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Abstract: Guillain–Barré Syndrome (GBS) is an unusual disorder where the body’s immune system
affects the peripheral nervous system. GBS has four main subtypes, whose treatments vary among
them. Severe cases of GBS can be fatal. This work aimed to investigate whether balancing an original
GBS dataset improves the predictive models created in a previous study. purpleBalancing a dataset is
to pursue symmetry in the number of instances of each of the classes.The dataset includes 129 records
of Mexican patients diagnosed with some subtype of GBS. We created 10 binary datasets from the
original dataset. Then, we balanced these datasets using four different methods to undersample the
majority class and one method to oversample the minority class. Finally, we used three classifiers
with different approaches to creating predictive models. The results show that balancing the original
dataset improves the previous predictive models. The goal of the predictive models is to identify the
GBS subtypes applying Machine Learning algorithms. It is expected that specialists may use the model
to have a complementary diagnostic using a reduced set of relevant features. Early identification
of the subtype will allow starting with the appropriate treatment for patient recovery. This is a
contribution to exploring the performance of balancing techniques with real data.

Keywords: imbalanced data; multiclass; undersampling; oversampling; Machine Learning; One vs.
All (OVA); One vs. One (OVO); Guillain–Barré Syndrome; computer-aided diagnosis

1. Introduction

1.1. Guillain–Barré Syndrome

Guillain–Barré Syndrome (GBS) was initially detected in 1916 by Guillain, Barré and Strohl. It is a
rare acute paralytic polyneuropathy with four principal several clinical variants. It is an autoimmune
disorder of the peripheral nervous system [1]. GBS characterizes by a fast development normally
from a few days up to four weeks with an incidence closely to one to two in 100,000 people. It occurs
in adults and children. GBS can damage the nerves controlling movements, pain, temperature,
and touch sensations [2]. In critical cases, GBS may lead to respiratory failure and can also be mortal.
The progression of GBS can be described in three phases:

1. Initial phase: evolution of symptoms lasting days to up to four weeks
2. Plateau phase: lasting weeks to months
3. Recovery phase: remyelination, lasting weeks to months. Critical patients can take a minimum of

two years or more. Full recovery is not achieved in some cases.

Symmetry 2020, 12, 482; doi:10.3390/sym12030482 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0001-8475-0914
https://orcid.org/0000-0002-0324-9886
https://orcid.org/0000-0001-5700-7615
https://orcid.org/0000-0003-3146-9349
http://www.mdpi.com/2073-8994/12/3/482?type=check_update&version=1
http://dx.doi.org/10.3390/sym12030482
http://www.mdpi.com/journal/symmetry


Symmetry 2020, 12, 482 2 of 27

The exact cause is unknown but frequently is associated with a respiratory or gastrointestinal
infection. Cytomegalovirus and Zika are associated with GBS [3].

The GBS subtypes are mainly [4]:

• Acute Inflammatory Demyelinating Polyneuropathy (AIDP)
• Acute Motor Axonal Neuropathy (AMAN)
• Acute Motor Sensory Axonal Neuropathy (AMSAN)
• Miller–Fisher Syndrome (MF)

Table 1 [5] describes the characteristics of each of the GBS subtypes.

Table 1. Features of GBS subtypes [5].

Type Symptoms Pathology

AIDP

Most common variant (85% of cases).
Primarily motor inflammatory
demyelination ± secondary axonal
damage. Maximum of four weeks
of progression.

Macrophages invade intact
myelin sheaths and denude
the axons.

AMAN

Motor only with early and severe
respiratory involvement. Primary
axonal degeneration. Often affects
children, young adults. Up to
75% positive Campylobacter jejuni
serology. Often positive for
anti-GM1, anti-GD1a antibodies.

Macrophages invade the
nodes of Ranvier where
they insert between the
axon and the surrounding
Schwann-cell axolemma,
leaving the myelin sheath
intact.

AMSAN

Motor and sensory affection with
critical course of respiratory and
bulbar involvement. Primary axonal
degeneration with poorer prognosis.

Similar to AMAN but also
involving vetral and dorsal
roots.

MF
Ophthalmoplegia, sensory ataxia,
areflexia. 5% of all cases. 96%
positive for anti-GQ1b antibodies.

Abnormality in sensory
conduction, although the
underlying pathology is
not clear.

The first approach in the diagnosis of GBS is based upon the clinical features since it is a
non-invasive method. Nevertheless, diagnostic mechanisms such as cerebrospinal fluid (CSF) analysis
and electrodiagnostic studies are useful to determine the specific subtype that the patient is suffering [6].
These methods have several disavantages since they are invasive and costly. In this exploratory study,
we used different sampling methods, to balance the GBS multiclass dataset. We aimed to create
different predictive models using real data to identify four main GBS subtypes that a patient suffers,
applying Machine Learning algorithms. It is expected that specialists may use the model to have a
complementary diagnostic using a reduced set of relevant features. Early diagnosis of the GBS subtype
is essential due to the rapid progress of this disorder. The treatments vary according to the subtype
contracted. Sequelae and economic costs can be high unless proper treatment is started immediately.

1.2. Imbalanced Data Classification

A dataset is imbalanced when one of its classes has fewer instances (minority class) regarding the
other class (majority class) [7]. purple One instance is a row in a dataset. For this study, there are 129
instances that belong to patients diagnosed with some type of GBS. Classes are the way the data is
grouped in a dataset. For example, in this work, there are four classes in the original dataset. Each class
represents a subtype of GBS. Standard classifiers are designed to work with balanced datasets. When a
dataset is imbalanced, the classifiers take the majority class for decision making, ignoring the minority
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class. It affects the performance of the classifiers because, in real-life cases, it generally needs to find
the classification of the minority class [8]. For example, in cases of cancer diagnosis, there are more
healthy patients than those diagnosed with the disease. If we apply a classifier to imbalanced data
to identify cancer patients, the classifier biases the result to healthy patients (majority class) ignoring
cancer patients (minority class). The accuracy will be high; however, it is more important to identify
cancer patients than healthy patients.

There are two types of imbalance data. Binary imbalance occurs when in a dataset is integrated
with two classes, one of them has fewer instances (minority class) than the other class (majority class).
On the other hand, the multiclass imbalance is present when the dataset has more than two classes and
the instances that form them are unequal with respect to the others [9]. There are three main methods
used in the literature to handle imbalanced data:

* Algorithm Level: It makes a modification to the algorithm, generally adds more weight to the
minority class. This method requires a deep knowledge of the operation of the algorithm to be
modified. Each algorithm must be adapted to the dataset to be used.

* Data Level: It consists of balancing the training set by matching the majority class with the
minority class. This method is known as preprocessing since the modification of the data is
done before the application of the classification algorithm. Standard classifiers are designed to
work with a balanced dataset. The advantages of this method are that they are easy to configure,
and they can be used with any classification algorithm. There are three sampling methods:

� Undersampling: It consists of eliminating instances of the majority class until matching the
number of instances with the minority class. There are other undersampling variants that
eliminate instances in a directed manner such as noise or instances that are in the border of
the decision area.

