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Abstract: This paper mainly formulates the problem of predicting context-aware smartphone
apps usage based on machine learning techniques. In the real world, people use various kinds
of smartphone apps differently in different contexts that include both the user-centric context
and device-centric context. In the area of artificial intelligence and machine learning, decision tree
model is one of the most popular approaches for predicting context-aware smartphone usage.
However, real-life smartphone apps usage data may contain higher dimensions of contexts, which
may cause several issues such as increases model complexity, may arise over-fitting problem, and
consequently decreases the prediction accuracy of the context-aware model. In order to address these
issues, in this paper, we present an effective principal component analysis (PCA) based context-aware
smartphone apps prediction model, “ContextPCA” using decision tree machine learning classification
technique. PCA is an unsupervised machine learning technique that can be used to separate symmetric
and asymmetric components, and has been adopted in our “ContextPCA” model, in order to reduce
the context dimensions of the original data set. The experimental results on smartphone apps usage
datasets show that “ContextPCA” model effectively predicts context-aware smartphone apps in
terms of precision, recall, f-score and ROC values in various test cases.

Keywords: mobile data analytics; machine learning; principal component analysis; classification;
decision tree; context-aware computing; user behavior modeling; predictive analytics; personalization;
intelligent services; artificial intelligence; IoT applications

1. Introduction

Context-awareness is a popular term in the context of computing, because of the popularity of
Internet of Things (IoT), particularly the recent advanced features in the most popular IoT device,
i.e., smartphones. In the real world, users’ interest on “Mobile Phones” is more and more than other
platforms such as “Desktop Computer”, “Laptop Computer” or “Tablet Computer” over time [1].
In addition to voice communication, people use smartphones for using various categories of apps
like social networking system, tourist guide, shopping recommendation, instant messaging, medical
appointment etc [2]. Users’ behaviour with these apps may vary from user to user according to their
contextual information in different dimensions such as temporal context, work status in workday or
holiday, spatial context, their emotional state, Wifi status, or device related status etc. Although all
these relevant contexts might have influence in apps usage behaviour of individuals, it may cause
inefficient problem because of higher dimensions of contexts. Thus, it’s important to study on principal
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component analysis based on these contexts in order to build an effective and efficient context-aware
apps prediction model.

Let us consider a real-world motivational example related to our ContextPCA model.
Suppose, a smartphone user, Alice is a post graduate research student of Swinburne University of
Technology. She has installed a large number of smartphone apps such as Facebook, LinkedIn,
Twitter, Outlook email, Youtube, eHealth service, location tracking, instant messaging, read news
etc. on her smartphone. Dynamic searching and efficiently finding these apps according to the
needs in her various day-to-day situations would be useful. Although, homescreens of recent
advanced smartphones provide easy access of the useful apps without additional searching effort,
the homescreen is unaware about her current contexts, e.g., time. Consequently, the phone becomes
unable to intelligently manage the useful apps according to her needs, as her current contexts may
change over time. An efficient and effective context-aware apps prediction model could solve such
problem and provide the required services. In the area of artificial intelligence and machine learning,
tree-like model is one of the most popular approaches for predicting context-aware smartphone
usage [3,4]. However, real-life phone usage data may contain higher dimensions of contexts, which may
cause several issues like increases model complexity, may cause over-fitting problem, or decreases the
model prediction accuracy. Thus, the research question is - how to effectively minimize these issues while
building a context-aware apps usage model? Therefore, in this paper, we aim to focus on effectively
reducing higher dimensions of contexts for building an intelligent context-aware smartphone apps usage
predictive model based on machine learning techniques.

In the area of machine learning, there are typically two types of dimensionality reduction
approaches such as feature elimination and feature extraction. In feature elimination approach,
the features that are unnecessary are simply pruning from a dataset. We may lose any potential
information gained from the dropped features. On the other hand, feature extraction creates new
variables by combining the existing features and allows to maintain all important information held
within features. As each contextual information might have an influence on individuals apps usage
behaviour, we consider feature extraction approach rather than elimination. Principal components
analysis (PCA) is an unsupervised, non-parametric statistical technique primarily used for
dimensionality reduction in machine learning, that uses an orthogonal transformation which converts
a set of correlated variables to a set of uncorrelated variables, which is briefly discussed in Section 3.
It thus enables to identify correlations and patterns in a data set to transform into significantly lower
dimension datasets without loss of any important information.

