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Abstract: In General Relativity, the gravitational field of a spherically symmetric non-rotating body is
described by the Schwarzschild metric. This metric is invariant under time reversal, which implies
that the power series expansion of the time dilation contains only even powers of v/c. The weak-field
post-Newtonian approximation defines the relativistic time dilation of order ε (or of order (v/c)2)
of the small parameter. The next non-zero term of the time dilation is expected to be of order ε2, which
is impossible to measure with current technology. The new model presented here, called Relativistic
Newtonian Dynamics, describes the field with respect to the coordinate system of a far-removed
observer. The resulting metric preserves the symmetries of the problem and satisfies Einstein’s field
equations, but predicts an additional term of order ε3/2 for the time dilation. This term will cause
an additional periodic time delay for clocks in eccentric orbits. The analysis of the gravitational
redshift data from the Galileo satellites in eccentric orbits indicates that, by performing an improved
satellite mission, it would be possible to test this additional time delay. This would reveal which
of the coordinate systems and which of the above metrics are real. In addition to the increase of
accuracy of the time dilation predictions, such an experiment could determine whether the metric
of a spherically symmetric body is time reversible and whether the speed of light propagating
toward the gravitating body is the same as the speed propagating away from it. More accurate time
dilation and one-way speed of light formulas are important for astronomical research and for global
positioning systems.

Keywords: astrophysical studies of gravity; relativistic time delay; gravitational redshift;
alternative theories; breaking of time reversal

1. Introduction

Einstein’s General Relativity (GR) has succeeded in explaining non-classical behavior in
astrophysics. In GR, the gravitational force curves spacetime, and the curving is expressed by
a metric [1]. For the gravitational field of a non-rotating, spherically symmetric body, Einstein’s
field equations lead to the Schwarzschild metric, usually expressed in Schwarzschild coordinates [2].
In these coordinates, the metric is invariant under time reversal. A central prediction of GR is time
dilation experienced by clocks moving in a varying gravitational field.

The experimental verification of gravitational time dilation, based on the Schwarzschild metric, was
obtained in 1960 by Pound and Rebka [3]. The gravitational time dilation was measured more accurately
in 1976 by the Vessot–Levine rocket experiment, named Probe A [4]. The European Galileo satellite
experiment 2014–2017 verified the GR prediction for the time shift with even higher accuracy [5,6].
This experiment measured the time delay of satellite clocks with respect to the clocks at rest on
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the Earth’s surface. The relativistic time delay is caused by the gravitational redshift, which depends on
the position of the clock in the gravitation field, and the relativistic Doppler effect, which depends on
its velocity. The rotation of the Earth is neglected in gravitational redshift predictions.

Relativistic Newtonian Dynamics (RND) is an alternative relativistic theory of gravitation,
developed recently by Yaakov Friedman and his collaborators (see [7,8]). As in GR, also here motion
is by a geodesic with respect to a particular metric. However, RND uses the coordinate system of
a far-removed observer at rest with respect to the source. Any event can be labeled effectively with
respect to these coordinates by performing various measurements, while the traditional Schwarzschild
coordinates, in which radial distance is defined by the area of a sphere, cannot be measured.
For the gravitational field of a stationary, spherically symmetric body, the RND metric is similar
to Whitehead’s metric [9], which was shown by Eddington [10] to satisfy Einstein’s field equations.
Moreover, the RND metric coincides with the Schwarzschild metric in Eddington–Finkelstein
coordinates [10,11]. While Eddington–Finkelstein coordinates are generally considered to be
non-physical, we claim that our coordinate system is the one actually used to measure time dilation [5].
Note that, for an extended, spherically symmetric body, the RND metric differs from the corresponding
metric [12] in Whitehead gravitation.