� Oversampling: This method adds instances to the minority class until the majority class is
balanced with the minority class. There are different variants for oversampling. For example,
Random Oversampling (ROS), makes a copy of existing instances and adds a copy of them
randomly. SMOTE is one of the most successful methods for oversampling. This adds
instances in synthetic form to the minority class. There are also variants of SMOTE which
have demonstrated great precision.

� Hybrid: It is the combination of the different Oversampling and Undersampling methods.

* Cost-sensitive: Combines the methods of Data level and Algorithm Level. It is considered the
costs associated with misclassifying.

Preprocessing methods have shown that balancing the training set by oversampling and
undersampling of classes improves significantly the classifiers results. This regarding imbalanced
data [10–12].

The goal of this research was to identify the best algorithm to balance Guillain–Barré Syndrome
(GBS) dataset by applying different data balancing techniques at the data level, oversampling the
minority class and undersampling the majority class. purpleIn the specialized literature, there are no
studies to classify the subtypes of GBS using Machine Learning algorithms. In previous studies, [13,14],
predictive models were created to classify the four main GBS subtypes using different classifiers.
These models were created using an imbalanced dataset obtained an accuracy of 90%. In this
experimental study, the data was preprocessed using different balancing techniques to balance the
original dataset. With the objective that the classifiers use balanced data and know if it is possible
to overcome the previously created models. The results show that balancing the data helps in the
performance of predictive models. In some cases improved 90% accuracy.

In this study, purplewe try to make symmetrical the number of instances of each subtype by
applying four different undersampling algorithms (Random Undersampling -RUS-, Tomek Link -TM-,
One Side Selection -OSS- and Neighborhood Cleaning Rule -NCR-). Then, we compared these results
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with those found by Synthetic Minority Oversampling Technique (SMOTE) using different percentages
of oversampling. We binarized the multiclass dataset with two different techniques: One versus All
(OVA) and One versus One (OVO). We used three classifiers with different approaches: Decision tree
(C4.5), Support Vector Machines (SVM) and JRip. purple Decision tree and JRip create predictive
models understandable by humans and this is an advantage, especially in this case, models obtained
may be useful for physicians to diagnose GBS subtypes. Moreover, C4.5, JRip, and SVM stand out their
excellent results in classification tasks.

The goal was to investigate whether data balancing techniques allow to create a predictive model
with a statistically significant difference with respect to a predictive model with imbalanced data.

This article is organized as follows. In Section 2, we show a literature review. 3, we present a
description of the dataset, machine learning algorithms and the performance measure used in the study.
Section 4 describes the experimental procedure. In Section 5, we show and discuss the experimental
results. Finally, in Section 6, we summarize results, provide conclusions, and suggest future work.

2. Related Work

In real life, the imbalance data is frequent in cases of medical diagnosis or in the identification
of variants of diseases. The main problem occurs because of existing more cases of healthy
patients than patients with any disease. For this type of challenge, researchers have applied data
preprocessing techniques which consist of oversampling the minority class or undersampling the
majority class. These techniques have shown that balancing datasets significantly improve the
performance of classifiers.

In [15], Han and coworkers proposed Distribution-Sensitive (DS). This is an oversampling
algorithm for Medical Diagnosis for imbalanced data. DS analyzes the position of the minority
class instances and carefully classifies them into noise samples, unstable samples, limit samples,
and stable samples. Each of these samples is processed differently by the algorithm. The objective
is to choose the most suitable sample to synthesize new samples. Authors apply sample synthesis
methods according to the closeness among surrounding samples, and thus guarantee that the newly
synthesized samples and the original minority samples share characteristics. The results showed that
the accuracy of the classification algorithm is improved.

Bach et al., in 2016 [16], analyzed a dataset of 729 patients. In total, 92.6% belonged to healthy
cases and 7% of cases suffered from Osteoporosis. For this imbalanced data, the authors applied
oversampling and undersampling methods to detect patients with Osteoporosis. To oversample
the dataset, they applied SMOTE. To undersample, they used two different methods, Random
Undersampling (RU) and Edited Nearest Neighbours (ENN). Bach found that SMOTE at 300%
combined with ENN gave the best results.

Kalwa et al. [17] a Smartphone Application was used to diagnose melanoma which is a type of
skin cancer, considered the most deadly and difficult to treat in advanced stages. The application
analyzes images and compares them with 200 images of a public dataset. This research uses SMOTE to
oversampled cases of melanoma patients. The results were compared without using any preprocessing
technique, resulting in SMOTE obtaining better performance regarding the data not oversampled.

In [18], Le et al. propose a framework for self-care problems detection of children with physical
and motor disabilities. This research uses SMOTE to improve the prediction for the SCADI (Self-Care
Activities Dataset) dataset. The results show that extreme gradient boosting using SMOTE outperforms
Artificial Neural Network, Support Vector Machine and Random Forest (RF). The accuracy of their
framework reaches 85.4%.

Fazal proposes a Hybrid Prediction Model (HPM) [19]. This study analyzes a dataset to improve
early diagnosis of Type 2 Diabetes and Hypertension. HPM consists of Density-based Spatial Clustering
of Applications with noise-based outlier detection, SMOTE, and RF. The authors successfully predict
diabetes and hypertension using three benchmark datasets.
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Elreedy et al. [20], conducted an experimental study to explore SMOTE performance factors,
analyzing the relationship between the number of records created and the dataset dimension. They also
analyzed the performance of some classifiers and the effects of applying SMOTE. Finally, they included
in the study some variants of SMOTE such as Bordeline_SMOTE1, Borderline_SMOTE2 and ADASYN
and their performance. For this work, they used five public datasets taken from UCI. As a result, they
found that SMOTE improves the performance of the classifiers, however, this varies from one type of
classifier to another. They found that the more examples of the minority class exist, the greater the
accuracy. This is because the K-nearest neighbor patterns become closer to each other. They concluded
that SMOTE can be used in classification problems for small datasets since increasing the size of the
data improves the classification performance.

In [21], Devi and coworkers presented a modification of the Tomek Link undersampling algorithm,
based on the fact that, in addition to class imbalance, there are other factors such as the existence of
redundant borderline records and outliers in the data space that critically reduce the performance
of classifiers. They used 10 public UCI datasets and four single classifiers for their experiments.
The proposed algorithm facilitates the removal of redundant boundary records rather than simple
boundary ones, with the aim of creating a sparse majority region near the decision boundary. This may
help to convergence towards a balanced class distribution. This undersampling method achieves less
loss of information and better performance.