In this paper, we present an effective principal component analysis (PCA) based context-aware
smartphone apps prediction model, “ContextPCA” using decision tree machine learning technique.
In our earlier paper, we built an apps usage prediction model based on contexts [5]. Thus the key
difference is focusing on handling higher dimensions of contexts based on principal component analysis in
an apps usage prediction model. In our ContextPCA model, we first preprocess the raw apps usage
datasets of individual users, that includes missing data handling, data encoding, and data scaling
for further analysis. After that, we extract the contextual features from the training dataset based
on principal component analysis and create a number of principal components that are less than the
number of original context dimensions. Once the contexts have been processed into the principal
components, we then construct a decision tree on the processed training dataset to achieve our goal.
The effectiveness of producing different number of principal components and the ContextPCA model
is studied through a number of experiments.

The contributions of this work can be summarized as follows.

• We first highlight the significance of Principal Component Analysis (PCA) for higher dimensions of
contexts in a machine learning based context-aware smartphone apps usage prediction model.

• We have collected contextual apps usage datasets consisting of different categories of apps usages
in different contexts that include both the user-centric context and device-centric context form
individual smartphone users. We then analyse our collected apps usage datasets in terms of
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context dimensions, in order to build a PCA-based context-aware prediction model “ContextPCA"
using the decision tree classification approach.

• Finally, we conduct experiments to evaluate the effectiveness of different principal components in
our ContextPCA model. The experimental results show that our ContextPCA model significantly
outperforms for predicting context-aware smartphone apps.

The rest of the paper is organized as follows. Section 2 provides background and related work
of machine learning classification approaches, and corresponding context-aware mobile services.
Section 3 gives an overview of the principal component analysis. In Section 4, we present our
ContextPCA model based on machine learning techniques. We have shown the experimental results
on phone apps usage dataset in Section 5. Finally, Section 6 concludes this paper and highlights the
future work.

2. Background and Related Work

To solve the prediction problems, classification learning is well-known and popular technique
in the area of machine learning and data science. The goal of classification typically is to accurately
classify or predict the given class labels of instances, whose contextual features or attribute values are
known, but class values are unknown [6].

Although, association learning is another popular approach in the area of machine learning
and data science and can be used for user behavioural analytics [7–11], we particularly
focus on classification approach for the purpose of building a prediction model in this work.
Classification learning techniques typically build the model using a given training dataset and then
the resultant model can be used to predict the class label for a test case. Effectively modelling and
predicting smartphone usage behaviour various machine learning techniques can be used. For instance,
to build the prediction model in the area of mobile environment, ZeroR as base classifier, probability
based naive Bayes classifier, support vector machines, instance based k-nearest neighbours, logistic
regression, artificial neural network or deep learning, rule-based learning like decision trees, ensemble
learning like random forest have been used [6,12]. These machine learning classifiers are frequently
used in context-aware mobile analytics [12].

Among the traditional machine learning techniques, tree based context-aware model is more
effective for predicting users’ behavioural activities in different contexts [12]. A very well-known and
mostly discussed tree based machine learning technique for building prediction model is decision
trees [13]. ID3 algorithm proposed by Quinlan et al. is known as the core algorithm for building
decision trees [14]. ID3 mainly constructs a top-down decision tree that follows a greedy searching
procedure through the given training dataset. The entropy and information gain values are determined
to select the best attribute or feature available in the datasets [14]. A modified algorithm named C4.5
algorithm proposed by Quinlan later, which is based on the ID3 algorithm [13]. This algorithm also
builds decision trees using the concept of information gain mentioned earlier from a training dataset.
Another gain based behavioral decision tree algorithm BehavDT has been proposed by Sarker et al. [4].
Decision tree classification approach is frequently used in the area of context-aware systems and
services [3,15–17]. Recently, Sarker et al. use random forest ensemble learning technique consisting of
multiple decision trees for predicting context-aware smartphone usage [5]. However, in that work, the
authors particularly focus on how a single decision tree is affected by higher dimensions of contexts to
build a context-aware model.

