i = 1, 2, . . . , n} (2)

min f2 =

|M|∑
s=1

Cmachines |machines ∈M (3)

s.t. eti,k = sti,k + di,k (4)

sti,k+1 ≥ eti,k (5)

t∑
j=1

a j∑
m=1

xi,k, j,m = 1,∀i, k (6)

yt
j,m,i,k = 1 or yt

j,m,i,k = 0, sti,k ≤ t ≤ eti,k,∀i, k, j, m (7)

yt
j,m1,i,kyt

j,m2,i,k = 0, (m1 , m2) (8)

yt
j,m,i1,k1 yt

j,m,i2,k2 = 0, (i1 , i2||k1 , k2) (9)

In the above models, Equations (2) and (3) are two objectives which are to be minimized. Equations
(4) to (9) indicate different constraints. Equation (4) indicates that an operation must be processed
continuously. Equation (5) indicates that an operation only can be started after its predecessor is
finished. In Equation (6), xi,k,j,m is an index of machine assignment, there is xi,k,j,m = 1 if operation opri,k
is assigned to machinej,m, otherwise xi,k,j,m = 0. Then, this constraint represents that an operation can
only be assigned to one machine. In Equation (7), yt

j,m,i,k is an index to show, at time t, whether a
machine machinej,m is processing operation opri,k. yt

j,m,i,k = 1 indicates that machinej,m is processing opri,k
at time t, otherwise yt

j,m,i,k = 0. The constraint shown in Equation (7) indicates that the machine cannot
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be interrupted during the process. Equation (8) indicates that an operation cannot be processed on
two or more machines. Equation (9) shows that a machine cannot process two or more operations at
any time.

The problem presented in Equations (1) to (9) is a constrained optimization problem, which
is widely used to model similar optimization problems in other areas, such as network resource
allocation [21] and maximization of the overall throughput of a multiuser communication systems [22].
The addressed MOASPSP belongs to a typical type of combinatorial optimization problem, which
has the characteristics of discrete and non-convex Pareto front in the objective space. The problem
has a strong NP-hard characteristic. Although it is difficult to use analytical approaches to solve the
problem, we are aware of that analytical approaches such as algorithm based on Lagrange multipliers
are useful to analyze the bounds of a simpler problem. It is worthwhile to address this issue in our
future researches.

3. An Improved Multi-Objective Evolutionary Algorithm

Traditional multi-objective optimization methods based on mathematical programming have
continuous and inducible requirements on optimization goals and constraints, and are not suitable for
solving combinatorial optimization problems. Therefore, this paper uses a multi-objective evolutionary
algorithm (MOEA) to solve the problem.

3.1. Multi-Objective Evolutionary Algorithms

Evolutionary algorithm (EA), which is inspired by biological evolution, is a generic
population-based metaheuristic optimization algorithm. An EA employs several operators such
as selection, crossover and mutation to form new population. For a problem to be optimized, candidate
solutions are considered as individuals in a population. The quality of the individuals is determined
by fitness function. Evolution of the population then takes place after the repeated application of the
above operators. For multi-objective evolutionary algorithms (MOEAs), the parent population and
offspring are combined and sorted in order to generate a population for the next generation [23]. Classic
MOEAs include non-dominated sorting-based approaches such as NSGA-II [24], indicator-based
approaches, decomposition-based approaches such as MOEA/D [25], etc. Since NSGA-II has a
remarkable performance in solving combinatorial optimization problems, in this work, we employ
NSGA-II as the baseline algorithm.

3.2. Mechanism of NSGA-II

In the MOEA based on the Pareto dominance relationship, two solutions can be compared through
the Pareto dominance relationship. The dominance information is used to guide the selection of the
solution set. MOEAs based on Pareto dominance have always been a hot research direction, and
researchers have proposed many algorithms. Among them, the NSGA-II algorithm is one of the
classic algorithms based on the Pareto domination relationship [24]. In NSGA-II, individuals in the
population are sorted by a Pareto relationship through a fast non-dominated sorting algorithm, and a
non-dominated index is assigned to each individual. For individuals of the same non-dominant rank,
the diversity of individuals is measured by the crowding distance. The overall flow chart of NSGA-II
is shown in Figure 1.