Bach et al. [22], compared four different undersampling methods to balance data: Edited Nearest
Neighbor, Neighborhood Cleaning Rule, Tomek Link,and Random Undersampling, against his
proposed algorithm, called KNN_Order. This algorithm removes records from high-density areas to
minimize loss of information. They proved the performance of this algorithm using 18 public datasets.

In addition to class imbalance and noise, the superposition of instances of different classes affects
the performance of classifiers. In [23], they proposed to remove potentially overlapped data points
to tackle binary class imbalance, using Neighborhood search with different criteria. This method
identifies and eliminates instances of the majority class. They use 66 synthetic datasets and 24 public
datasets of UCI and Keel repository in their experiments. These methods were compared with other
balancing methods, achieving competitive performance over traditional methods.

In [24] Kovacs et al., they performed a detailed comparison of 85 variants of oversampling
techniques for the minority class. They used 104 imbalanced datasets as well as four classifiers for
their experiments. They found that oversampling leads to better results in classification on imbalanced
datasets. Regarding SMOTE variants, polynom-fit-SMOTE, ProWSyn, and SMOTE-IPF gave the
best results.

In [25], introduced Farthest SMOTE (FSMOTE), a modification of SMOTE. This approach
increases the decision area, considering minority samples closer to the boundary. They compare
different oversampling methods: SMOTE, ADASYN, borderline SMOTE, and safe-level SMOTE.
For experiments, they used seven datasets and two classifiers: Naive Bayes and SVM. Results showed
that FSMOTE improves the existing techniques.

Debashree and coworkers [26] proposed a modification of the Tomek-Link undersampling method.
They present a solution to class imbalance and classes overlapping, as these two problems affect
the performance of standard classifiers. The objective of their research was overlapping region
detection, cleaning up of overlapping region, undersampling of the majority records, and an effective
data-preprocessing framework. The proposed model increases the performance of the minority class
while maintaining an intact majority class performance.

On the other hand, there are several studies employing bioinformatics thechniques, such as
microarray tests [27]. However, the most significant disadvantage of microarrays is the high cost of a
single experiment.

The data balancing through sampling methods can be applied to any imbalanced dataset,
regardless of the subject. In finance, the classification can be improved, for example:
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In [28] SMOTE was applied to create Financial risk models. These models serve companies to
prevent threats from the external economic environment or bad financial decisions. In this study,
the authors used 2628 Chinese companies listed on the stock exchange. The imbalance occurs because
there are more companies with healthy finances (2190 belonging to the majority class) than companies
with financial risk (438 belonging to the minority class). They performed three types of experiments:
In the first experiment, they used the imbalanced data and applied Adaboost and Support Vector
Machine (SVM). In the second experiment, they applied data balancing with SMOTE and subsequently
applied Adaboost with SVM. For the third experiment, they executed Adaboost with SVM, however,
SMOTE worked at the same time that the classifiers. The results show that balancing the data improved
the models with the imbalanced data. For balanced models, the third model improved a significant
difference with the second model.

Online banking operations using credit cards have been increasing every day; with this growth,
credit card frauds are also more common. In [29] Sisodia et al. made models using different sampling
methods to identify credit card fraud detection. They applied five different oversampling methods
(SMOTE, SMOTE-ENN, SMOTE-TL, Safe-SMOTE, and ROS). On the other hand, they used four
different undersampling methods (RUS, CNN, CNN-TL, and TL) and three different datasets DS1
with 10,000 transactions (38 fraud and 9961 normal transactions), DS2 with 15,000 transactions
(50 fraud and 14,950 normal transactions) and DS3 with 20,000 transactions (53 fraud and 19,947
normal transactions). They applied four different classifiers (SVM, C4.5, Adaboost, and Bagging) with
four different performance metrics (Area under ROC Curve, Sensitivity, Specificity, and G-Mean).
The results showed that the best classifiers were Bagging and SVM. SMOTE-ENN obtained the best
performance compared to the other oversampling methods. For the undersampling methods, TL
obtained the best performance.

Phishing is a technique used by cybercriminals to deceive and obtain personal information such
as passwords, credit card data, and bank account numbers. This is achieved through fraudulent
emails. A large amount of mail sent and received can help build models with Machine Learning
algorithms that help predict future cyber-attacks. However, most of the emails that reach us in the
inbox are true compared to phishing emails. This results in an imbalance of data. In [30], they used
SMOTE to balance a dataset with 812 instances obtained from the UCI Machine Learning Repository.
The dataset is divided into three classes (phishy, suspicious and legitimate). Three algorithms were
used to create the models (Support Vector Machine, Random Forests, and XGBoost). The results show
that the imbalanced data have poor performance. The data that were balanced using SMOTE achieved
a better performance.

3. Materials and Methods

3.1. Dataset

The dataset used in this work are records of 129 cases of patients diagnosed with Guillain–Barré
Syndrome (GBS). They received treatment for one of the four subtypes of GBS: AIDP, AMAN, AMSAN
and MF. The data were collected at the Instituto Nacional de Neurología y Neurocirugía. Table 2 shows
the characteristics of the dataset.

Table 2. Dataset characteristics.

Dataset Number of Number of Number of Class 1 Class 2 Class 3 Class 4
Name Classes Instances Attributes AIDP AMAN AMSAN MF

GBS 4 129 16 20 37 59 13

Table 3 shows the 16 relevant features selected in a previous study [31]. These attributes were
selected from the original dataset with 365 features. The features V22, V29, V30, and V31 are integer
values; the remaining ones are decimal.
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Table 3. Variables used in this work.

Feature Label Feature Name Feature Type

v22 Symmetry (in weakness) Clinical
v29 Extraocular muscles involvement !

v30 Ptosis !

v31 Cerebellar involvement !

v63 Amplitude of left median motor nerve Nerve conduction test
v106 Area under the curve of left ulnar motor nerve !

v120 Area under the curve of right ulnar motor nerve !

v130 Amplitude of left tibial motor nerve !

v141 Amplitude of right tibial motor nerve !

v161 Area under the curve of right peroneal motor nerve !

v172 Amplitude of left median sensory nerve !

v177 Amplitude of right median sensory nerve !

v178 Area under the curve of right median sensory nerve !

v186 Latency of right ulnar sensory nerve !

v187 Amplitude of right ulnar sensory nerve !

v198 Area under the curve of right sural sensory nerve !

3.2. Imbalance Ratio

In binary classification, it is common to find real-life cases where highly imbalanced data are
present. An example is credit card fraud detection, where more cases of operations carried out correctly
than fraudulent operations are usually found [32]. However, in cases where the number of records of
one class is similar to another one it is not clear to determine when a dataset is imbalanced. For example,
in [33] the researchers classified three types of different pediatric brain tumors with a dataset of 90
patients divided into three classes: 38, 42, and 10. In cases like this, there is no consensus among
experts in the field if there is an imbalance of data between classes.

Imbalance ratio (IR) is the widely accepted measure to determine imbalance data. In Equation (1),
IR is the ratio of the number of records of the majority class between the number of records of minority
class [34]. A dataset can be considered imbalanced if IR > 1.5 [35].