Unlike the above approaches and context-aware models, in this work, we present an effective
principal component analysis (PCA) based context-aware smartphone apps prediction model,
“ContextPCA” using decision tree machine learning technique. In this model, we aim to focus on
reducing higher dimensions of contexts for building an effective context-aware smartphone apps usage
predictive model based on machine learning techniques.
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3. Principal Component Analysis

In the area of machine learning and data science, Principal Component Analysis (PCA) is
a well-known unsupervised learning method. PCA is a mathematical procedure that transforms
a number of correlated variables into a number of uncorrelated variables called principal components.
PCA was at first presented in the area of non-arbitrary factors by Pearson [18] and reached out to
irregular one by Hotelling [19]. Given a dataset having the number of dimensions n, PCA intends
to find a linear subspace of dimension d, where d < n such that the data points exist mainly on this
linear subspace. Figure 1 shows an example of - how PCA effects on the dimensions of a given dataset.
For instance, the original data instances have three features that are shown in Figure 1a with 3D space.
After applying PCA, these data points can be reduced to two features shown in top of the Figure 1b,
by projecting them onto a 2D plane with the principal components PC1 and PC2. Using PCA, the data
can be further reduced to only one feature shown in bottom of Figure 1b, by projecting them onto a 1D
line with the principal component PC1. The principal components mentioned above are orthogonal
and linear transformations of the original data points, so that it could reduce the original dimensions
d < n, in which we are interested in this PCA based context-aware smartphone apps usage model
named “ContextPCA”.

(a) Original features in 3D space. (b) Principal components in 2D and 1D space.

Figure 1. An example of a principal component analysis and corresponding components in different
dimension space.

In the following, we summarize the basics of PCA including relevant mathematical equations.
Lets consider xi, i ∈ 1...t a set of data vectors, PCA creates the d principal axes based on those
orthonormal axes onto which the variance retained under projection is maximal. This is known as the
most common definition of PCA, due to Hotelling et al. [19]. In order to capture the variability as
much as possible, we first choose U1 as a principal component having maximum variance. Let the first
principal component be a linear combination of X defined by coefficients or weights w = [w1...wn],
and can be written in matrix form as U1 = wTX. Thus the equation can be found as:

var (U1) = var
(

wTX
)
= wTSw (1)

where S is the n × n sample covariance matrix of X defined above. According to this equation
var (U1) can be made arbitrarily large by increasing the magnitude of w. Hence, above optimization
problem is defined as maximization problem with respect to a constraint such that max wTSw with
respect to wwT = 1. To solve this optimization problem a Lagrange multiplier α1 is introduced and
corresponding Lagrange function is constructed as:

L (w, α) = wTSw− α1

(
wTw− 1

)
(2)

The solution of Equation (2) can be obtained by considering partial differentiation with respect to
w and α and further processing. Thus, the equations can be obtained as:

Sw = α1w (3)
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wTSw = α1wTw = α1 (4)

If α1 is the largest eigenvalue of S, then var (U1) is maximized. Based on the equations involved
α1 and w are an eigenvalue and an eigenvector of S. Differentiating Equation (2) with respect to the
Lagrange multiplier α1 results constraint as:

wTw = 1 (5)

Thus, it has been shown that the normalized eigenvector with the largest associated eigenvalue
of the sample covariance matrix S gives the first principal component. A similar argument can show
that the first d principal components are determined by the d dominant eigenvectors of covariance
matrix S.

4. Materials and Methods

4.1. Contextual Data Collection and Description

In this work, we take into account a number of contexts including not only the user-centric
context such as spatio-temporal context of the users, their mood or preferences, etc., but also the
device-centric context considering users’ influences for their usage. Hence, we summarize these
contextual information that are used in our ContextPCA model. These are:

Smartphone apps: In this work, different categories of smartphones’ apps such as social networking,
instant messaging, mobile communications, entertainment, or other apps related to users’ daily life
services are considered in order to build our ContextPCA model. For instance, Figure 2 shows the
distributions of different types of apps like Facebook (FB), Gmail, LinkedIn (LI), Instagram (IG),
Youtube (YT), Live Sport (LS), Whatsapp (WA), Browsing (BR), Movie (MOV), Skype (SK), Music (MS),
Read News (RN), Games (GM) of a sample user.

Figure 2. Smartphone apps usage distribution of a sample user considering various types of apps.