3.2.1. Fast Non-Dominated Sorting Mechanism

NSGA-II uses the fast non-dominated sorting algorithm to sort the individuals of the population.
The mechanism of fast non-dominated sorting is shown as in Algorithm 1. In the algorithm, P represent
the population, p and q are individuals in the population. np indicates the number of individuals which
dominate p in the population. Sp is the set of individuals which dominate individual p. Fronti is the ith
non-dominated front in the population.
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Algorithm 1. Fast non-dominated sorting algorithm.

For each p ∈ P
Sp = ∅
np = 0
For each q ∈ P
If (p ≺ q) then //If p dominates q
Sp = Sp ∪

{
q
}

//Add q to the set of solutions dominated by p
Else if (q ≺ p)
np = np + 1 //Increment the domination counter of p
If np = 0 then //p belongs to the first front
prank = 1
Front1 = Front1 ∪

{
p
}

i = 1 //Initialize the front counter
While Fronti , ∅
Q , ∅ //Used to store the members of the next front
For each p = Fronti
For each q = Sp

nq = nq − 1
If nq = 0 then //q belongs to the next front
qrank = i + 1
Q = Q∪

{
q
}

i = i + 1
Fi = Q
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3.2.2. Crowding Distance Calculation

According to the fast non-dominated sorting algorithm, each individual in the population can be
assigned a non-dominated rank, and the population can be divided into many non-dominated frontiers.
Individuals on the same non-dominated frontier have the same value of the non-dominated rank. The
lower the non-domination rank, the better. Individuals on the first non-domination frontier have a
non-domination rank of 1. To further distinguish individuals on the same level of the non-dominant
frontier, NSGA-II defines crowding-distance to measure individual diversity. The crowded distance is
defined as the average length of the largest rectangle of the area around the individual that contains
only the individual itself. The calculation of crowding distance is shown as in Algorithm 2.

Algorithm 2. Calculation of crowding distance.

Input Γ //Γ is the set of individuals
l = |Γ| //l is the number of individuals in Γ
For each i, set Γ[i]dis tan ce=0 //initialize distance
For each objective m
Γ=sort(Γ,m) //sort using each objective value
Γ[1]dis tan ce = Γ[l]dis tan ce = ∞ //so that boundary points are always selected
For i=2 to (l-1)
Γ[i]dis tan ce = Γ[i]dis tan ce + (Γ[i + 1].m− Γ[i− 1].m)/( f max

m − f min
m )

One can see from Algorithm 2 that individuals located on the same non-dominated frontier have
the largest crowding distance on the boundary between the two ends. Thus, two boundary points will
always be selected when selecting.

3.2.3. Partial Order of Individuals

For each individual in the population, there are two attributes: non-domination rank (irank) and
crowding distance (idis tan ce). Then, a partial order between two individuals can be defined as follows.
For two individuals i and j, there is i ≺n j if 1) irank < jrank; 2) irank = jrank and idis tan ce > jdis tan ce.

After defining the partial order relationship between two individuals, any two individuals in
the population can be compared. According to the definition of the partial order relationship, when
two individuals belong to different ranks of a non-dominated order, the individual with the lower
non-dominated level is selected. When two individuals belong to the same non-dominated rank, the
individual with larger crowding distance will be selected.

3.3. Chromosome, Crossover and Mutation

The NSGA-II algorithm is aimed at multi-objective function optimization problems. However, the
addressed MOASPSP is a type of combinatorial optimization problem. Therefore, individual coding
needs to be redesigned according to the characteristics of multiple solving problems. In the MOASPSP,
there are two types of decision variables: the order of the operations and the machine assignment of
each operation. Thus, in the chromosome representation, a hybrid encoding approach is employed.

The structure of the hybrid encoding is shown in Figure 2. The chromosome consists of two
parts: operation sequence and machine assignment. The length of each part of the chromosome is
equal to the number of all operations, denoted as |O|. The gene in the chromosome of operation
sequence represents an operation. The position of the operation in the chromosome indicates the
processing order of the operation. In the machine assignment chromosome, the value corresponding
to an operation represents its assigned machine.