IR =
Majority class
Minority class

(1)

For example, we have a binary imbalance dataset composed for D = C1, C2 where C1 = 46
(majority class) and C2 = 22 (minority class). For this dataset, IR = 2.09, according to Equation (2).

IR =
46
22

(2)

3.3. Machine Learning Algorithms

In this study, we include four methods of undersampling with different approaches.
These methods have demonstrated their success to improve the performance of classifiers by
eliminating instances of the majority class [36]. We applied these methods to investigate if eliminating
random instances of the majority class affects the performance of classifiers. On the other hand, it is
proven that not only the imbalance between classes affects the performance of classifiers, but also
factors such as noise affect the result [37]. For this reason, we apply three different undersampling
methods for noise elimination. We also apply SMOTE, the most commonly used method for
oversampling the minority class with synthetic data, using six different synthetic oversampling
percentages. This method has demonstrated its success with imbalanced datasets [38]. We used three
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classifiers from different family, we wanted to investigate which of them gets the best performance
compared to those reported in previous studies using the imbalanced dataset.

3.3.1. Random Undersampling (RUS)

RUS is a non-heuristic method of randomly reducing data. RUS takes the majority class and
randomly removed the requested instances according to the percentage required in the algorithm.
This with the objective of equalizing the majority class with the minority class until reaching the
desired balance between the two classes [39]. One of the advantages of this method is that it decreases
the run time [40].

3.3.2. Tomek Link (TML)

It is one of the most used data undersampling techniques [41]. TML is based on the Condensed
Nearest Neighbor algorithm. TML is also known as a data cleaning method since it eliminates noise
from the majority or minority class. On the other hand, TML does not perform data balancing between
classes, however, it looks for Tomek examples and only deletes examples of the majority class for
each Tomek Link found. The algorithm works as follows: A couple of records mi and mj is name the
Tomek Link if they are from different classes and are closer neighbors one another. Namely, there is
no record ml , in such a way d(mi; ml) < d(mi; mj) or d(mj; ml) < d(mi; mj), where d(mi; ml) is the
distance between mi and ml . Two records building up a Tomek Link indicates that one of them is noise
or both are at the limit [42].

3.3.3. One Side Selection (OSS)

OSS is the combination of two different undersampling methods that carefully remove records of
the majority class. First, OSS applies Condensed nearest-neighbor US-CNN, which removes records of
the majority class being far from the decision area boundary (redundant examples). Subsequently,
OSS uses TML to remove records of the majority class that are noisy examples and also instances that
are at the border of the decision area (unsafe examples). Instances of the majority class that were not
eliminated are used for learning (safe examples) [43]. Algorithm 1 shows OSS steps.

Algorithm 1: One Side Selection (OSS).
Data: T (the original training set)
Result: S (the resulting set)
begin

D = all instance minority from T and randomly selected instances majority;
Classify T with the 1-NN rule using the records in D, and contrast the assigned concept
categories with the original ones;

Move all misclassified records into D that is now compatible with T while being smaller;
Remove from D all instances majority that is believed borderline and/or noisy;
S = All instances minorities retained;

end

The objective of OSS is to balance the training set keeping only the most significant records of the
majority class without eliminating instances of the minority class [44].

3.3.4. Neighborhood Cleaning Rule (NCR)

NCR is a modification of the Edited Nearest Neighbor Rule (ENN) [45]. NCR improves the
data cleanliness of the majority class for imbalanced data binary. NCR stands out among other
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undersampling methods because it considers the quality of the deleted data. It is focused only on data
cleansing rather than on the balance of classes of the training set [46].

NCR works as follows: for each record, there is a N1 sample in the training set. Then, find the
three closest neighbors of each sample. When N1 belongs to the majority class and the classification
outcome is the opposite of the original class at N1, then N1 is removed. When N1 belongs to a minority
class and the neighbors belong to the majority class, then the nearest neighbor is removed. [47].
Algorithm 2 shows NCR steps.

Algorithm 2: Neighborhood Cleaning Rule (NCR).
Data: T (the original training set)
Result: S (reduced data)
begin

Split data T into the class of interest C and the remaining data 0;
Identify noisy data A1 in 0 with edited nearest neighbor rule;
for each class Ci in 0 do

if (x ∈ Ci in 3-nearest neighbors of misclassified y ∈ C) and (| Ci | > 0.5| C |) then
A2 = {x} ∪ A2;

end
end
S = T − (A1 ∪ A2);

end

NCR eliminate outlier in the majority class of imbalanced datasets [48].

3.3.5. Synthetic Minority Oversampling Technique (SMOTE)

In [49], SMOTE was introduced, one of the most successful and commonly used oversampling
methods in cases of binary class imbalance problems. This technique oversamples the minority class
by creating synthetic or artificial data based on the similarities of the feature space between existing
minority examples. SMOTE introduces synthetic examples along with the line segments that join any
of the closest neighbors to the minority class. Based on the oversampling required, the neighbors of the
nearest neighbors are chosen at random. These new data created synthetically improve the previous
techniques that replace oversampling in a simple way. Synthetic data balance the training set helping
the classifier to significantly improve the result [50]. Algorithm 3 shows SMOTE steps.

In Figure 1, we show the operation of SMOTE. Synthetic objects in the minority class are created
through the interpolating of the object and his k Nearest Neighbors. In Figure 1a, we can see the dataset
consisting of two classes, a majority and a minority class. Figure 1b shows the Nearest Neighbors
selected to apply SMOTE. The synthetic instances of the minority class are also observed. Figure 1c
shows the set of balanced data using oversampling synthetic. We used SMOTE for oversampling the
minority class of our imbalanced dataset.
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Algorithm 3: SMOTE.
Data: T (the original training set); p (percentage of examples to be oversampled)
Result: S (the set of synthetic examples)
begin

Calculates the number of examples to generate;
Calculates the closest neighbors of the minority class examples;
Generates the examples following this process:
begin

For each example of the minority class, randomly choose the neighbor to use to create a
new example;

For each attribute of the example to be oversampled, calculate the difference between
the sample attribute vector and the chosen neighbor;

Multiplies this difference by a random number between 0 and 1;
Adds this last value to the original value of the sample;
Returns the set of synthetic examples;

end
end

Figure 1. Data generation using SMOTE.

3.3.6. Single Classifiers

� Decision tree (C4.5): C4.5 divides the original problem into sub-groups. For each iteration, a tree
with the best gain is constructed according to the selected feature. The decision tree is constructed
top-down. The feature with the highest information gain is used to make the decision [51].
This method is one of the most popular of inductive algorithms. It has been successfully applied
to diagnose medical cases [52].

� Support Vector Machines (SVM): SVM is used in binary classification problems. Given a training
set, SVM search for the optimal hyperplanes, with a maximum margin of the distance between
them [53]. The larger the margin of the classes, the lower the error and accuracy increased of the
classifier [54]. SVM is based-kernel.

