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Abstract: Space non-integer order convection–diffusion descriptions are generalized form of integer
order convection–diffusion problems expressing super diffusive and convective transport processes.
In this article, we propose finite difference approximation for space fractional convection–diffusion
model having space variable coefficients on the given bounded domain over time and space. It is
shown that the Crank–Nicolson difference scheme based on the right shifted Grünwald–Letnikov
difference formula is unconditionally stable and it is also of second order consistency both in temporal
and spatial terms with extrapolation to the limit approach. Numerical experiments are tested to
verify the efficiency of our theoretical analysis and confirm order of convergence.

Keywords: Crank–Nicolson scheme; Shifted Grünwald–Letnikov approximation; space fractional
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1. Introduction

Fractional differential equations (FDE) have attracted the attention of many researchers and
scientists due to their importance in different fields of study such as viscoelasticity, fluid mechanics,
physics, biology, engineering, and flows in porous media (see [1–6] and the references cited therein).
As different experiments and implementations have shown, non-integer space derivatives have been
used to develop anomalous diffusion to which a particle spreads at a rate inconsistent with the
integer Brownian motion problem in the direction of both time and space. When non-integer order
is replaced by the second order derivative in a diffusion equation, it acts to enhance the process
which we call super-diffusion [7–12]. Laboratory experiments and field-scale tracer dispersion
breakthrough curves (BTCs) are suitable for exhibiting early time arrivals that are not captured
by the integer order derivatives and these non-Fickian phenomena can be controlled by non-classical
order convection–diffusion and dispersion equations (FCDE) as it was explained in [13]. To increase the
number of applications, there should be significant interest in constructing numerical schemes to solve
a well known space fractional convection–diffusion model that has space variable coefficients. In most
cases, non-integer order differential problems have no exact solution, so various iterative and numerical
approximations [3,9,14] must be pointed out in advance. In general, these kinds of approaches have
become important in finding the approximate solutions of fractional differential equations, so extensive
numerical methods have been developed for space fractional convection–diffusion equations such as
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the spectral method [15], finite volume method [16,17], finite difference method [2,9,14,18–26], finite
element method [27–30] and collocation method [31,32].

When the discretization of domain over the region (which belongs to the geometry) is not complex,
finite difference approximations are easier and faster than other methods (see [16,33] for further details)
to get numerical solutions. In [34], the author used an unconditional stable difference method for
time–space fractional convection–diffusion problems with space variable coefficients with first order
convergence both in time and space. The Crank–Nicolson finite difference method for one-sided space
fractional diffusion equations using an extrapolation method to get second order convergence was
studied in [23]. In [9], the explicit and implicit finite difference methods are discussed for a one-sided
space fractional convection–diffusion equation with first order convergence in both time and space.
A first-order implicit finite difference discretization method for a two-sided space fractional diffusion
equation (SFDE) is also applied in [10]. Recently, an unconditionally stable second order accurate
difference method for a two-sided time–space fractional convection–diffusion equation was constructed
in [35] using the weighted and Shifted Grünwald–Letnikov difference approximation. It is not suitable
to apply the weighted combined with shifted Grünwald–Letnikov difference approximation for
one-sided Riemann–Liouville fractional derivative to have second order accurate in space. To deal
with such issues, it is important to develop a numerical scheme that leads to evaluate a one-sided
space fractional convection–diffusion problem. Thus, the main focus of our study is to have temporal
and spatial second order convergence estimates for one-sided space fractional convection–diffusion
equations based on a stable finite difference method and using spatial extrapolation to the limit
approach. The scheme has been treated using the Crank–Nicholson method with the novel Shifted
Grünwald–Letnikov difference approximation and the algorithm has been examined both theoretically
and experimentally.

Let us consider space-fractional convection–diffusion equation with variable coefficients:

∂u(x, t)
∂t

+ c(x)
∂u(x, t)

∂x
= d(x)

∂αu(x, t)
∂xα

+ p(x, t), x ∈ (L, R), t ∈ (0, T], α ∈ (1, 2]; (1)

with the given initial condition:
u(x, 0) = g(x), L ≤ x ≤ R,

and homogeneous Dirichlet boundary conditions:

u(L, t) = 0, u(R, t) = 0, 0 ≤ t ≤ T,

where c(x), d(x) and g(x) are continuous functions on [L, R] and p(x, t) is continuous function on
[L, R]× [0, T]. Here u(x, t) is the concentration, d(x) > 0 is the variable diffusion coefficient, c(x) > 0
is the fluid variable velocity which means the system is evolving in space due to a velocity field
and p(x, t) is sink term so that the fluid transport is from left to right. For the case of integer order
(α = 2), Equation (1) gives to the classical convection–diffusion equation(CDE). In this study, we
have only considered the fractional derivative case which describes a physical meaning in [36] and
it involves only a left-sided fractional order derivative. We have assumed that this one-dimensional
space fractional convection–diffusion problem has sufficiently smooth and unique enough solutions.

The structure of this paper is arranged as follows. In Section 2, we introduce some preliminary
remarks, lemmas and definitions and we show the formulation of the new Crank–Nicolson with right
Shifted Grünwald–Letnikov difference scheme in Section 3. In Section 4, we describe the unconditional
stability using Gerschgorin Theorem and convergence order analysis of the scheme. In Section 5,
numerical tests are implemented to show the relevance of our theoretical study and the conclusions
are put in Section 6.
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2. Preliminary Remarks

Definition 1. The Riemann fractional derivative operator Dα
∗ with order α is written as:

(Dα
∗u) (x) =

1
Γ(r− α)

dr

dxr

∫ x

L

u(t)
(x− t)α−r+1 dt, α > 0 (2)

where r− 1 < α < r, r ∈ N, t > 0.