To justify the use of Eddington–Finkelstein coordinates for Schwarzschild geometry, in [13]
(p. 248), the authors wrote “In general, if we wish to write down a solution of Einstein’s field equation
then we need to do so in some particular coordinate system. However, what, if any, is the significance
of any such system? For example, suppose we take the Schwarzschild solution and apply some
complicated coordinate transformation xµ → x

′µ. The resulting metric will still be a solution of
the empty-space field equation, of course, but there is likely to be a little or no physical or geometric
significance attached to the new coordinates x

′µ.” Eddington–Finkelstein coordinates are derived from
the traditional Schwarzschild ones by applying a non-linear transformation. In [13], the use of these
coordinates is justified, and they are used to explain some known effects in astronomy.

RND predicts the same trajectories for planetary motion as GR and passes all classical tests of
GR. For a gravitational field of an extended spherically symmetric body, the relativistic time dilation
formula derived from the RND metric coincides with the GR one on the weak-field post-Newtonian
approximation (of order ε of the small parameter). In contrast to GR, where the next non-zero term
is of order ε2, RND produces a non-zero term of order ε3/2. This additional term depends on both
the position and velocity of the clock and results from breaking the time reversibility symmetry of
the field’s metric.

The data analysis [5,6] of the time shift of clocks on Galileo satellites reveal that reanalyzing
these data may reveal this additional RND term. It also shows how to design an improved satellite
experiment to determine whether the additional term, predicted by RND, could be observed.
Such an experiment will test the GR time delay prediction, based on the Schwarzschild coordinates
and metric, that terms of order ε3/2 must vanish for a spherically symmetric gravitational field.
If the experiment produces a non-zero value for this term, this would show that the RND coordinates
are more physical and its metric describes the field more precisely.

2. Relativistic Newtonian Dynamics

Relativistic Newtonian Dynamics is a geometric theory of gravitation. The dynamics of a moving
object is described by its worldline in spacetime (which we call lab spacetime), as observed by
an observer at rest far from the source of the field. We assume that the lab spacetime is the flat
Minkowski spacetime of the far-away observer, whose frame we call K. To define the spacetime
coordinates of any event in Earth’s vicinity, we may use base stations positioned on the Earth’s surface.
These stations are equipped with synchronized atomic clocks and laser ranging equipment which
will measure the time that the event was observed at the station and the distance from the station.
Using the coordinates of the base station and the information about the gravitational field, it is possible
to calculate the coordinates of the event in the spacetime of our observer. The gravitational field defines
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a metric on this spacetime, and the motion of any object is by a geodesic with respect to this metric.
In [5], the time shift of Galileo clocks was calculated with respect to the clock in such a frame.

RND does not use Einstein’s field equations to define the metric. Rather, the metric in
RND is derived [7] entirely from the assumption that the field propagates with the speed of light,
the 4D symmetry of the problem and the Newtonian limit. For the gravitational field of a spherically
symmetric, non-rotating body of mass M, the line interval of the RND metric in spherical coordinates is

ds2 = (1− φ(r))c2dt2 − 2cφ(r)dtdr− (1 + φ(r))dr2

− r2(dθ2 + sin2 θdϕ2), (1)

where
φ(r) =

rs

r
(2)

is the dimensionless potential of the gravitational field, and

rs =
2GM

c2 , (3)

is the Schwarzschild radius. This metric coincides with Whitehead’s metric for such a field.
From the derivation [7] of the metric in Equation (1), it follows that this is also the metric of a gravitation
field generated by an extended, spherically symmetric body outside this body.

The proper time τ of an object (for example, the time of the satellite clock) in a gravitational field
is defined by

cdτ = ds, (4)

and differentiation of any variable x by τ is denoted by ẋ. Dividing Equation (1) by c2dτ2 and using
the definition in Equation (4) of τ, we obtain

1 = ṫ2
(

1− β2 − φ(r)(1 + βr)
2
)

, (5)

where v is the velocity of the object, β2 = v2/c2 and βr =
1
c

ṙ
ṫ is its unit-free radial component, as they

are observed in K .
We can now explicitly define the connection between τ, the time of the satellite clock, and the lab

frame time t, by introducing a γ factor satisfying

dt = γdτ . (6)

From (5),

γ =
1√

1− β2 − φ(r)(1 + βr)2
. (7)

If the field vanishes, we have φ(r) = 0, and Equation (7) becomes the time dilation γ factor of
special relativity. If the object is at rest, then β = βr = 0, and Equation (7) is the gravitational time
dilation. Thus, our γ factor properly incorporates both known time dilations.