� RIPPER (JRip): JRip, a based-ruled approach, is one of the most popular algorithms for
classification problems [55]. Classes are examined in increasing size. Then, a starting rule
set for the class is created using incrementally reduced error. JRip creates a rule set for all the
records of each class, one by one [56].

3.4. Performance Measure

We used the Receiver Operating Characteristics (ROC) curve performance measure, a frequently
used tool for evaluating classifiers [57]. It has advantages over other evaluation measures, such as
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precision-recall. ROC curve is a two-dimensional graph that provides a good summary of a
classification model performance in the presence of imbalanced datasets with unequal error costs [58].
An ROC curve is generally employed in medical scenarios where the diagnostic of presence or absence
of an abnormal condition are common [59].

The area of the graph has a value between 0.5 and 1, where a value of 1 represents a perfect
diagnosis and 0.5 represents a test with no discriminatory capacity diagnosis.

3.5. Binarization Techniques

In multiclass classification, it is common to decompose the original dataset containing all the
classes into a binary dataset. One versus All (OVA) and One versus One (OVO) are two approaches
commonly used for binarization. OVA and OVA facilitate the application of the data preprocessing
techniques to balance the data before the training set goes to the classifier [60]. The OVA approach
takes one class as a minority and the remaining classes are combined and transformed into the majority
class. This procedure is made for the n classes of the dataset [61]. OVO trains a classifier for each
possible pair of classes (n-1)/2 (pairwise learning) [62]. Figures 2 and 3 show examples of OVA and
OVO approaches used in a multiclass imbalanced dataset.

We use the OVA and OVO binarization technique widely used in classification problems [63].
From a medical perspective, OVA and OVO may assist physicians in distinguishing one subtype from
another, an important task since each subtype varies in severity and treatment.

Class 1 Class 2

Class 3 Class 4

Original Dataset

Subset 1

Class 1

Class 2

Class 3

Class 4

Class 2

Class 1

Class 3

Class 4

Subset 2

Class 3

Class 1

Class 2

Class 4

Subset 3

Class 4

Class 1

Class 2

Class 3

Subset 4

Figure 2. OVA approach example.
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Class 3 Class 4

Original Dataset
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Class 1 Class 2

Subset 3

Class 1 Class 4

Class 1 Class 3

Subset 2

Subset 4

Class 2 Class 3

Subset 5

Class 2 Class 4

Subset 6

Class 3 Class 4

Figure 3. OVO approach example.

3.6. Validation

We used train-test evaluation for each single classifier, employing two-thirds of data for training,
and one-third for testing.

4. Experimental Procedure

Figure 4 describes the experimental procedure. We tackle our multiclass classification problem
by dividing it into two different binary subproblems using OVA and OVO approaches. Purple the
sampling methods use binary datasets. These are integrated with minority class and majority class.
For this reason, we used two different techniques to binarize our original GBS multiclass dataset.
We created 10 binary datasets divided into two groups. purple The OVA technique takes a subtype of
GBS which will be the minority class. The majority class will be made up of the sum of the other three
remaining subtypes of GBS. Applying OVA, we obtained four imbalanced pairs of subsets. The OVO
technique performs all possible combinations between two classes that integrated a dataset. For this
experimental study, six possible imbalanced subsets pairs were obtained, created by the combination
of the GBS subtypes from the original dataset.

Subsets obtained with OVA technique:

• GBS1 (129 instances): AIDP (20 instances) vs. ALL (109 instances).
• GBS2 (129 instances): AMAN (37 instances) vs. ALL (92 instances).
• GBS3 (129 instances): AMSAN (59 instances) vs. ALL (70 instances).
• GBS4 (129 instances): MF (13 instances) vs. ALL (116 instances).

Subsets obtained with OVO technique:

• GBS1 (57 instances): AIDP (20 instances) vs. AMAN (37 instances).
• GBS2 (79 instances): AIDP (20 instances) vs. AMSAN (59 instances).
• GBS3 (33 instances): AIDP (20 instances) vs. MF (13 instances).
• GBS4 (96 instances): AMAN (37 instances) vs. AMSAN (59 instances).
• GBS5 (50 instances): AMAN (37 instances) vs. MF (13 instances).
• GBS6 (72 instances): AMSAN (59 instances) vs. MF (13 instances).
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Figure 4. Experimental procedure.

We split each GBSn subset into two sets, 66% for training and 34% for testing. We balanced
the training subsets applying sampling methods. The majority class of each training subset was
under-sampled applying 4 different methods: Random Undersampling (RUS), Neighborhood Cleaning
Rule (NCR), One Side Selection (OSS) and Tomek Link (TML). On the other hand, the minority class of
the training subset was over-sampled using SMOTE at 100%, 200%, 300%, 400%, 500%, and 1000%,
according to the literature [22,49]. Tables 4–7 shows results of data balancing.

Table 4. Majority class undersampling (OVA).

Subset Original Training Random Neighborhood One Side Tomek
Undersampling Cleaning Rule Selection Link

GBS1 109 73 14 62 63 67
GBS2 92 62 25 59 28 59
GBS3 70 47 40 41 24 43
GBS4 116 78 9 64 39 70

Table 5. Majority class undersampling (OVO).

Subset Original Training Random Neighborhood One Side Tomek
Undersampling Cleaning Rule Selection Link

GBS1 37 25 14 16 17 22
GBS2 59 40 14 35 14 38
GBS3 20 14 9 9 7 8
GBS4 59 40 25 39 16 39
GBS5 37 25 9 19 20 23
GBS6 59 40 9 34 35 37
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Table 6. Minority class oversampling (OVA).

Subset Original Training SMOTE SMOTE SMOTE SMOTE SMOTE SMOTE
100% 200% 300% 400% 500% 1000%

GBS1 20 14 28 42 56 70 84 154
GBS2 37 25 50 75 100 125 150 275
GBS3 59 40 80 120 160 200 240 440
GBS4 13 9 18 27 36 45 54 99

Table 7. Minority class oversampling (OVO).

Subset Original Training SMOTE SMOTE SMOTE SMOTE SMOTE SMOTE
100% 200% 300% 400% 500% 1000%

GBS1 20 11 22 33 44 55 66 121
GBS2 20 14 28 42 56 70 84 154
GBS3 13 9 18 27 36 45 54 99
GBS4 37 24 48 72 96 120 144 264
GBS5 13 9 18 27 36 45 54 99
GBS6 13 10 20 30 40 50 60 110

We conducted 60 independent runs computing the ROC curve for each GBSn subset, and we
obtained the average ROC curve. We performed this procedure for both imbalanced and balanced
data using 3 different classifiers: C4.5, JRip, and SVM. Then, we compared imbalanced data models
versus balanced data models. The model comparison was made using the Wilcoxon nonparametric
test only when balanced data models outperformed imbalance data models.