The genetic operations used are crossovers and mutations. For MOASPSP, the operators of
crossover and mutation remain the same as single objective ASPSP [26].
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3.4. Knowledge-Driven MOEA

MOEAs, as a type of population-based optimization algorithm, generate a large number of
individuals in each generation in the optimization process. Each individual contains data such as the
structure of the solution as well as degree of strength of the solution. In the optimization process,
we can continuously extract the knowledge related to the optimization problem, and then apply
this knowledge to the subsequent optimization process. Based on this idea, this paper proposes a
knowledge-driven multi-objective evolutionary algorithm (KD-MOEA). The workflow of the proposed
KD-MOEA is shown in Figure 3. One can see from the figure that the proposed KD-MOEA includes
two key operations: knowledge extraction and knowledge use. In the proposed KD-MOEA, the data
contained in the population is sent to the knowledge extraction process. The data is transformed to
structural knowledge, which is used to guide the subsequent process of optimization. Specifically, the
obtained knowledge is used to generating new individuals for the population.Symmetry 2020, 12, x FOR PEER REVIEW 9 of 16 
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3.4.1. Knowledge Extraction

Knowledge is an abstract, logical thing that enables the process from quantitative to qualitative.
Knowledge needs to be acquired through information inductive and deductive methods. In each
generation of the population, the information contained in the individual exists in the form of vector
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data. The knowledge extraction process needs to organize these data and display them in a specific
form. Specifically, in our problem, knowledge is divided into two categories, namely operation
sequence knowledge and machine assignment knowledge, respectively shown in Figures 4 and 5.
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We suppose there are N operations, i.e., N=|O|. In Figure 4, ai j(i, j = 1, 2, · · ·N) represents the times
of ith operation appearing at the position j. In the representation of machine assignment knowledge,
there are N vectors. For the ith vector (bi1, bi2, . . . , biui), ui is the number of machines that can process the
operation in position i. big(g = 1, 2, . . . , ui) represents the times of assigning operation i to machine g.

It should be noted that operation sequence knowledge and machine assignment knowledge
are stored in two structure tables, respectively. The data in the knowledge structure table comes
from the non-dominated individuals in each generation of the population, that is, individuals with a
non-dominated rank equal to 1. During each iteration, the operation sequence knowledge structure
table and machine assignment knowledge structure table need to be updated once.

3.4.2. Knowledge Use

Operation sequence knowledge and machine assignment knowledge need to be used to guide
subsequent optimization processes after extraction. In the KD-MOEA proposed in this paper, a
population update strategy is used to use the obtained knowledge. In each population update process,
when a new population is generated, individuals in the population are updated with a probability
pu. The new individuals are generated based on the operation sequence knowledge structure table
and the machine assignment knowledge table. In addition, the values on the operation sequence
chromosome and the machine assignment chromosome are generated by roulette. The population
update operation is not performed every iteration, but a population update operation is performed
every t_gen generations.

4. Experimental Analysis

4.1. Test Instances

To illustrate the addressed MOASPSP and test the proposed KD-MOEA, a set of test instances
were constructed. The test set mainly includes machine data and task data. The machine data remains
fixed, including a total of 99 machines with 21 types, as shown in Table 2. In the research, the personnel
used in processing operations are regarded as a type of machine resource. It should be noted that the
machine types in Table 2 are the machine types of the entire production workshop, and the machine
types used in the test instances in this paper are a subset of the machine types of the entire workshop.

In the test instances, we considered four types of jobs, corresponding to shell type 1, 2, 3 and 4.
Due to confidentiality reasons, the procedures of each type of shell are not shown in this paper. The test
set contains six instances, as shown in Table 3. The elements in Table 3 indicate the job number for each
type. For example, instance 1 contains four jobs, the numbers of different job types are the same as 1.
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Table 2. Data of available machines in the workshop.

Machine Type Machine Number Unit Cost (10,000 RMB)

1 6 2300
2 5 2850
3 3 3100
4 4 3250
5 2 3750
6 3 3650
7 2 4000
8 3 3350
9 5 4200

10 4 4050
11 8 3900
12 8 2550
13 4 3450
14 4 2865
15 3 3674
16 4 3890
17 8 230
18 7 210
19 9 240
20 3 300
21 4 5300

Table 3. Data of test instance structure.