Contexts: According to the general definition of context, it could be anything to characterize
the situation of an entity. In this work, a smartphone user can be represented as an entity.
Thus, different dimensions of information might have an influence on the apps usage of smartphone
users. For instance, temporal context that represents time related information of the users’ apps usage
behaviour. Temporal context is one of the significant and primary contexts that have highly influence on
smartphone users for their activities with their phones [20]. In addition to such temporal information,
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users’ work status could be another context heavily impacts on apps usage for many individuals. For
instance, apps usage behaviour of an individual user on Saturday, say a holiday, may differ with her
usage on Monday, a first working day in a week. Although, it is related to the temporal context in terms
of week day and week end, however, it also represents individuals’ working status, which is significant
context in order to model smartphone apps usage behaviour according to their preferences. Spatial
context could be another significant context that represents users’ spatial information, e.g., one’s current
location at office. As spatio-temporal context is popular for building human-centric context-aware
applications, such spatial context could play a role in our smartphone apps usage behaviour model.
User mood could be another significant context that impacts on individuals, particularly on human
centric applications. For instance, one individual user typically likes to listen only her top favourite
musics when her emotional state is in a happy mood, while likes to chatting with her close friends on
social media when her emotional state is in a sad mood.

Besides these user-centric contexts that are related to users’ day-to-day situations or personal
preferences, users’ own device related contexts also important for modelling users’ apps usage
behaviourr. Such contextual information could be one’s phone profile, phone battery level or charging
status etc. that might have an influence on users to use various categories of smartphone apps.
For instance, if one’s device gives low power signal, she typically might not be interested to connect
her device with the Internet in that context for using an entertainment app like watching Youtube
video. For modelling users’ apps usage behaviour Internet connectivity and speed might also have an
impact in our real world life. Thus, in this work, we consider all these contextual information in our
PCA based modelling. We have summarized the detailed picture of the contexts that are used in our
ContextPCA model in Table 1. To collect these contextual information from individual users, we have
randomly chosen ten participants and collected their datasets from June 2018 to October 2018 for the
purpose of doing experiments.

Table 1. An overview of contexts in our ContextPCA model.

Contexts Type Example Values

Temporal Context Continuous
Time-of-the-day [24-h-a-day]

Days-of-the-week [7-days-a-week]

Spatial Context Categorical
Phone user location [at home, at office,

at the canteen, in the playground,
on the way, etc.]

Work status Context Categorical (binary) Workday and Holiday
User mood Context Categorical Emotional state of phone user [normal, happy, or sad]

Device status Context Categorical Battery level[low, medium, or full]
Phone profile Context Categorical Phone notification [general, silent, or vibration]

Internet connectivity Context Categorical (binary) WiFi connectivity [on, off]

Smartphone apps Categorical
Social networking, Gmail, Communication, Video,

Entertainment, Read News, Games etc.

4.2. Preprocessing of Contextual Data

To build our ContextPCA model, we need exploratory data analysis collected by us to feed
our target machine learning classification technique. In this procedure below tasks are involved for
this work.

• Missing data handling: In our datasets, we found only a few number of missing data that
occurs during the data collection process. Thus, due to anomaly raised in contextual data
collection, we first remove all the missing data and consider the relevant contextual features and
corresponding data-values.

• Contextual feature encoding: As we have seen that Table 1 contains contextual information including
categorical context. In order to fit these data to the machine learning based model, it is needed
to convert all the categorical contextual features into vectors. To do this task, the most common
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approaches are “Label Encoding” and “One Hot Encoding”. In one hot encoding technique,
a significant number of features increases, and consequently increases the data dimensions. On the
other hand, in label encoding, the number of features remains the same as the feature-values
directly converted into a specific numeric values. As we have taken into account a variety of
contexts discussed above, one hot encoded features might have sparse data which could makes
the model inefficient in terms of processing time because of handing additional high dimensions
of data. Thus, in this ContextPCA model, we consider label encoding technique rather than one
hot encoding in our pre-processing task. Lets consider an example in terms of context user mood.
Label encoding can turn user diverse mode [happy, sad, normal, happy, sad] into vectors [0, 1, 2,
0, 1] representing numeric values.

• Feature scaling: In data processing, it is also known as data normalization. Feature scaling is
a method used to normalize the range of independent variables or contextual features of data.
We use Standard Scaler that normalizes the features with the mean = 0 and standard deviation =
1.