Let us compare our metric and time dilation formulae to the corresponding formulae in GR based
on the Schwarzschild metric. In Schwarzschild coordinates, the line interval of the Schwarzschild
metric in spherical coordinates is

ds2
s = (1− φ(r))c2dt2

s − (1− φ(r))−1dr2−

r2(dθ2 + sin2 θdϕ2), (8)
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with φ(r) defined by Equation (2). The Schwarzschild equivalent of Equation (5) is

1 = ṫ2
s

(
1− β2 − φ(r)(1 + (1− φ(r))−1β2

r )
)

, (9)

which yields a time dilation factor

γs =
1√

1− β2 − φ(r)(1 + (1− φ(r))−1β2
r )

. (10)

To compare the RND and the Schwarzschild metrics, we use a standard assumption of
post-Newtonian theory that β2 ∼ φ(r) ∼ ε, where ε is a small parameter used for bookkeeping.
Comparing the metrics in Equations (1) and (8), we see that they differ only in two coefficients:
a difference in the dr2 coefficient, of order ε2, and of the dtdr coefficient, of order ε, which is not present
in Equation (8). Moreover, the Schwarzschild metric is invariant under time reversal, while the RND
metric is not. We are not aware of a physical reason why the relativistic gravitational field of a source
at rest should be invariant under time reversal.

The expansion to order less than ε2 of the GR time dilation formula in Equation (10) is

γs ≈ 1 +
β2

2
+

rs

2r
. (11)

The corresponding RND formula (7) is

γ ≈ 1 +
β2

2
+

rs

2r
+ βr

rs

r
. (12)

The difference between the two models’ predictions is the βr
rs
r term of order ε3/2. Note that this

term depends on both the clock’s position in the field and its velocity.

3. The Time Delay Factor of Clocks on Satellites in Eccentric Orbits

The two Galileo 5 and 6 satellites carrying passive hydrogen masers moved in eccentric elliptic
orbits around the Earth for about three years (2014–2017). The time delay of their clocks with respect
to the clocks of the European Global Navigation Satellite System (EGNSS) was measured. The EGNSS
clocks are synchronized to the base station clocks on the Earth’s surface. The analysis of this time
delay is based on the satellites’ trajectories in the Geocentric Celestial Reference System. For simplicity,
we rotate this system so that the motion of the satellites is in the plane θ = π/2 and denote this
reference system by K. At this point, we ignore the influences of the Sun and the Moon on our
experiment. These influences will be considered later.

The expected time delay, with accuracy less than ε2, of the clocks on Galileo satellites can be
calculated from Equation (11) for GR and from Equation (12) for RND. To do this, we have to find
the radial distance r(τ) of the satellite from the center of the Earth and its velocity v(τ) in K.

In both models, since the metrics in Equations (1) and (8) are independent of ϕ, the momentum
corresponding to this variable is conserved, implying

r2 ϕ̇ = J, (13)

where J has the meaning of angular momentum per unit mass. The equations for r(τ) are also the same
(see [7]):

ṙ2 + (1− φ(r))
(

c2 +
J2

r2

)
= E. (14)

The constants of motion J, E could be found from the initial conditions. Thus, the trajectory r(ϕ)

can be derived from these formulas and will be the same for both models.
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The value of β2 = v2/c2 on the trajectory can be derived from the fact that v2 = ṙ2/ṫ2 and that
the square of the proper velocity is ṙ2 = ṙ2 + r2 ϕ̇2 = ṙ2 + J2/r2 is the same for both models. Thus,
to estimate the difference in β2 between the models, only the ṫ formula is needed.