Instance Index Shell Type 1 Shell Type 2 Shell Type 3 Shell Type 4

instance 1 1 1 1 1
instance 2 2 1 1 1
instance 3 2 2 1 1
instance 4 2 2 2 1
instance 5 2 2 2 2
instance 6 3 3 3 3

4.2. Parameter Settings

The baseline algorithm used in the KD-MOEA algorithm proposed in this paper is NSGA-II, and
the algorithm comparison is compared with NSGA-II and MOEA/D. For the NSGA-II and MOEA/D
algorithms, the population size is set to 100, the number of iterations is set to 200, and the probability
of crossover and mutation is 0.9 and 0.1, respectively. Other parameters of the NSGA-II and MOEA/D
algorithms are the same as those in [24] and [25]. For the KD-MOEA algorithm, the parameter t_gen is
set as follows: t_gen = 10 in the first 100 iterations; t_gen = 5 in the last 100 iterations. The population
update probability of KD-MOEA is set to pu = 0.1. To avoid the randomness of the algorithms,
each algorithm runs independently 30 times. All computers running the algorithm are configured as
desktops with Core I7-7700, 3.6 GHz CPU, and the algorithm design is implemented using C#.

4.3. Experimental Results

4.3.1. Obtained Non-Dominated Solutions

This paper first analyzes the distribution of non-dominated solutions of the test instances. Figure 6
shows the distribution of the non-dominated solutions in the objective space obtained from the six test
instances. It can be seen from Figure 6 that the approximating Pareto front of MOASPSP has strong
discreteness and non-convexity. From the distribution of non-dominated solutions, there are also
differences in the sparseness of the distribution across the entire non-dominated front. Specifically,
when the cost of the production line increases, the non-dominated solution is more densely distributed;
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when the cost of the production line is reduced, the non-dominated solution is more sparsely distributed.
In other words, the greater the production line cost budget is, the more options are available. When
production line costs are more severely constrained, fewer options are available.Symmetry 2020, 12, x FOR PEER REVIEW 12 of 16 
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To further study the structural differences of different non-dominated solutions, three solutions in
instance 1 and instance 6 were selected for analysis. The selected solutions are shown in Table 4.

For each test instance, two non-dominated solutions at the boundary of the non-dominated frontier
and one non-dominated solution in the middle are selected. From the perspective of the objective
function, for the most economical production scheduling solutions, that is, the least production cost
solutions such as solution 3 and solution 6, when the resource input is appropriately increased, the
efficiency index of the production line in completing the processing tasks can be greatly improved. For
example, for instance 1, when the cost of 920 units is added to the solution 3, the completion time can
be increased by 184.1 units. If the indicators of completion time need to be further improved, a greater
amount of resources need to be invested. For example, compared with solution2, solution 1 has an
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85.7 unit completion time improvement and a production line cost of 8060 units. There is a similar
phenomenon in instance 6.

Table 4. Selected non-dominated solutions from instance 1 and instance 6.

Solution Instance Makespan Cost

solution 1 instance 1 218.5 35540
solution 2 instance 1 304.2 27480
solution 3 instance 1 488.3 26560
solution 4 instance 6 370.2 53190
solution 5 instance 6 530.1 32790
solution 6 instance 6 900.9 28900

It can be seen that the cost-effectiveness ratio of solutions for the aerospace product shell production
line is quite different. In the actual production process, due to the constraints of resources and costs,
and the requirements of completion time, often the feasible solution on the boundary will not be
selected. It is necessary to select the feasible solution with the best cost-effective ratio according to the
actual constraints and the availability of resources.

4.3.2. Performance Comparison

Performance comparison is an essential part of illustrating the effectiveness of an algorithm [27,28].
To analyze the performance of KD-MOEA proposed in this paper, the performance of the algorithm
is compared in this subsection. The optimization results of KD-MOEA are compared with the
optimization results of NSGA-II and MOEA/D algorithms. In the performance comparison of
multi-objective optimization algorithms, the commonly used comparison index is the hypervolume
(HV). Table 5 shows the HV values of the different algorithms on the six test instances. For the
non-dominated solution obtained by the multi-objective optimization algorithm, the larger the HV
value, the better. During the pairwise comparison of algorithms, a t-test was performed. When there is
a significant difference in results, the results corresponding to algorithms with high performance are
marked with (+), and the results corresponding to algorithms with poor performance are marked with
(-). If there is no significant difference between the two, use the (~) mark.