4.3. PCA-Based Decision Tree Generation

Once the preprocessing of contexts has been completed, we generate a PCA based decision tree in
order to build ContextPCA model. To build a PCA based decision tree, we use the principal components
rather than using all the contexts discussed above. For this, we first create a number of principal
components based on principal component analysis discussed above. It thus enables to identify
correlations and patterns in a data set to transform into significantly lower dimension datasets without
loss of any important information. After generating the principal components, we employ the most
popular machine learning algorithm decision tree on the generated components [13]. Decision tree
algorithm builds decision tree from a training dataset, using the concept of entropy and information
gain [13].

In terms of structure, a decision tree builds a tree-like model that includes a root node from
where the tree starts top-down growing, a number of internal or interior nodes that represent the
test cases, and corresponding leaf nodes that are generated for representing the outcome of these
tests. Each interior node in our ContextPCA model denotes a context-aware test case on a particular
condition, and each leaf node represents the corresponding outcome of that test which is represented
by a category of apps or class label (e.g., using Facebook app). Each branch in the tree are connected
with arcs, from root node to leaf node. These leaf nodes are also known as terminal nodes as the tree
stops to grow after finding a leaf node. Once the tree has been built, it is used to predict each test
instance. For this, it generates a number of IF-THEN logical rules and classify them. Overall, there are
two basic steps for the development of our decision tree based ContextPCA model; (a) building the
decision tree from a apps usage training dataset considering multi-dimensional contexts, and (b)
applying the generated decision tree to measure the prediction accuracy of the context-aware test cases.

5. Experimental Results and Discussion

In this section, we first highlight the evaluation metrics that are taken into account to evaluate our
ContextPCA model, and discuss the experimental results in various dimensions related to our analysis.

5.1. Evaluation Metric

To evaluate our ContextPCA model, we employ the most popular K-fold cross validation
technique in machine learning [6]. In our evaluation, we use K = 10 for generating train and test data
to build model and measure the predicted accuracy in terms of precision, recall, and F-score. If TP,
FP, FN denote true positives, false positives, and false negatives respectively, then the formal definition
of these metrics are as below [21]:

Precision =
TP

TP + FP
(6)
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Recall =
TP

TP + FN
(7)

Fscore = 2 ∗ Precision ∗ Recall
Precision + Recall

(8)

In addition to these metrics, we also take into account ROC (Receiver Operating Characteristic)
that summarizes the trade-off between true positive rate and false positive rate for a machine learning
based predictive model [21].

5.2. Explained Variance of Principal Components in our ContextPCA Model

In this experiment, we show the explained variance of the principal components and the effect of
this variance in our ContextPCA model. The fraction of variance explained by a principal component
is the ratio between the variance of that principal component and the total variance. For this, Figure 3
shows the explained variance for various components utilizing the datasets of two different users.
Principal component analysis in our ContextPCA model computes a new set of variables (“principal
components”) and expresses the data in terms of these new variables, such as PC1, PC2, PC3, PC4,
PC5, PC6, and PC7 shown in Figure 3. The new variables known as principal components generated
are able to represent the similar information as the original variables, and can be considered as the
transformed one by taking into the relevant variances.

If we observe Figure 3, the highest fraction of explained variance among these variables is 23%
for User-01 and 22% for User-02. The lowest one is 6% for User-01 and 7% for User-02. We can
also compute these fractions for the subsets of principal components. For instance, PC1 and PC2

together explains 39% for User-01 of the total variance, and 38% for User-02. Similarly, first three
components PC1, PC2, and PC3 together explain 54% for User-01 of the total variance, and 54% for
User-02, and so on. Figure 4 shows the cumulative graph considering all the principal components PC1,
PC2, PC3, PC4, PC5, PC6, and PC7 and their explained variances for User-01 and User-02 respectively
utilizing their apps usage datasets.

Figure 3. Explained variance for different principal components generated in our ContextPCA model
utilizing the apps usage datasets of User-01 and User-02 respectively.
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(a) Variance for User-01. (b) Variance for User-02.
Figure 4. Cumulative variance for different users.