Definition 2. The left hand side and the right hand side fractional order derivatives, respectively, in Equation (1)
are the Riemann–Liouville fractional derivatives with order α which are given by:

(Dα
+u)(x) =

1
Γ(r− α)

dr

dxr

∫ x

L
(x− s)r−α−1u(s)ds

(Dα
−u)(x) =

(−1)r

Γ(r− α)

dr

dxr

∫ R

x
(s− x)r−α−1u(s)ds (3)

for r− 1 < α < r, x ∈ <.

Definition 3 ([3]). Let u be given on <. The standard Grünwald–Letnikov estimate for 1 < α ≤ 2 with
positive order α is defined by the formula,

Dαu(x, t) ≈ 1
hα

Nx

∑
k=0

ω
(α)
k u(x− kh, t), (4)

we also define the Grünwald–Letnikov difference operator as:

h−α(∆α
hu)(x, t) ≈

Nx

∑
k=0

ω
(α)
k u(x− kh, t), h > 0, x ∈ <, (5)

where

ω
(α)
k =

α(α− 1)...(α− k + 1)
k!

, (6)

is called Grünwald–Letnikov coefficient which is the Taylor series expansion ω(z) = (1− z)α which is
the generating function. We can expressed the coefficients by the following recursive relations.

ω
(α)
0 = 1, ω

(α)
k = (1− α + 1

k
)ω

(α)
k−1, k = 1, 2, .... (7)

Lemma 1 ([37]). Assume that 1 < α ≤ 2, then Grünwald–Letnikov coefficients ω
(α)
k satisfy:

ω
(α)
0 = 1, ω

(α)
1 = −α < 0, ω

(α)
2 =

α(α− 1)
2

> 0

1 ≥ ω
(α)
2 ≥ ω

(α)
3 ≥ ... ≥ 0,

∑∞
k=0 ω

(α)
k = 0, ∑Nx

k=0 ω
(α)
k < 0, Nx ≥ 1.

(8)

The Shifted Grünwald–Letnikov difference operator expression is suitable for our purpose
because, it allows us to estimate (Dα

∗u) (x), which is defined in Equation (2), numerically in an
accurate way. According to [14], right shifted Grünwald–Letnikov difference operator with p shifts for
αth order Left R-L fractional derivative of u(x, t), x ∈ [L, R] at x = xm can be expressed as:

(Dα
∗u) (x, t) ≈ 1

hα

xm−L
h +p

∑
k=0

ω
(α)
k u(x− (k− p)h, t) (9)
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where

xm = L + mh, h =
R− L

Nx
, m = 0, 1, 2, ...Nx.

Lemma 2 ([38,39]). Let u ∈ C2n(<) that has a finite degree of smoothness with (Dα
+u)(x) which is

approximated by h−α
(
∆α

hu
)
(x) possesses an asymptotic expansion in integer powers of the step-length h,

then an expansion in even powers of h for the Shifted operator can be written in the form:

(
∆α

h,pu
)
(x) =

∞

∑
j=0

(−1)j
(

α
j

)
u
(

x +
αh
2
− jh

)
, h > 0. (10)

Lemma 3 ([39]). Let u ∈ Cn+3(<) all derivative of u up to the order n + 4 belong to L1(<). Then the Fourier
transform of the Grünwald–Letnikov difference operator defined in Equation (5), is

φ̂(x) =
∫
<

φ(t)eixtdt. (11)

Theorem 1. Let u ∈ C2n+3(<) with all derivatives of u up to order 2n + 3 belong to L1(<). For p ≥ 0 define
the shifted Grünwald–Letnikov operator:

(∆α
h,p)u(x) =

∞

∑
k=0

ω
(α)
k u (x− (k− p) h) ,

with ω
(α)
k =(−1)2k ( α

a2k
)=( α

a2k
). Then,if L = −∞ in Equation (2), for any computable coefficient a2k , which is

independent of h, u and x, we have

h−α
(

∆α
h,pu

)
(x) = (Dα

+u) (x) +
n−1

∑
k=1

b2k

(
Dα+2k
+ u

)
(x)h2k + O(h2n)

uniformly in x ∈ <.

Proof of Theorem 1. We closely follow the result described in [9,10] for the unshifted
Grünwald–Letnikov formula and also in [23] for the shifted Grünwald–Letnikov formula. We can see
that with the Riemann-Lebesgue lemma, the assumptions on u indicates for real positive constant C1

and from the condition which is imposed on u, we have

|ũ(t)| ≤ C1 (1+| t |)−2n−3 . (12)

From Lemma 3 for all t ∈ < the Fourier transform for u(x) of the Grünwald–Letnikov approximation is

ũ(t) =
∫
<

u(x)eixtdx.

From the definition of Fourier transform, we have observed that for a constant a ∈ <, we have:

F ([u(x− a)])(t) = eiatũ(t).