Table 5. Comparison of HV results of different algorithms.

Instance KD-MOEA NSGA-II MOEA/D

instance 1 0.7256 ± 0.0177 (+) 0.7140 ± 0.0149 (-) 0.7099 ± 0.0167 (-)
instance 1 0.7259 ± 0.0167 (+) 0.7195 ± 0.0178 (~) 0.7081 ± 0.0211 (-)
instance 1 0.7168 ± 0.0209 (+) 0.6950 ± 0.0215 (-) 0.6873 ± 0.0187 (-)
instance 6 0.6819 ± 0.0163 (+) 0.6722 ± 0.0205 (~) 0.6432 ± 0.0251 (-)
instance 6 0.6566 ± 0.0333 (+) 0.6332 ± 0.0183 (-) 0.6091 ± 0.0224 (-)
instance 6 0.4998 ± 0.0401 (+) 0.4487 ± 0.0495 (-) 0.4221 ± 0.0411 (-)

As can be seen from the above table, the KD-MOEA proposed in this paper outperforms MOEA/D
on all six test instances. Compared with NSGA-II, the performance of KD-MOEA in four test cases
(instance 1, instance 3, instance 5 and instance 6) is significantly better than NSGA-II. In the other
two test instances, the statistical values are not significantly different. However, it can be seen that
the HV of the non-dominated solution set obtained by KD-MOEA is greater than the corresponding
value of the NSGA-II algorithm on all test instances. Therefore, this paper considers that KD-MOEA
has a better effect than MOEA/D and NSGA-II when solving the MOASPSP. This also shows that
when solving complex combinatorial multi-objective optimization problems, extracting and applying
relevant knowledge based on the structure and characteristics of the problem under study will help
improve the optimization performance of the algorithm and provide more scientific alternatives
for decision-makers.
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To more intuitively show the difference in performance of different algorithms, Figure 7 shows the
distribution of non-dominated solutions in the objective space obtained by the three algorithms. As
can be seen from Figure 7, for test instance 1, MOEA/D can obtain some better solutions, compared to
KD-MOEA and NSGA-II. However, in terms of the spread of the non-dominated solution, that is, the
distance between two boundary points, the performance of MOEA/D is worse than that of KD-MOEA
and NSGA-II. It shows that in solving small-scale problems, the multi-objective evolutionary algorithm
based on decomposition can approach the true non-dominated frontier in some areas, but at the
same time sacrifices the diversity of the algorithm. As the problem size increases, KD-MOEA and
NSGA-II are better than MOEA/D in terms of convergence and diversity. Compared with the proposed
KD-MOEA and NSGA-II, the performance of the two algorithms in maintaining diversity is comparable,
and the obtained non-dominated solutions have no significant difference in the spread of the objective
space. As can be seen from Figure 7, most of the solutions obtained by NSGA-II are dominated by
the solutions obtained by KD-MOEA, indicating that KD-MOEA has better performance in terms of
algorithm convergence.
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5. Conclusions

In this study, we investigated the aerospace shell product digital production line scheduling
problem in an actual production process. Considering the efficiency and economic indicators of the
production of aerospace product shells, a multi-objective optimization model for production scheduling
is constructed. In the proposed model, one objective is the makespan of the production schedule and
the other objective is the construction cost the production line. Aiming at the characteristics of the
multi-objective optimization problem for aerospace shell production scheduling, a knowledge-driven
multi-objective evolutionary algorithm was designed to solve the problem. Experimental results
suggest that the proposed multi-objective approach has a better performance to solve the problem.
The developed multi-objective optimization model and the proposed multi-objective optimization
algorithm can effectively support the multi-objective operation of the aerospace shell production
line. In the future, it is necessary to deeply explore the applicable rules of rescheduling, and build a
dynamic production line scheduling model. To solve the production paralysis problem of different
scales, analyze the impact of dynamic events on existing scheduling plans shall be investigated in
future research.
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