5.3. Prediction Results of our ContextPCA Model

In this experiment, we show the prediction results of our ContextPCA model. For this,
Tables 2 and 3 show the prediction results in terms of Precision, Recall, and F-score. In this experiment,
we have shown the results for each combination of the principal components PC1, PC2, PC3, PC4,
PC5, PC6, and PC7. If we observe Tables 2 and 3, we see that the first component PC1 contains more
significant information to predict apps usage behaviour. By adding additional components like PC2

increases the prediction results. However, more components might not be significant in terms of
further processing speed and prediction results as well. According to the results shown in Table 2,
a cumulative variance generated for the combination PC1, PC2, PC3, PC4, PC5 is optimal to get the
better prediction results for User-01. An optimal is determined with higher prediction results with
lower components. Similarly, a cumulative variance generated for the combination PC1, PC2, PC3,
PC4, PC5, PC6 is optimal to get the better prediction results for User-02.

Table 2. Prediction results for various combinations of components for User-01.

Components Precision Recall F-Score

PC1 0.85 0.85 0.85
PC1, PC2 0.86 0.86 0.86

PC1, PC2, PC3 0.87 0.87 0.87
PC1, PC2, PC3, PC4 0.88 0.88 0.88

PC1, PC2, PC3, PC4, PC5 0.89 0.89 0.89
PC1, PC2, PC3, PC4, PC5, PC6 0.89 0.89 0.89

PC1, PC2, PC3, PC4, PC5, PC6, PC7 0.89 0.89 0.89

Table 3. Prediction results for various combinations of components for User-02.

Components Precision Recall F-Score

PC1 0.86 0.85 0.85
PC1, PC2 0.87 0.87 0.87

PC1, PC2, PC3 0.87 0.87 0.87
PC1, PC2, PC3, PC4 0.88 0.87 0.87

PC1, PC2, PC3, PC4, PC5 0.88 0.87 0.87
PC1, PC2, PC3, PC4, PC5, PC6 0.89 0.88 0.88

PC1, PC2, PC3, PC4, PC5, PC6, PC7 0.87 0.87 0.87

In addition to these components based overall results, we have also shown individual class
wise prediction results for a particular combination of principal components for User-01, shown in
Table 4. The results are shown using the optimal subsets of the principal components for the first
five components PC1, PC2, PC3, PC4, PC5 for User-01. If we observe Table 4, we see the significant
results for each class as well. Thus, from the overall experimental results shown in Tables 2 and 3,
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and individual class wise experimental results shown in Table 4, we can conclude that our ContextPCA
model is able to effectively predict each app usage behaviour class of individual users according to
their usage patterns in the datasets.

Table 4. Individual class wise prediction results for a particular combination of principal components
for User-01.

Class Precision Recall F-Score

Class 0 0.90 0.93 0.92
Class 1 0.85 0.92 0.88
Class 2 0.92 0.80 0.85
Class 3 0.93 0.93 0.93
Class 4 0.89 0.89 0.89
Class 5 0.95 0.93 0.93
Class 6 0.88 0.89 0.89
Class 7 0.88 0.91 0.90
Class 8 0.89 0.89 0.89
Class 9 0.88 0.95 0.91
Class 10 0.86 0.84 0.85
Class 11 0.89 0.85 0.87
Class 12 0.86 0.86 0.86

5.4. ROC Analysis of our ContextPCA Model

In this experiment, we compute and compare the effectiveness in terms of ROC of our
context-aware model ContextPCA for each individual class. To show the effectiveness for individual
users, Figure 5 shows the ROC values for two different individuals User-01 and User-02 utilizing their
own datasets. In addition to this results, we have also shown the ROC values considering multiple
decision trees in our model. In this experiment, we consider 10 decision trees rather than single
decision tree while building the model. For this we randomly divide the datasets into 10 sets and build
a single decision tree utilizing each set of data and finally merge the results. Figure 6 shows the ROC
values for each individual class considering such multiple decision trees in our ContextPCA model.
Thus, the overall experimental results shown in Figures 5 and 6, we can conclude that our ContextPCA
model is able to effectively predict each app usage behaviour class of individual users according to
their usage patterns in the datasets.

(a) ROC utilizing User-01 dataset. (b) ROC utilizing User-02 dataset.
Figure 5. Prediction results of our ContextPCA model in terms of ROC for each individual class.
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(a) ROC utilizing User-01 dataset. (b) ROC utilizing User-02 dataset.
Figure 6. Prediction results of our ContextPCA model considering multiple decision trees in terms of
ROC for each individual class.