We conducted a Wilcoxon test [64] to search for a statistical difference among the models using a
significance value of 0.05. A nonparametric test was used since it does not require a particular data
distribution [35].

Purple R is a language used to perform statistical analysis, it allows you to manipulate data quickly
and accurately. R creates high-quality graphics, it is free and open source. It is an object-oriented
language. RStudio is an IDE or integrated development environment. This means that RStudio is
a program to manage R and use it more conveniently. RStudio includes a console, a syntax editor
that supports code execution, as well as tools for plotting, debugging and managing the workspace.
R experiments were performed in RStudio 1.2.1335.

A package is a collection of functions, data, and documentation that improves the capabilities of R.
Packages are available in CRAN (Comprehensive R Archive Network). We used DMwR package [65]
to oversampling with SMOTE. We used Unbalanced package to undersample the majority class with
methods RUS, TML, OSS, NCL [66]. On the other hand, we applied three classifiers to create predictive
models, using RWeka package [67] for C4.5 and JRip, e1071 package [68] for SVM classifier.

Other packages used were rJava [69], a low level interface for JAVA that allows the creation
of objects. The data partition and the confusion matrix was created using the packagecaret [70].
To calculate the imbalance ratio we used imbalance [71]. Curve ROC was created using pROC [72].
We used lattice [73], for data viewer. We used rpart [74], a recursive partitioning for classification trees.
To plot the models created by rpart we used rpart.plot [75]. SVM was tuned with the tune function,
assigning the values 0.001, 0.01, 0.1, 1, 10, 50, 80, 100 for the C parameter.

5. Results and Discussion

This section show results obtained applying the four different undersampling techniques and
the oversampling SMOTE technique to four imbalanced subsets obtained using OVA, as well as to
six imbalanced subsets obtained using OVO. Each value is the average ROC curve obtained across 60
runs, each with a different seed.
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We applied C4.5, SVM and JRip classifiers after the data balancing and we evaluated the model
performance using ROC, the most accepted metric for imbalanced problems. We used the Wilcoxon test
to evaluate the statistically significant difference between the models using imbalanced data against to
the models using balanced data.

In Tables 8 and 9, we show the IR computed of the GBS subset from OVA and OVO. The highest
IR values were obtained with OVA. This is because the higher the number of the majority class with
respect to the minority one the higher the result. However, in GBS3 the IR = 1.1864. Some authors
consider that a dataset is imbalanced when IR > 1 [76]. For OVO, in all cases, IR > 1.5.

Table 8. Imbalance Ratio for OVA.

SGB Minority Majority Imbalance
Class Class Ratio

GBS1 20 109 5.4500
GBS2 37 92 2.4865
GBS3 59 70 1.1864
GBS4 13 116 8.9231

Table 9. Imbalance Ratio for OVO.

SGB Minority Majority Imbalance
Class Class Ratio

GBS1 20 37 1.8500
GBS2 20 59 2.9500
GBS3 13 20 1.5385
GBS4 37 59 1.5946
GBS5 13 37 2.8462
GBS6 13 59 4.5385

Tables 10–13 show in bold the cases with a statistically significant difference. The structure of the
four tables is as follows: first column shows the subsets obtained using binarization techniques (OVA,
OVO), the GBS subtype included, as well as the number of instances for each of them. The second
column shows the three classifiers used for each subset. The third column shows the results of the
classifiers using the imbalanced data.

Subsequent columns show results of applying the balance techniques and their corresponding
Wilcoxon test, where NS (Not Significant) stands for a not statistically significant difference between
results using imbalanced data and results using balanced data, NC (Not Computed) means that the
test could not be performed due to many identical results across the 60 runs or that best results were
obtained using imbalanced data, and S (Significant) represents that there is a statistically significant
difference between results using imbalanced data against to balanced data.
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Table 10. Comparison between imbalanced data and balanced data using four undersampling methods. The values are average classification results across 60 runs
using OVA.

Case
Instances Classifier

Imbalanced
Dataset

Random
Undersampling

Wilcoxon
Test

Tomek
Link

Wilcoxon
Test

One Side
Selection

Wilcoxon
Test

Neighborhood
Cleaning Rule

Wilcoxon
Test

ROC ROC RESULT ROC RESULT ROC RESULT ROC RESULT

GBS1 C4.5 0.8130 0.7940 NC 0.8287 NS 0.8192 NS 0.8273 NS
AIDP-ALL SVM 0.7477 0.7734 NS 0.7553 NS 0.7618 NS 0.7632 NS

20-109 JRip 0.7826 0.8150 * S 0.7949 NS 0.7766 NC 0.8074 * S
SGB2 C4.5 0.9003 0.8924 NC 0.9088 NS 0.9182 * S 0.8939 NC

AMAN-ALL SVM 0.8594 0.8832 * S 0.8575 NC 0.8611 NS 0.8557 NC
37-92 JRip 0.8608 0.8656 NS 0.8668 NS 0.8601 NC 0.8414 NC

SGB3 C4.5 0.8632 0.8582 NC 0.8579 NC 0.8496 NC 0.8644 NS
AMSAN-ALL SVM 0.7898 0.7906 NS 0.7911 NS 0.7870 NC 0.7981 NS

59-70 JRip 0.8470 0.8440 NC 0.8639 NC 0.8288 NC 0.8444 NC

SGB4 C4.5 0.7662 0.8906 * S 0.7935 NS 0.8103 * S 0.8033 NS
MF-ALL SVM 0.6846 0.7099 NS 0.7323 NS 0.7709 * S 0.7319 NS

13-116 JRip 0.8319 0.8781 * S 0.8577 NS 0.8633 NS 0.8498 NS
NC = Not computed; NS = Not significant; S = Significant.
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Table 10 shows results obtained after applying RUS, TML, OSS, and NCR to the four imbalanced
subsets obtained through OVA. A total of 48 data balanced cases were obtained. In 16 cases, balanced
data could not improve imbalanced data. In 24 cases, balanced data improved the imbalanced data
with no statistically significant difference. Eight cases presented a statistically significant difference.
These cases are listed below with their corresponding ROC value.

GBS1
OVA

RUS/JRIP
= 0.8150 GBS2

OVA

RUS/SVM
= 0.8832 GBS4

OVA

RUS/JRIP
= 0.8781

GBS1
OVA

NCR/JRIP
= 0.8074 GBS4

OVA

RUS/C4.5
= 0.8906 GBS4

OVA

OSS/SVM
= 0.7709

GBS2
OVA

OSS/C4.5
= 0.9182 GBS4

OVA

OSS/C4.5
= 0.8103

GBS4 subset obtained the best results. In all 12 cases, the balanced data improved the imbalanced
data, applying all four undersampling methods and all three classifiers. Furthermore, a statistically
significant difference was found in four of them. GBS3 subset obtained the worst performance.
Balanced data could not improve the imbalanced data in eight cases. Balanced data improved
imbalanced data only in four cases, with no statistically significant difference.