The function (
1− e−z

z

)α

ezp = ωα,p(z),

have the Taylor expansion

ωα,p(z) =
∞

∑
k=0

a2kz2k, (13)
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where a2k=(−1)2k ( α
a2k
)=( α

a2k
), converges absolutely for |z| ≤ 1 since the function ωα,p(z) is bounded on

<. The shifted Grünwald difference approximation (∆h,p)u(x) ∈ L1(<).
Thus, we have

F (h−α∆α
h,pu)(t) = h−αe−itph

∞

∑
k=0

(α
2k) eikthũ(t)

= h−αe−itph
(

1− eitph
)α

ũ(t)

= (−it)α

(
1− eith

−ith

)α

e−itphũ(t) = (−it)αωα,p(−ith)ũ(t) (14)

since ωα,p(−ith) is analytic around the origin, we express it as an even power expansions

ωα,p(z) =
∞

∑
k=0

a2kz2k

which absolutely convergent for all |z| ≤ R. For this a bounded function ωα,p(z) on <, there exist a
real positive constant C2 which satisfy:∣∣∣∣∣

(
1− eix

−ix

)α

−
n−1

∑
k=0

a2k (−ix)2k

∣∣∣∣∣ ≤ C2 |x|2n (15)

is bounded uniformly in x ∈ <. For any value |x| ≤ R , we have∣∣∣∣∣(ωα,p(−ix)−
n−1

∑
k=0

a2k(−ix)2k

∣∣∣∣∣ =
∣∣∣∣∣ ∞

∑
k=n

a2k(−ix)2k

∣∣∣∣∣ ≤ |x|2n
∞

∑
k=n

(
α
a2k

)
|x|2(k−n) ≤ C3 |x|2n

(16)

which is bounded on <. For the other case |x| > R also, we have

∣∣ωα,p (−ix)
∣∣ = ∣∣∣∣∣

(
1− eix

−ix

)α

eipx

∣∣∣∣∣ ≤ 2α

Rα
< C4 |x|2n (17)

where C4 = 2α

Rα+2n < ∞ and also∣∣∣∣∣n−1

∑
k=0

a2k(−ix)2k

∣∣∣∣∣ ≤ |x|2n
n−1

∑
k=0
|(α

a2k
)| |x|2(k−n) ≤ C5 |x|2n (18)

with C5 = ∑n−1
k=0

∣∣∣(α
a2k

)∣∣∣ R2k−2n < ∞. Now, we set that

C2 = max

{
∞

∑
k=0

∣∣∣∣∣a2k

∣∣∣∣∣R2k−2n,
2α

Rα+2n +
n−1

∑
k=0

∣∣∣∣∣ a2k

∣∣∣∣∣ R2k−2n

}

since
∞

∑
k=0
|a2k| R2k−2n =

n−1

∑
k=0
|a2k| R2k−2n +

∞

∑
k=n
|a2k| R2k−2n

C2 =
2α

Rα+2n +
n−1

∑
k=0
|a2k| R2k−2n
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Then, this implies that Equation (15) holds for all x ∈ <. From Equation (17), we can write

F (h−α∆α
h,pu)(t) =

n−1

∑
k=0

a2k (−it)α+2k h2kũ(t) + ϕ̃(t, h)

where

ϕ̃(k, h) = (−it)α

(
ωα,p (−ith)−

n−1

∑
k=0

a2k (−ith)2k

)
ũ(t)

since
(−it)α+2k ũ(t) =

(
Dα+2k
+

)
ũ(t).

Therefore, we have
(−it)α+2kũ(t) ∈ L1(<).

Moreover, we see that
ϕ̃(t, h) ∈ L1(<),

and with the conditions imposed on u, we can say that (1 + |x|2n+3 ũ(t) is bounded on <.
Thus, |t|2α−3 |ũ(t)| ∈ L1(R). This implies that,

|ϕ̃(t, h)| ≤ Ch2n (1 + |t|)2α−3

for k ∈ < with C = C1C2. Therefore using the Fourier inversion transform, we have

h−α
(

∆α
h,pu

)
(x) = (Dα

+u) (x) +
n−1

∑
k=1

a2k

(
Dα+2k
+ u

)
(x)h2k + ϕ(x, h),

where

ϕ(x, h) =
∣∣∣∣C ∫R

e−itx ϕ̃(t, h)dt
∣∣∣∣ ≤ C

∫
R
|ϕ̃(t, h)dt| ≤ Ch2n.

At last, we have

h−α
(

∆α
h,pu

)
(x) = (Dα

+u) (x) +
n−1

∑
k=1

a2k(Dα+2k
+ u)(x)h2k + O(h2n). (19)

Remark 1. From Equation (10), it can be seen that for p = α/2, the error takes its minimum value and a
second order convergence is achieved. We need the grid points xm − (k− p)h to find an optimal positive integer
p that makes p− α/2 is minimum. It is numerically proved in [3] that for the value 0 < α ≤ 1, p = 0 is
acceptable; while for 1 < α ≤ 2, p = 1 is optimal.

Remark 2. Theorem 1 is the base of Extrapolation to the limit. Therefore one can apply it the Shifted
Grünwald–Letnikov difference operator to obtain the convergence rate with arbitrary high order hk, k =

1, 2, 3, ..., n such that

h−α
(q−α∆α

qh,pu)(x)− q(∆α
h,pu)(x)

1− q
, 0 < q < 1

(q is fixed) converges to (Dα
+u)(x) + O(h2).
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3. Problem Formulation of the Scheme

Consider the following one-dimensional space fractional convection–diffusion problem:
∂u(x, t)

∂t
= −c(x)

∂u(x, t)
∂x

+ d(x)
∂αu(x, t)

∂xα
+ p(x, t), (x, t) ∈ (L, R)× (0, T]

u(x, 0) = g(x), x ∈ [L, R]

u(L, t) = 0, u(R, t) = 0, t ∈ [0, T]

(20)

which is based on shifted Grünwald–Letnikov difference method with 1 < α ≤ 2 on a finite domain
L < x < R.