5.5. Effectiveness Comparison and Discussion

In this experiment, we compute and compare the effectiveness of our context-aware model
ContextPCA, with the traditional decision tree model. As our model is personalized, we show the
comparing results for individual users selected randomly. Figure 7 shows the relative comparison of
prediction results in terms of precision, recall, f-score for two different individuals User-01 and User-02
utilizing their apps usage datasets. In addition to these individual results, we also show the average
results utilizing a collection of datasets of all ten users, in Figure 8.

Figure 7. Comparing prediction results with a traditional tree-based machine learning model in terms
of precision, recall, and f-score utilizing individual user’s dataset.
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Figure 8. Comparing prediction results with a traditional tree-based machine learning model in terms
of average precision, recall, and f-score utilizing a collection of datasets.

If we observe Figures 7 and 8, we see that our ContextPCA model gives better prediction results
in terms of precision, recall, and f-score than traditional decision tree model for each individual user’s
dataset. The reason is that the decision tree model creates a decision tree by considering all the contexts
available in the datasets. As we claim that considering higher dimensions of contexts may cause
over-fitting problem and consequently decrease the prediction accuracy. Moreover, considering higher
dimensions of contexts while building the decision tree model increases the complexity. On the other
hand, we take into account principal component analysis for handling the higher dimensions of
contexts. Thus, our ContextPCA model minimizes the overfitting problem and reduces the complexity
while designing the tree like model and improves the accuracy as well.

In addition to the above results, Figure 9 shows the predicted outcome comparing with classic
machine learning algorithms. For this comparison purpose, we select several basic and popular
machine learning algorithms that are frequently used in the area of mobile analytics. These are
ZeroR, naive Bayes classifier (NBC), support vector machine (SVM), and k-nearest neighbor (KNN).
According to Figure 9, ContextPCA model outperforms these traditional machine learning algorithms
as well when applying on contextual mobile phone data. Thus, based on the discussion on experimental
results, we can conclude that the ContextPCA model could be more effective, when huge datasets with
high dimensions of contexts are available.

Figure 9. Comparing prediction results with traditional machine learning techniques in terms of
average precision, recall, and f-score utilizing a collection of datasets.

6. Conclusions and Future Work

In this paper, we have presented an effective principal component analysis based context-aware
smartphone apps prediction model, ContextPCA using decision tree machine learning technique.
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In our ContextPCA model, we have adopted PCA to reduce the context dimensions of the original
data set by producing a new set of uncorrelated components, to make the model effective and efficient.
In order to build this data-driven ContextPCA model, we have taken into account a number of
contextual features that might have an influence on users’ apps usage in their various day-to-day
real world situations, and collected corresponding apps usage datasets from smartphone users.
No assumption or prior knowledge is needed in employing our ContextPCA model as we take
into account unsupervised learning technique PCA for feature extraction and supervised decision tree
for building the model based on the principal components generated. Experimental results on the
datasets indicate that our ContextPCA model outperforms while predicting individuals’ smartphone
apps. We believe that this ContextPCA model would be helpful to application developers to build
corresponding real-life applications for the end users, particularly, where higher dimensions of
contexts involved.

To assess the effectiveness of our ContextPCA model by collecting more dimensions of contextual
data in the domain of smart cities and Internet-of-Things, and to measure the effectiveness in
application level could be a future work.

Author Contributions: All authors contributed and have read and agreed to publish this manuscript.

Funding: This research was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University,
Jeddah, under Grant No. D-166-611-1441.

Acknowledgments: This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz
University, Jeddah, under Grant No. D-166-611-1441. The authors, therefore, gratefully acknowledge DSR
technical and financial support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sarker, I.H. Context-aware rule learning from smartphone data: survey, challenges and future directions.
J. Big Data 2019, 6, 1–25.

2. Sarker, I.H. Mobile Data Science: Towards Understanding Data-Driven Intelligent Mobile Applications.
EAI Endorsed Trans. Scalable Inf. Syst. 2018, 5, e4. [CrossRef]

3. Sarker, I.H. A machine learning based robust prediction model for real-life mobile phone data. Internet Things
2019, 5, 180–193. [CrossRef]

4. Sarker, I.H.; Colman, A.; Han, J.; Khan, A.I.; Abushark, Y.B.; Salah, K. BehavDT: A Behavioral Decision Tree
Learning to Build User-Centric Context-Aware Predictive Model. Mob. Netw. Appl. 2019, 1–11. [CrossRef]