From [7], in GR based on the Schwarzschild metric, we have

ṫs =

√
E/c

1− φ(r)
, (15)

while, in RND,

ṫ =
(
√

E + φ(r)ṙ)/c
1− φ(r)

. (16)

The expansion to order less than ε2 of β2 in RND is

β2 =
ṙ2

c2 ṫ2
=

ṙ2(1− φ(r))2

E

(
1 +

φ(r)ṙ√
E

)−2

≈ β2
s(1− 2βrφ(r)/

√
E) ≈ β2

s ,

where β2
s is the value of β2 in GR. This implies that, to ε2 accuracy, there is no difference between β2

in the two models. Thus, to this level of accuracy, the difference between the time dilation between
the two models is

γ− γs ≈ βr
rs

r
. (17)

4. Time Shift between the Clocks on the Galileo Satellites and EGNSS Clocks

To define the shift between the clocks on the Galileo satellites and EGNSS base station clocks,
we use the difference between these clocks and a clock measuring time in K. Denote by t0 the time of
initial clock synchronization.

Since the base station clock is at rest in a given gravitational potential, the time shift ∆tb(t)
between it and the lab clock readings is linear, and ∆tb(t) = γb(t− t0), where γb is the gravitational
time dilation factor of the Earth’s gravitation field on the Earth’s surface.

The difference ∆tm(t) between the maser clock on the satellite and the lab clock, according to RND, is

∆tm(t) =
∫ t

t0

γ(τ)dτ − (t− t0),

and, using (12), it is

∆tm(t) ≈
∫ t

t0

(
β2

2
+

rs

2r
+ βr

rs

r

)
dτ. (18)

This difference according to GR is

∆ts(t) =
∫ t

t0

γs(τ)dτ − (t− t0),

and, using Equation (11), it is

∆ts(t) ≈
∫ t

t0

(
β2

2
+

rs

2r

)
dτ. (19)

Thus, the difference in time shifts DT(t) = ∆tm(t)− ∆ts(t) predicted by the two models is given by

DT(t) =
∫ t

t0

βr(τ)
rs

r(τ)
dτ. (20)
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Since βr(τ) is negative on the part of the orbit from the apogee to the perigee and positive on
the other part, the time shift DT(t) is periodic with the orbital period T.

The time shift ∆tm(t) has a linear term A(t− t0). The coefficient of proportionality A could be
defined by

A =
1
T

∫
T

γ(τ)dτ.

The constant A is independent of the choice of revolution. The remaining time shift is periodic
with period T.

The expected shift between the clocks on the satellites and the EGNSS clocks should be

∆t(t) = ∆tm(t)− ∆tb(t) = ∆ts(t)− ∆tb(t) + DT(t). (21)

This shift has a linear term and a periodic one with period T. The periodic part keeps all
the information on variation of the relativistic time dilation during one revolution and is free from
slow varying parameters influencing the clock rate. Since DT(t), defined by Equation (20), is periodic
with period T, it is combined with the periodic part of the time shift.

We solved numerically r(τ) and βr(τ) for the Galileo satellite trajectories based on the information
from [5,6]. We calculated the periodic part of the time shift by use of Equation (18) and DT(t) by use
of Equation (20). Figure 1 presents these results.

Figure 1. The radial distance r(t)[103km] (top), the periodic part of the time shift ∆t(t)[ns], as predicted
by GR (middle) and the RND additional time shift DT(t)[ps] (bottom) for the Galileo satellites.

By comparing DT(t) with the observed residuals, presented in Figure 5 of [6], we see that
the accuracy of the approximation of the the observed time delay at each period is only of one order
larger than the additional term predicted by RND. This additional term might possibly be revealed
by averaging the periodic part of the time shift over a large number of revolutions. Since the orbital
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period was 13 h, and the effect of the moon and the sun on the time dilation has a different period, such
averaging will minimize their effect. Averaging reduces the random measurement error by a factor of√

n, where n is the number of revolutions in the sample. Thus, if there are no non-random errors of
period T, we should observe the DT(t) term from the data.