Crank–Nicolson Scheme for Time and Shifted Grünwald Difference Scheme for Space Discretization

We partition the finite interval [L, R] with a uniform mesh in the space size step h = (R− L)/Nx

and the time step τ = T/Nt, in which Nx, Nt are non-negative integers and the set of grid size points
is symbolized by xm = mh and tn = nτ for 0 ≤ m ≤ Nx, 0 ≤ n ≤ Nt. Set tn+1/2 = (tn+1 + tn)/2 with
0 ≤ n ≤ Nt − 1.

We use the following notations:

un
m = u(xm, tn), pn+1/2

m = p(xm, tn+1/2), δtun
m =

un+1
m − un

m
τ

, cm = c(xm), dm = d(xm).
Applying the C-N technique for the time discretization of Equation (20) gives to

δtun
m = − cm

4h

(
un+1

m+1 − un+1
m−1 + un

m+1 − un
m−1

)
+

dm

2hα

1

∑
z=0

Nx−1

∑
k=0

ω
(α)
k

(
un+z

m−k+1

)
= pn+1/2

m + O(τ2). (21)

In space discretization we have used the central finite difference method for the convection term and
the Shifted Grünwald–Letnikov operator for the space fractional derivative with the approach of
spatial Extrapolation to the limit, respectively.

See the full discretization of the scheme:

un+1
m − un

m
τ

=
−cm

(
un

m+1 − un
m−1 + un+1

m+1 − un+1
m−1

)
4h

+
dm

2hα

(
1

∑
z=0

m+1

∑
k=0

ω
(α)
k un+z

m−k+1

)
+

pn
m + pn+1

m
2

. (22)

Multiplying Equation (22) by τ the discretization equation, we have

un+1
m − un

m =
−cmτ

4h
(un

m+1 − un
m−1 + un+1

m+1 − un+1
m−1) +

dmτ

2hα

1

∑
z=0

m+1

∑
k=0

ω
(α)
k un+z

m−k+1 + τpn+1/2
m (23)
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The above equation is used to predict the values of u(x, t) at time n + 1, so all the values of u at
time n are assumed to be known. For simplification
µm = cmτ

h , ηm = dmτ
hα , then we have

(
1− ηm

2
ωα

1

)
un+1

m +

(
−µm

2
− ηm

2
ωα

2

)
un+1

m−1

+
(
−µm

2
− ηm

2
ωα

0

)
un+1

m+1 −
ηm

2

(
m+1

∑
k=3

ωα
k un+1

m−k+1

)
=

(
1 +

ηm

2
ωα

1

)
un

m +
(µm

2
+

ηm

2
ωα

2

)
un

m−1

+
(ηm

2
ωα

0 +
µm

2

)
un

m+1 +
ηm

2

(
m+1

∑
k=3

ω
(α)
k un

m−k+1

)
+ τ

(
pn+ 1

2
m

)
. (24)

Both the convection and diffusion variable coefficients are (Nx − 1) × (Nx − 1) diagonal matrices
which are defined by

µm =
τ

2h
diag (C1, C2, C3, ...CNx−1) ,

ηm =
τ

hα
diag (d1, d2, d3, ...dNx−1) .

These discretization together with Dirichlet boundary conditions which results in a linear system of
equations for which the coefficient matrix is the sum of lower triangular and upper-diagonal matrices.
The above discretization can be re-arranged to yield:(

1− ηm

2
ωα

1

)
un+1

m + (−µm

2
− ηm

2
ωα

2 )u
n+1
m−1 +(

−µm

2
− ηm

2
ωα

0 )u
n+1
m+1 −

ηm

2
(

m+1

∑
k=3

ωα
k un+1

m−k+1

)
= (1 +

ηm

2
ωα

1 )u
n
m +

(µm

2
+

ηm

2
ωα

2

)
un

m−1

+(
ηm

2
ωα

0 +
µm

2
)un

m+1 +
ηm

2
(

m+1

∑
k=3

ωα
k un

m−k+1) + τ(Pn+ 1
2

m ). (25)

Denoting Un
m as the numerical approximation of un

m, we can construct the C-N scheme for Equation (20)(
1− ηm

2
ωα

1

)
Un+1

m +
(
−µm

2
− ηm

2
ωα

2

)
Un+1

m−1 +(
−µm

2
− ηm

2
ωα

0

)
Un+1

m+1 −
ηm

2

(
m+1

∑
k=3

ωα
k Un+1

m−k+1

)
=

(
1 +

ηm

2
ωα

1

)
Un

m +
(µm

2
+

ηm

2
ωα

2

)
Un

m−1

+
(ηm

2
ωα

0 +
µm

2

)
Un

m+1 +
ηm

2

(
m+1

∑
k=3

ωα
k Un

m−k+1

)
+ τ(Pn+ 1

2
m ). (26)
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I is the (Nx − 1)× (Nt − 1) identity matrix with Am,n as the matrix coefficients. These coefficients,for
m = 1, 2, 3, ..., Nx − 1, n = 1, 2, ..., Nt − 1 are given by:

Am,n =



0, n ≥ m + 2

− µm
2 −

ηm
2 ω

(α)
0 , n = m + 1

(1− ηm
2 ω

(α)
1 ), n = m

(− ηm
2 ω

(α)
2 − µm

2 ), n = m− 1

− ηm
2 ω

(α)
m−n+1 n ≤ m− 1.