5. Sarker, I.H.; Salah, K. AppsPred: Predicting Context-Aware Smartphone Apps using Random Forest
Learning. Internet Things 2019, 8, 1–11. [CrossRef]

6. Han, J.; Pei, J.; Kamber, M. Data Mining: Concepts and Techniques; Elsevier: Amsterdam, The Netherlands,
2011.

7. Zhu, H.; Chen, E.; Xiong, H.; Yu, K.; Cao, H.; Tian, J. Mining Mobile User Preferences for Personalized
Context-Aware Recommendation. ACM Trans. Intell. Syst. Technol. 2014, 5, 58. [CrossRef]

8. Sarker, I.H.; Salim, F.D. Mining User Behavioral Rules from Smartphone Data through Association Analysis.
In Proceedings of the 22nd Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD),
Melbourne, Australia, 3–6 June 2018; pp. 450–461.

9. Sarker, I.H.; Colman, A.; Han, J. RecencyMiner: Mining recency-based personalized behavior from contextual
smartphone data. J. Big Data 2019, 6, 1–21. [CrossRef]

10. Sarker, I.H. Research issues in mining user behavioral rules for context-aware intelligent mobile applications.
Iran J. Comput. Sci. 2018, 2, 41–51. [CrossRef]

11. Agrawal, R.; Srikant, R. Fast algorithms for mining association rules. In Proceedings of the International Joint
Conference on Very Large Data Bases, Santiago, Chile, 12–15 September 1994; Volume 1215, pp. 487–499.

12. Sarker, I.H.; Kayes, A.; Watters, P. Effectiveness Analysis of Machine Learning Classification Models for
Predicting Personalized Context-Aware Smartphone Usage. J. Big Data 2019, 6, 1–28. [CrossRef]

13. Quinlan, J.R. C4.5: Programs for Machine Learning. In Machine Learning; Morgan Kaufmann Publishers,
Inc.: Burlington, MA, USA, 1993.

http://dx.doi.org/10.4108/eai.13-7-2018.155866
http://dx.doi.org/10.1016/j.iot.2019.01.007
http://dx.doi.org/10.1007/s11036-019-01443-z
http://dx.doi.org/10.1016/j.iot.2019.100106
http://dx.doi.org/10.1145/2532515
http://dx.doi.org/10.1186/s40537-019-0211-6
http://dx.doi.org/10.1007/s42044-018-0026-1
http://dx.doi.org/10.1186/s40537-019-0219-y


Symmetry 2020, 12, 499 14 of 14

14. Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
15. Zulkernain, S.; Madiraju, P.; Ahamed, S.I.; Stamm, K. A Mobile Intelligent Interruption Management System.

J. UCS 2010, 16, 2060–2080.
16. Hong, J.; Suh, E.H.; Kim, J.; Kim, S. Context-aware system for proactive personalized service based on

context history. Expert Syst. Appl. 2009, 36, 7448–7457. [CrossRef]
17. Lee, W.P. Deploying personalized mobile services in an agent-based environment. Expert Syst. Appl. 2007,

32, 1194–1207. [CrossRef]
18. Pearson, K. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J.

Sci. 1901, 2, 559–572. [CrossRef]
19. Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933,

24, 417. [CrossRef]
20. Sarker, I.H.; Colman, A.; Kabir, M.A.; Han, J. Individualized Time-Series Segmentation for Mining Mobile

Phone User Behavior. Comput. J. Oxf. Univ. 2018, 61, 349–368. [CrossRef]
21. Witten, I.H.; Frank, E.; Trigg, L.E.; Hall, M.A.; Holmes, G.; Cunningham, S.J. Weka: Practical Machine Learning

Tools and Techniques with Java Implementations; University of Waikato: Hamilton, New Zealand, 1999.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1016/j.eswa.2008.09.002
http://dx.doi.org/10.1016/j.eswa.2006.02.009
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1037/h0071325
http://dx.doi.org/10.1093/comjnl/bxx082
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Work
	Principal Component Analysis
	Materials and Methods
	Contextual Data Collection and Description
	Preprocessing of Contextual Data
	PCA-Based Decision Tree Generation

	Experimental Results and Discussion
	Evaluation Metric
	Explained Variance of Principal Components in our ContextPCA Model
	Prediction Results of our ContextPCA Model
	ROC Analysis of our ContextPCA Model
	Effectiveness Comparison and Discussion

	Conclusions and Future Work
	References

