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Abstract: The purpose of this study is to provide a method to investigate the effects of thermal
relaxation times in a poroelastic material by using the finite element method. The formulations are
applied under the Green and Lindsay model, with four thermal relaxation times. Due to the complex
governing equation, the finite element method has been used to solve these problems. All physical
quantities are presented as symmetric and asymmetric tensors. The effects of thermal relaxation times
and porosity in a poro-thermoelastic medium are studied. Numerical computations for temperatures,
displacements and stresses for the liquid and the solid are presented graphically.
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1. Introduction

The theory of poroelasticity was expanded by Biot [1]. Biot [2,3] formulated a theoretical framework
for the propagation of isothermal waves in the fluid-saturated elastic porous medium for both cases of
low- and high-frequency ranges. Following Biot’s model, many researchers have studied problems
with the propagation of plane and surface wave in liquid-saturated porous mediums. Due to numerous
applications in the fields of geophysics and similar subjects, growing attentiveness is being paid to the
interactions between fluids such as water and thermo-elastic solids, a field of porothermoelasticity.
Over the past four decades, thermoelastic models, which admit finite speed for thermal signals,
have received a lot of attention. These models are known as generalized thermoelastic models.
Lord and Shulman [4] have obtained the first generalized thermoelastic model with one thermal
relaxation time, while Green-Lindsay [5] presented the second generalized thermoelastic model with
two relaxation times. The field of porothermoelasticity has many applications, especially in the study of
the effects of the use of waste on the disintegrations of the asphalt concrete mix. The thermo-mechanical
coupling in the poroelastic material is more complex as compared to the classical cases, due to the fact
that the mechanical and thermal coupling occurs between the fluid and solid phases. Following [3],
many researchers including [6–9] have contributed towards various problems in porothermoelastic
medium. Abbas [10] studied the natural frequencies of a poroelastic hollow cylinder. Schanz and
Cheng [11] have studied the transient wave propagation in a one-dimensional poroelastic column.
El-Naggar et al. [12] studied the effects of voids, initial stress, rotation and magnetic field on plane
waves under generalized thermoelastic theory. Abbas et al. [13] have investigated the effects of
thermal dispersion on free convection in a fluid-saturated porous media. Many researchers [14–18]
have applied the generalized thermoelastic theories to get the numerical and analytical solutions
of physical quantities. Marin et al. [19] have presented the effects of a dipolar structure under
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Green–Naghdi thermo-elasticity. Sur et al. [20] investigated the effects of memory on thermal wave
propagations in an elastic solid with voids. Not reported in literature yet, it will be an interesting
case to study the effects of thermal relaxation times in the propagations of waves in a generalized
porothermoelastic medium. Many authors [21–27] have solved various problems under generalized
thermo-elastics models and [28–33] have solved several problems for porous medium under different
boundary conditions.

This paper explores the numerical solutions of the temperatures, displacements and stresses
of the poro-thermoelastic medium, using the finite element method. For the considered variables,
the numerical results are obtained and presented graphically, to show the effects of the porosity and
the thermal relaxation times.

2. Basic Equations

Consider an isotropic, homogeneous and elastic medium with voids; the basic equations are
based on [8,34], with Green-Lindsay [5] models in the absence of heat source, and body force can be
expressed by
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The constitutive equations
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There are different three models as:

• (CT) points to the classical dynamical coupled theory

τs
o = τf

o = τf
1 = τs

1 = n = 0.

• (LS) points to Lord and Shulman’s model

τs
o > 0, τf

o > 0, τs
1 = τf

1 = 0, n = 1.

• (GL) points to Green and Lindsay’s model

0 < τs
o < τs

1 , 0 < τf
o < τf

1 , n = 0,

where τs
o, τs

1, τf
o, τf

1 are the thermal relaxation times of the solid and fluid phases, respectively,
σij are the stress components applied to the solid surface, λ,µ, R, Q are the poroelastic coefficients,
R11, R12, R21, R22 are the thermal and mixed asymmetric coefficients, To is the reference
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temperature, Θf = Tf
− To is the fluid temperature increment, Θs = Ts

− To is the temperature
increment of the solid, ui, Ui are the displacements of the solid and fluid phases, β is the porosity
of the material, K is the interface coefficient of the interphase heat conduction, Kf = βKf∗ is the
fluid phase thermal conductivity, Ks = (1−β)Ks∗ is the solid thermal conductivity, Ks∗, Kf∗ are
the thermal conductivity of the solid and the fluid, ρs = (1−β)ρs∗ is the solid phase density per
unit volume of bulk, ρf = βρf∗ is the density of the solid phase per unit volume of bulk, ρs∗, ρf∗ are
the solid and the liquid densities, ρ12 is the dynamics coupling coefficient, ρ22 = ρf

− ρ12 is the
fluid phase mass coefficient, ρ11 = ρs

− ρ12 is the solid phase mass coefficient, ε are the strain
of the fluid phase components, eij are the strain of the solid phase components, σ is the normal
stress applied to the fluid surface, Cf

E, Cs
E are the specific heat of the fluid and the solid phases,

αfs, αsf are the thermoelastic couplings between the phases, αs, αf are the thermal expansion of
the phases coefficients, Cf