(27)

The finite difference scheme (24) and (26) defines a linear system of equations as

(I + A)Un+1 = (I − A)Un + τ(pn+ 1
2

m ) (28)

Un+1 = [un+1
1 , un+1

2 , ..., un+1
Nx−1]

>

Un + τPn+ 1
2

m = [0, τpn+ 1
2

1 , τpn+ 1
2

2 , ..., τpn+ 1
2

Nx−1 + (
ηNx−1

2
+

µNx−1

2
), 0]>.

Theorem 2. Suppose that 1 < α ≤ 2, the coefficient matrix defined in Equations (24)–(27), then the diagonal
matrix and the coefficient matrix satisfy:

Am,m >
Nx−1

∑
n=0,m 6=1

|Am,n|, m = 1, 2, 3, ..., Nx − 1. (29)

Proof of Theorem 2. As we have seen from the coefficient matrix defined in Equation (27),

Am,m+1 =
µm

2
− ηm

2
ω
(α)
0 =

µm

2
− ηm

2
< 0

Am,m−1 = −ηm

2
ω
(α)
2 − µm

2
= −ηm

2
(

α2 − α

2
), but from Lemma 1,

α2 − α

2
> 0 for 1 < α ≤ 2 mean that

−ηm

2
(

α2 − α

2
) < 0.

When n < m− 1, we have, − ηm
2 ω

(α)
m−n+1 < 0 and when n = m, Am,m = 1− ηm

2
ω
(α)
1 = 1 +

ηm

2
α > 0.

This implies that ∑Nx−1
n=0,m 6=1 |Am,n| < Am,m.

Therefore, the diagonal matrix is strictly dominant.

4. Theoretical Analysis of Finite Difference Scheme

In general for analyzing convergence and stability, we consider the following description.
Let χh =

{
ν : ν = {νm} : {xm = mh}Nx

m=0 , ν0 = νNx = 0
}

be the grid function.
For any ν = νm ∈ χh, we define our point-wise maximum norm as

||ν||∞ = max1≤m≤Nx |νm|, (30)

and the discrete L2-norm

‖ν‖ =

√√√√h
Nx−1

∑
m=1

ν2
m. (31)

4.1. Boundedness of the Fractional Scheme

The Classical Crank–Nicolson scheme combines the stability of an implicit finite difference method
with its accuracy which produce second order convergence in both space and time.

Theorem 3. Crank–Nicolson scheme for solving space fractional convection–diffusion equations given by the
following problem:
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∂u(x, t)
∂t

+ c(x)
∂u(x, t)

∂x
= d(x)

∂αu(x, t)
∂xα

+ p(x, t). (32)

which is based on shifted Grünwald–Letnikov difference approximation scheme is bounded for 1 < α ≤ 2.

Proof of Theorem 3. Consider C-N scheme for the space-fractional convection–diffusion problem for
1 < α ≤ 2

un+1
m − un

m
τ

=
−cm

(
un

m − un
m−1 + un+1

m − un+1
m−1

)
2h

+
dm

2hα

(
1

∑
j=0

m+1

∑
k=0

ω
(α)
k un+j

m−k+1

)
+

pn
m + pn+1

m
2

. (33)

Here, we have shown the convergence and boundedness of the scheme by taking the smaller time-step
in terms of Lax–Richtmyer stability analysis that uses a weaker bound (see [40]). Our matrix A has
an eigenvalues of λ that have positive real parts, and, we also have found a strictly dominant matrix.
These eigenvalues which are centered in the disks at each diagonal entries as:

Am,m = (1− ηm

2
ωα

1 ) =
(

1 + α
ηm

2

)
.

with µm = cmτ
h , ηm = τdm

hα . From the Gerschgorin Theorem in [41], the radius of the matrix can be
expressed as ∥∥∥∥∥ Nx

∑
n=0,m 6=1

Am,n

∥∥∥∥∥
2

2

=

∥∥∥∥∥(−ηm

2
− µm

2

) m+1

∑
n=0

ω
(α)
m−n+1

∥∥∥∥∥
2

≤
∥∥∥(−ηm

2
− µm

2

)∥∥∥2
∥∥∥∥∥m+1

∑
n=0

ω
(α)
m−n+1

∥∥∥∥∥
2

.

Since from the Grünwald coefficients we have ω
(α)
m−n+1 ≤ ω

(α)
1 and ω

(α)
1 = −α, we have that:

∥∥∥∥∥ Nx

∑
n=0,m 6=1

(Am,n)

∥∥∥∥∥
2

2

≤
∣∣∣∣∣ Nx

∑
n=0,m 6=1

(Am,m)

∣∣∣∣∣
2

2

≤ ‖Am,m‖2
2

≤
∥∥∥(−ηm

2
− µm

2
)
∥∥∥2

2

∥∥∥ω
(α)
1

∥∥∥2

2
≤
∥∥∥1 +

ηm

2
α
∥∥∥2

2
.

For a bounded ratio of time-step τ and space-step h with nτ ≤ T, we have

∥∥(Am,m)
n∥∥

2 ≤
(

1 +
ηm

2
α
)n/2

.