5. Improved Experiment to Test Relativistic Time Dilation

To test the additional DT(t) term in the time dilation more accurately, we have to perform
an experiment in which this term will be more significant and will be measurable with higher
confidence. To do this, we have to enlarge the eccentricity of the orbit and get the perigee as close to
the Earth as possible. Having a shorter orbital period would help to gather statistically significant data
in shorter time.

Below, in Figure 2, are the simulation results for an orbit with perigee distance 7200 km and apogee
distance 20,000 km from the center of the Earth.

Figure 2. The radial distance r(t)[103km] (top), the periodic part of the time shift ∆t(t)[ns], as predicted
by GR (middle) and the RND additional time shift DT(t)[ps] (bottom) for the proposed satellite.

From the simulation, we observe that around the perigee, for almost 3 h, the DT(t) will be
in the −(10–30) ps range and disappear at the apogee. We expect that this could be measured.
By decreasing the orbit perigee distance and increasing apogee distance, the amplitude of DT(t)
may increase threefold, but this would also lead to the increase of the orbital period.

The result of this experiment would show whether a term of order ε3/2 is present in the relativistic
time dilation. This would show which of the coordinate systems is more physical and whether
the metric of a spherically symmetric gravitational field is time reversible. As shown in [7],
if the additional term is non-zero, this implies a correction to the one-way speed of light in a gravitation
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field. This correction may be needed for the next level of accuracy in satellite navigation systems
and global positioning systems.

Generally, to test a term of order ε3/2 in time dilation, you need a strong gravitation field
and velocities close to the speed of light. The Earth’s gravitational field is not strong enough
and the velocities of the satellite are much smaller than the speed of light, implying that it is impossible
to measure this term directly. Nevertheless, the term DT(t), which is obtained by integration of this
term for several hours, could be measured.

6. Discussion

To date, relativistic effects of gravity have been tested at the level of the weak-field post-Newtonian
approximation of GR. Gravitational time dilation is one of the main relativistic effects, which was
tested with high accuracy in several experiments. We propose here to test relativistic time dilation
in a gravitational field of a spherically symmetric body beyond the weak-field post-Newtonian
approximation. Why does this become possible now?

1. The weak-field post-Newtonian approximation of GR considers corrections of order ε of the small
parameter. The next non-zero term in GR, based on the Schwarzschild metric, is of order ε2,
which is impossible to measure with current technology. The time dilation formula based on
the Relativistic Newtonian Dynamics model has a non-zero term of order ε3/2, which we propose
to measure.

2. The additional time dilation term is significantly large to be measured directly only on stars
with highly eccentric orbits near a black hole. What we propose is to test its effect on the time
delay a clock placed on a satellite in an eccentric orbit around the Earth. Since this time delay is
an integral of the time dilation for several hours, the contribution of the additional term can be
observed.

3. The expected additional time delay is periodic with the orbital period of the satellite.
By considering only the periodic part of the time delay data, we can remove unwanted effects
influencing the time dilation. Averaging the periodic time delay over several rounds reduces
the random error in the data.

This experiment would reveal whether the Schwarzschild metric in Schwarzschild coordinates
or the RND metric in its coordinates is to be preferred. The experiment would increase the accuracy
of the time dilation predictions, which is important for astronomical research, since it introduces
a correction to the gravitational redshift. The experiment would also determine whether the metric
of a spherically symmetric body is time reversible. If the experiment were to observe the additional
term of the time delay, this would imply that the speed of light propagating toward the gravitating
body remains c, while the speed of light propagating away from it is reduced by more than predicted
by the Schwarzschild model. A more accurate one-way speed of light formula is important for
synchronization of clocks and analysis of the data in global positioning systems.
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