E is the specific heat couplings between the fluid and the solid phases,

ηf =
ρfCf

E
Kf is the thermal viscosity of the fluid, ηs =

ρsCs
E

Ks is the thermal viscosity of the solid,

η =
ρ12Csf

E
K is the couplings thermal viscosity between the phases, with the asymmetric coefficients

R11 = αsP + αfsQ, R12 = αfQ + αsfP, R21 = 3αsQ + αsfR, R22 = αfR + 3αsfQ, P = 3λ+ 2µ,
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We shall consider an isotropic, homogeneous and porothermoelastic medium occupying the
region x ≥ 0. For the one-dimensional problem, all the functions considered will depend only on the
variables of space x and t. The components of displacements can be written by:

ux = u(x, t), uy = 0, uz = 0, Ux = U(x, t), Uy = 0, Uz = 0 (8)

Then, the governing equations can be defined as
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3. Initial and Boundary Conditions

The initial can be expressed as

u(x, 0) = U(x, y, 0) = 0.0,
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While there are two types of boundary conditions, as

1. The thermal boundary conditions
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The plane surface boundary of the middle at x = 0 has been thermally loaded by thermal shock
by the following:

Θs(0, t) = (1−β)ΘoH(t), Θf(0, t) = βΘoH(t) (17)

where Θo is constant and H(t) is the Heaviside unite step function.

2. The mechanical boundary conditions

The bounding surface plane of the middle at x = 0 has been connected to tractions free on this
surface, i.e.,

σxx(0, t) = 0, σ(0, t) = 0 (18)
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In terms of these non-dimensional forms of variables in (19), the above equations can be expressed
as (the script has been neglected for its suitability)
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4. Finite Element Method

In this section, the complex equations of wave propagation in a poroelastic medium are abbreviated
by the finite element method (FEM). The finite element technique has been used here to obtain the
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solutions of Equations (20)–(23) under the boundary and initial conditions (26)–(29). This method is an
originally advanced method and powerful for numerical solutions to complex problems in many fields
and is the process of choice for complex systems. Another priority of this technique is that it allows the
visualizing and quantifying of the physical effects, regardless of the experimental limits. The finite
element equations of a porothermoelastic problem can be easily obtained by following the standard
procedure, as in Abbas et al. [35,36]. In the finite element method, the corresponding nodal values of
temperatures and displacements can be expressed by the forms
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=
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where n refers to the nodes number per element, while N points to the shape functions. As part of the
standard Galerkin procedure, shape functions and weighting functions are identified. Three quadratic
element nodes are used. So,

δΘ
s
=

n∑
j=1

NjδΘ
s
j , δΘ

f
=

n∑
j=1

NjδΘ
f
j , δu =

n∑
j=1

Njδuj, δU =
n∑

j=1

NjδUj, (31)

On the other hand, the time derivatives of unknown variables must be computed using the implicit
method. Now, the weak formulation for the finite element approach corresponding to (20)–(23) can be
written as follows ∫ L
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5. Results and Discussion

The physical quantities distributions in a poroelastic medium are studied. For numerical
computations, the values of thermal properties for sandstone saturated with water at To = 27 °C have
been written as, in Singh [7,37]:
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Based on the above dataset, Figures 1–12 explain the physical quantities computed numerically at
different values of the distance x. Numerical computations are carried out for the solid and liquid
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temperatures, the displacements and the stresses distributions of solid and liquid phases along the
x-axis, in the context of porothermal theory, under four thermal relaxation times. Figures 1–6 represent
the three curves predicted by various values of porosity considering the time (t = 0.2), under Green
and Lindsay’s model. Meanwhile, Figures 7–12 represent the three curves predicted by various models,
considering the time (t = 0.2) and the porosity (β = 0.25). From Figures 1 and 7, it is observed that the
temperature of the solid phase starts by its maximum values at x = 0 and progressively decreases with
increases of the distance x up to zero, beyond a wave front for the porothermal theory, that satisfies the
problem theoretical boundary conditions. Figures 2 and 8 show the variations of the liquid temperature
as a function of the distance x. It was noted that the Θf values are the highest value on x = 0 and they
decrease when the increasing distance x is too close to zero on x = 0.08, which depends on the porosity
and the type of model. The displacement changes of solid and liquid phases versus x are shown in
Figures 3, 4, 9 and 10. It is clear that they attain maximum negative value and increase progressively
until they reach maximum values at a particular location near x = 0.0, and then continuously decrease
to zero values. Figures 5, 6, 11 and 12 display the effects of the porosity and the thermal relaxation
times in the solid and liquid stresses along the distance x. As expected, it can be found that the porosity
and the thermal relaxation times have major impacts on the values of all the studied fields.Symmetry 2020, 12, x FOR PEER REVIEW 6 of 13 
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6. Conclusions

Based on the generalized thermoelastic theory with four thermal relaxation times, the variations
of temperature, the components of displacement and the components of stress in a poroelastic medium
are studied. The non-dimensional resulting has been solved, employing the finite element method.
The great effects of the thermal relaxation times and porosity are discussed for all physical quantities.
We believe that the analysis of the present study will be useful to understand the basic features of this
new model for heat conduction.
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