From the relation of Parseval’s Theorem, [40]

‖Am,m‖2 ≤
(

1 +
ηm

2
α
)n/2

≤ eαT/2.

which shows that the scheme is bounded.

4.2. Stability Analysis

Theorem 4. Let Un
m be the numerical approximation of the exact solution un

m, then the C-N finite difference
scheme (28) is unconditionally stable.
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Proof of Theorem 4. Consider the matrix coefficient of the difference approximation for the
problem (20) can be written as described above

(I + A)Un+1 = (I − A)Un + τpn+1/2
m . (34)

Let en =
{

en
1 , en

2 , en
3 , ..., en

Nx−1

}
, and take the relation between the error en+1 in Un+1 and the error en in

Un which is given by the linear system

en+1 = (I + A)−1(I − A)en. (35)

First of all, we must show that the (non-real valued) eigenvalues of the coefficient matrices A
have positive real parts. For ω

(α)
1 = −α with fractional order 1 < α < 2 and k 6= 1; we have

ω
(α)
k > 0. In addition to this, −ωα

1 = α ≥ ∑N
k=0,k 6=1 ωα

k for the value N > 1. As stated in Gerschgorin
Theorem ([41], pp. 136–139), the eigenvalues of the given matrix A are inside the disks centered at each
diagonal entry.

Am,m = (1− ηm

2
ω
(α)
1 ) = 1 +

ηm

2
α > 0,

with radius

rm =
Nx

∑
n=0,m 6=1

|Am,n| =
ηm

2

m+1

∑
n=0

ω
(α)
m−n+1 < (1 +

ηm

2
).

These Gerschgorin disks are belong to the right half of the complex plane. Thus, the eigenvalue of
the coefficient matrix A has positive real part which implies that A has an eigenvalue λ if and only
if (I − A) has an eigenvalue (1− λ) if and only if (I + A)−1(I − A) has an eigenvalue

(
1−λ
1+λ

)
. From

the first part of this sentence, we have seen that all the eigenvalues of the matrix given by (I + A)

have a radius larger than unity which implies the matrix is invertible. Now we can see from the above
description the real part of λ is non-negative which we can conclude that

∣∣∣ (1−λ)
(1+λ)

∣∣∣ < 1.

Thus, the spectral radius of the system matrix (I + A)−1(I− A) is strictly less than unity which implies
that the difference scheme is unconditionally stable.

4.3. Convergence Analysis

First of all we have given the Truncation error of the C-N scheme. It is obvious to conclude that:

u(xm, tn+1)− u(xm, tn)

τ
=

(
∂u(x, t)

∂t

)n+1/2

+ O(τ2).(
c(x)

∂u(x, t)
∂x

+ d(x)
∂αu(x, t)

∂xα

)n+1/2

m
=

1
2

(
cm

∂u(xm, tn+1)

∂x
+ dm

∂αu(xm, tn+1

∂xα

)
+

1
2

(
cm

∂u(xm, tn)

∂x
+ dm

∂αu(xm, tn

∂xα

)
+ O(τ2). (36)

c(xm)
∂u(x, t)

∂x
≈ u(xm+1, tn+1)− u(xm−1, tn+1)

2h
+ O(h2). (37)

From the above Extrapolation to the limit Theorem for n = 1, we got

∂αu(x, t)
∂xα

≈
m+1

∑
k=0

g(α)k um−k+1 + O(h2). (38)

Therefore the local truncation error of (20) is given by Tn+1
m = O(τ2 + τh)
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Theorem 5. Let un
m be the exact solution of problem (20), and Un

m be the solution of the finite difference scheme
(26), then for all 1 ≤ n ≤ Nt, we have the estimate

‖un
m −Un

m‖∞ ≤ c(τ2 + h)

where ‖un
m −Un

m‖∞=max1≤m≤Nx |un
m −Un

m|, c is a non-negative constant independent of h and τ with ||.||
stands for the discrete L2-norm.

Proof of Theorem 5. Denote en = un
m −Un

m where en = (en
1 , en

2 , ..., en
Nx−1). We have e0 = 0, we have

from Equations (26) and (27) if n = 0,

R1
m =

(
−µm

2
− ηm

2
ω
(α)
0

)
e1

m−1 +
(

1 +
ηm

2
α
)

em
1

+

(
−µm

2
− ηm

2
ω
(α)
2

)
e1

m+1 −
ηm

2

Nx

∑
k=3

ω
(α)
k e1

m−n+1.

if n > 0,

Rn+1
m =

(
−µm

2
− ηm

2
ω
(α)
0

)
en+1

m−1 +
(

1 +
ηm

2
α
)

em
n+1

+

(
−µm

2
− ηm

2
ω
(α)
2

)
en+1

m+1 −
ηm

2

Nx

∑
k=3

ω
(α)
k en+1

m−n+1.

where Rn+1
m ≤ c(τ2 + h), m = 1, 2, ..., Nx − 1, n = 1, 2, 3, ..., Nt − 1, c is non-negative constant

independent of h and τ.
We can use the mathematical induction to prove the Theorem. Let n = 1 and assume |ej| =

max1≤m≤Nx−1|e1
m|, we have the following expression.

||e1||∞ =
∣∣∣e1

j

∣∣∣ ≤ (−µj

2
−

ηj

2
ω
(α)
0

) ∣∣∣e1
j−1

∣∣∣+(1 +
ηj

2
α

) ∣∣∣ej
1

∣∣∣
+

(−µj

2
−

ηj

2
ω
(α)
2

) ∣∣∣e1
j+1

∣∣∣− ηj

2

Nx

∑
k=3

ω
(α)
k

∣∣∣e1
j−n+1

∣∣∣
≤

∣∣∣∣∣
(−µj

2
−

ηj

2
ω
(α)
0

)
e1

j−1 +

(
1 +

ηj

2
α

)
ej

1 +

(−µj

2
−

ηj

2
ω
(α)
2

)
e1

j+1 −
ηj

2

Nx

∑
k=3

ω
(α)
k e1

j−n+1

∣∣∣∣∣
=

∣∣∣R1
j

∣∣∣ ≤ c(τ2 + h).