The best undersampling method using OVA was RUS because it improved imbalanced data in
8 cases, half of them with a statistically significant difference. OSS improved results in seven cases,
three of them with a statistically significant difference. NCR improved imbalanced data in 8 cases,
however, only one of them obtained a statistically significant difference. TML obtained the worst
performance, although in nine cases results were improved, none of them obtained a statistically
significant difference.

We conducted 16 experiments cases for each classifier, derived from applying four undersampling
methods in 4GBS subsets. From these experiments, C4.5 obtained the best results, in 11 cases balanced
data improved imbalanced data, three of them with a statistically significant difference. Applying
SVM, in 13 cases balanced data improved imbalanced data, but only two of them with a statistically
significant difference. Finally with JRip, in nine cases balanced data improved imbalanced data,
three of them with a statistically significant difference.
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Table 11. Comparison between imbalanced data and balanced data using 4 undersampling methods. The values are average classification results across 60 runs
using OVO.

Case Imbalanced
Dataset

Random
Undersampling

Wilcoxon
Test

Tomek
Link

Wilcoxon
Test

One Side
Selection

Wilcoxon
Test

Neighborhood
Cleaning Rule

Wilcoxon
TestClassifier

Instaces ROC ROC RESULT ROC RESULT ROC RESULT ROC RESULT

GBS1 C4.5 0.9604 0.9264 NC 0.9319 NC 0.8972 NC 0.9458 NC
AIDP-AMAN SVM 0.9674 0.9639 NC 0.9590 NC 0.9528 NC 0.9660 NC

20-37 JRip 0.9563 0.9479 NC 0.9500 NC 0.9146 NC 0.9438 NC

GBS2 C4.5 0.8585 0.8251 NC 0.8541 NC 0.8266 NC 0.8496 NC
AIDP-AMSAN SVM 0.8490 0.8292 NC 0.8458 NC 0.8242 NC 0.8447 NC

20-59 JRip 0.8260 0.8220 NC 0.8308 NS 0.8471 NS 0.8289 NS

GBS3 C4.5 0.8132 0.8667 * S 0.8840 * S 0.8854 * S 0.8604 * S
AIDP-MF SVM 0.7097 0.6465 NC 0.6667 NC 0.6354 NC 0.6542 NC

20-13 JRip 0.8556 0.8757 NS 0.8771 NS 0.8590 NS 0.8507 NS

GBS4 C4.5 0.9258 0.9102 NC 0.9270 NS 0.9260 NS 0.9178 NC
AMAN-AMSAN SVM 0.8783 0.8976 * S 0.8721 NC 0.8647 NC 0.8823 NS

37-59 JRip 0.8782 0.8966 NS 0.8973 * S 0.9098 * S 0.8758 NC

GBS5 C4.5 0.8736 0.8813 NS 0.8847 NS 0.8632 NC 0.8847 NS
AMAN-MF SVM 0.8910 0.8743 NC 0.8840 NC 0.8569 NC 0.8785 NC

37-13 JRip 0.8854 0.8736 NC 0.8792 NC 0.8771 NC 0.8854 NC

GBS6 C4.5 0.8007 0.8753 * S 0.8679 * S 0.8582 * S 0.8401 * S
AMSAN-MF SVM 0.7388 0.7724 NS 0.7784 * S 0.7538 NS 0.7701 NS

59-13 JRip 0.8580 0.8811 NS 0.8635 NS 0.8640 NS 0.8385 NC

NC = Not computed; NS = Not significant; S = Significant.
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Table 11 shows results obtained after applying RUS, TML, OSS and NCR to the 6 imbalanced
subsets obtained through OVO. A total of 72 data balanced cases were obtained. In 40 cases,
balanced data could not improve imbalanced data. In 20 cases, balanced data improved the
imbalanced data with no statistically significant difference. 12 cases presented a statistically significant
difference. These cases are listed below with their corresponding ROC value.

GBS3
OVO

RUS/C4.5
= 0.8667 GBS4

OVO

RUS/SVM
= 0.8976 GBS6

OVO

OSS/C4.5
= 0.8582

GBS3
OVO

OSS/C4.5
= 0.8854 GBS4

OVO

OSS/JRip
= 0.9098 GBS6

OVO

TML/SVM
= 0.7784

GBS3
OVO

NCR/C4.5
= 0.8604 GBS4

OVO

TML/JRip
= 0.8973 GBS6

OVO

TML/C4.5
= 0.8679

GBS3
OVO

TML/C4.5
= 0.8840 GBS6

OVO

RUS/C4.5
= 0.8753 GBS6

OVO

NCR/C4.5
= 0.8401

GBS6 subset obtained the best results. In 11 out of 12 cases the balanced data improved the
imbalanced data, 5 of them with a statistically significant difference. In only one case the balanced
data could not improve the imbalanced data. GBS1 subset had the worst performance. In none of the
12 cases, the balanced data improved the imbalanced data.

The best undersampling method using OVO was TML since it improved imbalanced data in 9
cases, in 4 of them with statistically significant difference. RUS and OSS behaved the same, that is,
in 8 cases the balanced data improved the imbalanced data, 3 of them with a statistically significant
difference. NCR had the worst performance: in 7 cases the balanced data improved the imbalanced
data, 2 of them with a statistically significant difference.

We conducted 16 experiments for each classifier, as in OVA. From these experiments, C4.5
obtained the best results, in 13 cases the balanced data improved the imbalanced data, 8 of them
with a statistically significant difference. Applying JRip, in 13 cases the balanced data improved the
imbalanced data but only 2 of them with a statistically significant difference. With SVM, in 6 cases the
balanced data improved the imbalanced data, 2 of them with a statistically significant difference.
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Table 12. Comparison between imbalanced data and balanced data using SMOTE method. The values are average classification results across 60 runs using OVA.