Suppose that if n ≤ r, ||er||∞ ≤ c(τ2 + h2) hold and assume n = r + 1, let
∣∣∣er+1

j

∣∣∣ = max1≤m≤Nx−1
∣∣er+1

m
∣∣,

notice that from Lemma 1, we have ∑Nx
k=0 ω

(α)
k < 0, m = 1, 2, ..., Nx. Therefore,

∥∥∥er+1
∥∥∥

∞
=

∣∣∣er+1
j

∣∣∣ ≤ (−µj

2
−

ηj

2
ω
(α)
0

) ∣∣∣er+1
j−1

∣∣∣+(1 +
ηj

2
α

) ∣∣∣ej
r+1

∣∣∣
+

(−µj

2
−

ηj

2
ω
(α)
2

) ∣∣∣er+1
j+1

∣∣∣− ηj

2

Nx

∑
k=3

ω
(α)
k

∣∣∣er+1
j−n+1

∣∣∣
≤

∣∣∣∣∣
(−µj

2
−

ηj

2
ω
(α)
0

)
er+1

j−1 +

(
1 +

ηj

2
α

)
ej

r+1 +

(−µj

2
−

ηj

2
ω
(α)
2

)
er+1

j+1 −
ηj

2

Nx

∑
k=3

ω
(α)
k er+1

j−n+1

∣∣∣∣∣
=

∣∣∣Rr+1
j

∣∣∣ ≤ c(τ2 + h)

which completes the proof.
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Remark 3. The Crank–Nicolson scheme, for classical convection–diffusion equation, provides stable C-N finite
difference method that is second order convergence in time and space. Also a study based on C-N finite difference
method with the spatial extrapolation to the limit method, see Theorem 1, is used to get temporal and spatial
second order for one-sided SFCDEs with space variable coefficients.

5. Numerical Tests

Problem test 1
1. Consider the space-fractional diffusion type of problem:

∂u(x, t)
∂t

= d(x)
∂αu(x, t)

∂xα
+ p(x, t)

with initial condition
u(x, 0) = (x2 − x3); 0 ≤ x ≤ 1

homogeneous Dirichlet boundary condition

u(0, t) = 0 = u(1, t)

with variable diffusion coefficient,
d(x) = Γ(1.2)xα,

and source term
p(x, t) = (6x3 − 3x2)e−t

The exact solution is
u(x, t) = (x2 − x3)e−t

All numerical experiments are implemented using Theorem 1 and C-N scheme with the space domain,
0 < x < 1 and time domain, 0 < t < T. Figure 1 shows the maximum error produced by C-N scheme
for large enough time domain and numerical solution is close enough to the exact solution using
C-N scheme with α = 1.5 in Figure 2. The maximum error and second order convergence for the
fractional diffusion and fractional convection–diffusion equation with variable coefficients are given in
Tables 1–3.

Figure 1. The Maximum error by C-N scheme at (T = 10, Max − Error = 6.5276e−07),
(T = 20, Max− Error = 1.7244e−08), α = 1.5 left to right, respectively, for example 1.
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Figure 2. The exact (left) and numerical (right) solution by C-N scheme at T = 1, α = 1.5, τ = 0.01 = h
for example 1.

Table 1. The maximum error and convergence order of the C-N scheme for FDE in example 1.

α = 1.25 α = 1.5 α = 1.8

∆t ∆x Max-Error Order Max-Error Order Max-Error Order

1/50 1/50 4.9807e–04 – 4.0046e–04 – 1.4048e–04 –
1/100 1/100 1.0660e–04 2.2241 8.8946e–05 2.1707 3.6848e–05 1.9307
1/200 1/200 2.4413e–05 2.1265 2.0643e–05 2.1073 9.4393e–06 1.9648
1/400 1/400 5.8239e–06 2.0676 4.9592e–06 2.0575 2.3887e–06 1.9825
1/800 1/800 1.4211e–06 2.0350 1.2146e–06 2.0296 6.0078e–07 1.9913

Table 2. The maximum error and convergence order for FCDE in example 2.

T = 1 T = 5

∆t ∆x Max-Error Order Max-Error Order

1/50 1/50 1.4048e–04 – 2.5297e–05 –
1/100 1/100 3.6848e–05 1.9307 7.4748e–06 1.7589
1/200 1/200 9.4393e–06 1.9648 2.0122e–06 1.8933
1/400 1/400 2.3887e–06 1.9825 4.9017e–07 2.0374
1/800 1/800 6.0078e–07 1.9913 1.0620e–07 2.2065

Table 3. The maximum error and convergence order by C-N for SFCDE in example 2 at T = 1, α = 1.55.

∆t ∆x Max-Error Order

1/50 1/50 2.6e–03 –
1/100 1/100 7.695e–04 1.7563
1/150 1/150 2.144e–04 1.8436
1/200 1/200 5.688e–05 1.9143

Problem test 2
2. Consider the space-fractional convection–diffusion type of equation with variable coefficients:

∂u(x, t)
∂t

+ c(x)
∂u(x, t)

∂x
= d(x)

∂αu(x, t)
∂xα

+ p(x, t)

with initial condition
u(x, 0) = (xα − x); 0 ≤ x ≤ 1

homogeneous Dirichlet boundary condition

u(0, t) = 0 = u(1, t)
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with variable convection–diffusion coefficients respectively,

c(x) = x
1
5 , d(x) = x

1
100 ,

and source term

p(x, t) = e−2t(2(x− xα)− Γ(α) +
Γ(α + 1)

Γ(α)
xα−1 − 1)

The exact solution is
u(x, t) = e−2t(xα − x)

Figures 3 and 4 show the numerical and exact solutions for fractional diffusion and fractional
convection–diffusion problems with large enough time domain in example 1 and 2, respectively.The
exact and numerical solution of fractional convection–diffusion equation by C-N scheme is also given
in Figure 5. In Table 4, the maximum error and first order convergence in space is obtained using C-N
scheme without extrapolation to the limit approach by fixing the time step.

Figure 3. Numerical and exact solution by C-N scheme at α = 1.5, τ = h = 0.01, with(T = 10, T =

30, T = 40) left to right-down respectively, for example 1.

Figure 4. The exact (left) and numerical (right) solution by C-N scheme for the FCDE at (h = τ =

0.005, α = 1.5, (t = 5, max−error = 4.0657e−05) for example 2.
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Table 4. The Maximum error and convergence order produced by C-N scheme for example 3 at
T = 1, Nt = 100.

α = 1.35 α = 1.5 α = 1.75

∆x Max-Error Order Max-Error Order Max-Error Order

1/50 4.5e–03 – 2.8e–03 – 1.7e–03 –
1/100 2.7e–03 0.7370 1.6e–03 0.8074 8.9641–04 0.97224
1/200 1.6e–03 0.7549 8.6405e–04 0.8889 4.6491e–04 0.8981
1/400 9.5896e–04 0.7385 4.7955e–04 0.8494 2.4086e–04 0.9488
1/800 5.7034e–04 0.7496 2.6609e–04 0.8498 1.2473e–04 0.9494

Figure 5. The exact (left) and numerical (right) solution by C-N scheme for the FCDE at (h = τ =

0.01, (t = 2, max−Error = 4.2158e−04), α = 1.75) for example 2.

Problem Test 3
3. Consider the space-fractional convection–diffusion type of equation with variable coefficients:

∂u(x, t)
∂t

+ c(x)
∂u(x, t)

∂x
= d(x)

∂αu(x, t)
∂xα

+ p(x, t)

with initial condition
u(x, 0) = x2(1− x)

homogeneous Dirichlet boundary condition

u(0, t) = 0 = u(1, t)

with variable convection–diffusion coefficients respectively,

c(x) = x0.6, d(x) = Γ(2.8)x3/4

and the forcing function
p(x, t) = 2x2(1− x)t1.3/Γ(2.3) + 0.3x1.8e−t

The exact solution is
u(x, t) = x2(1− x)e−t

Problem test 4
4. Consider the space-fractional convection–diffusion equation with variable coefficients:

∂u(x, t)
∂t

+ c(x)
∂u(x, t)

∂x
= d(x)

∂αu(x, t)
∂xα

+ p(x, t)

with initial condition
u(x, 0) = xα(1− x)
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homogeneous Dirichlet boundary condition

u(0, t) = 0 = u(1, t)

with variable convection–diffusion coefficients respectively,

c(x) = x3/5, d(x) = x3/4

and the forcing function
p(x, t) = 2xα(1− x)t1.3/Γ(2.3) + 0.3x1.8e−t

The exact solution is
u(x, t) = xα(1− x)e−t

Problem test 4 is experimented with the grid size reduction extrapolation approach stated in [23]. We
have smooth enough numerical and exact solutions by using C-N scheme in Figure 6, and Table 5
shows the maximum error with the error rate is given for space fractional convection–diffusion
problem with a grid size reduction extrapolation method.

Figure 6. The exact (left) and numerical (right) solution by C-N scheme at (h = τ = 0.0025, (t =

0.1, max−Error = 1.4e−03, α = 1.1) for example 4.

Table 5. The Maximum error and error-rate produced by C-N scheme for example 4 at t = 0.1.

α = 1.25 α = 1.55

∆t ∆x Max-Error Error-Rate Max-Error Error-Rate

1/50 1/50 1.91e–02 – 1.52e–02 –
1/100 1/100 9.9e–03 1.93 7.9e–03 1.9
1/200 1/200 5.2e–03 1.90 4.3e–03 1.84
1/400 1/400 2.8e–03 1.86 2.4e–03 1.79
1/800 1/800 1.6e–03 1.75 1.4e–03 1.7

6. Conclusions

The one dimension space fractional diffusion and fractional convection–diffusion problem with
space variable coefficients is solved by the fractional C-N scheme based on the Extrapolation to the
limit approach of right shifted Grünwald–Letnikov approximation. The fractional C-N method, for
the fractional diffusion problem and fractional convection–diffusion equation with space variable
coefficients, is consistent and unconditionally stable with second order convergence. Numerical
examples confirmed that the C-N method is suitable for the space fractional convection–diffusion
problem even for a large value of time domain.
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