Case
Instances Classifier

Imbalanced
Dataset

SMOTE
100%

Wilcoxon
Test

SMOTE
200%

Wilcoxon
Test

SMOTE
300%

Wilcoxon
Test

SMOTE
400%

Wilcoxon
Test

SMOTE
500%

Wilcoxon
Test

SMOTE
1000%

Wilcoxon
Test

ROC ROC RESULT ROC RESULT ROC RESULT ROC RESULT ROC RESULT ROC RESULT

GBS1 C4.5 0.8130 0.8042 NC 0.7951 NC 0.7905 NC 0.7986 NC 0.7877 NC 0.7951 NC
AIDP-ALL SVM 0.7477 0.7750 NS 0.7544 NS 0.7407 NC 0.7498 NS 0.7428 NC 0.7556 NS

20-109 JRip 0.7826 0.8102 * S 0.7993 NS 0.8030 * S 0.8046 NS 0.7891 NS 0.7993 NS

GBS2 C4.5 0.9003 0.8900 NC 0.8972 NC 0.8915 NC 0.8890 NC 0.8890 NC 0.8939 NC
AMAN-ALL SVM 0.8594 0.8490 NC 0.8417 NC 0.8411 NC 0.8401 NC 0.8417 NC 0.8379 NC

37-92 JRip 0.8608 0.8699 NS 0.8718 NS 0.8606 NC 0.8689 NS 0.8892 * S 0.8767 NS

GBS3 C4.5 0.8632 0.8795 * S 0.8592 NC 0.8689 NS 0.8699 NS 0.8747 NS 0.8792 NS
AMSAN-ALL SVM 0.7898 0.7881 NC 0.7863 NC 0.7888 NC 0.7909 NS 0.7917 NS 0.7887 NC

59-70 JRip 0.8470 0.8442 NC 0.8603 * S 0.8640 * S 0.8632 NS 0.8616 * S 0.8678 * S
GBS4 C4.5 0.7662 0.8951 * S 0.8588 * S 0.8292 * S 0.8180 NS 0.8340 * S 0.8007 NS

MF-ALL SVM 0.6846 0.7516 * S 0.7590 * S 0.7409 NS 0.7568 * S 0.7604 * S 0.7679 * S
13-116 JRip 0.8319 0.8826 * S 0.8447 NS 0.8339 NS 0.8466 NS 0.8469 NS 0.8198 NC

NC = Not computed; NS = Not significant; S = Significant.
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Table 12 shows results obtained after applying SMOTE at 100%, 200%, 300%, 400%, 500%,
and 1000% to the 4 imbalanced subsets obtained through OVA. A total of 72 data balanced cases were
obtained as result from applying three classifiers to 24 imbalanced subsets. In 28 cases, balanced data
could not improve imbalanced data. In 26 cases, balanced data improved the imbalanced data with no
statistically significant difference. 18 cases presented a statistically significant difference. These cases
are listed below with their corresponding ROC value.

GBS1
OVA

SMT100/JRip
= 0.8102 GBS3

OVA

SMT500/JRip
= 0.8616 GBS4

OVA

SMT100/SVM
= 0.7516

GBS1
OVA

SMT300/JRip
= 0.8030 GBS3

OVA

SMT1000/JRip
= 0.8678 GBS4

OVA

SMT200/SVM
= 0.7590

GBS2
OVA

SMT500/JRip
= 0.8892 GBS4

OVA

SMT100/C4.5
= 0.8951 GBS4

OVA

SMT400/SVM
= 0.7568

GBS3
OVA

SMT100/C4.5
= 0.8795 GBS4

OVA

SMT200/C4.5
= 0.8588 GBS4

OVA

SMT500/SVM
= 0.7604

GBS3
OVA

SMT200/JRip
= 0.8603 GBS4

OVA

SMT300/C4.5
= 0.8292 GBS4

OVA

SMT1000/SVM
= 0.7679

GBS3
OVA

SMT300/JRip
= 0.8640 GBS4

OVA

SMT500/C4.5
= 0.8340 GBS4

OVA

SMT100/JRip
= 0.8826

GBS4 subset obtained the best results. From 18 balancing cases with SMOTE, in only one case
balanced data could no improve imbalanced data. In 7 cases, balanced data improved imbalanced data
without a statistically significant difference. In 10 cases, a statistically significant difference was found.
On the other hand, GBS2 obtained the worst performance. In only one case a statistically significant
difference was found. In 4 cases, balanced data improved imbalanced data; however, a statistically
significant difference was not found. In 13 cases, balanced data could no improve imbalanced data.

For OVA and SMOTE techniques, the best performance was obtained applying SMOTE at 100%,
since in seven cases balanced data improved the imbalanced data, 5 of them with a statistically
significant differences. SMOTE at 400% obtained the worst performance since in 9 cases balanced data
improved the imbalanced data, however, only one obtained a statistically significant difference.

As for the classifiers, JRip obtained the best performance, given that in 13 cases balanced data
improved imbalanced data without statistically significant difference. In addition, in other 8 cases we
found a statistically significant difference. With C4.5, in 11 cases balanced data improved imbalanced
data, however, only 5 of them obtained a statistically significant difference. Applying SVM, in 12 cases
balanced data improved imbalanced data, but only 5 of them with a statistically significant difference.

We conclude that SMOTE at 100% combined with JRip obtained best results.
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Table 13. Comparison between imbalanced data and balanced data using SMOTE method. The values are average classification results across 60 runs using OVO.

Case
Instances Classifier

Imbalanced
Dataset

SMOTE
100%

Wilcoxon
Test

SMOTE
200%

Wilcoxon
Test

SMOTE
300%

Wilcoxon
Test

SMOTE
400%

Wilcoxon
Test

SMOTE
500%

Wilcoxon
Test

SMOTE
1000%

Wilcoxon
Test

ROC ROC RESULT ROC RESULT ROC RESULT ROC RESULT ROC RESULT ROC RESULT

GBS1 C4.5 0.9563 0.9576 NS 0.9438 NC 0.9493 NC 0.9528 NC 0.9556 NC 0.9576 NS
AIDP-AMAN SVM 0.9618 0.9618 NC 0.9632 NC 0.9639 NC 0.9625 NC 0.9632 NC 0.9632 NC

20-37 JRip 0.9507 0.9403 NC 0.9424 NC 0.9403 NC 0.9382 NC 0.9319 NC 0.9389 NC

GBS2 C4.5 0.8656 0.8551 NC 0.8485 NC 0.8375 NC 0.8502 NC 0.8607 NC 0.8551 NC
AIDP-AMSAN SVM 0.8557 0.8333 NC 0.8328 NC 0.8428 NC 0.8381 NC 0.8338 NC 0.8333 NC

20-59 JRip 0.8472 0.8549 NS 0.8285 NC 0.8480 NS 0.8561 NS 0.8480 NS 0.8549 NS

GBS3 C4.5 0.8132 0.7965 NC 0.7986 NC 0.7889 NC 0.7729 NC 0.7958 NC 0.7965 NC
AIDP-MF SVM 0.7097 0.6535 NC 0.6486 NC 0.6472 NC 0.6465 NC 0.6563 NC 0.6535 NC

20-13 JRip 0.8458 0.7382 NC 0.7778 NC 0.7750 NC 0.7646 NC 0.7292 NC 0.7382 NC

GBS4 C4.5 0.9132 0.9093 NC 0.9096 NC 0.9172 NS 0.9062 NC 0.9207 NS 0.9093 NC
MF-ALL SVM 0.8863 0.8827 NC 0.8844 NC 0.8843 NC 0.8840 NC 0.8821 NC 0.8827 NC

13-116 JRip 0.8809 0.9065 * S 0.9042 * S 0.9019 * S 0.9043 * S 0.9071 * S 0.9065 * S
GBS5 C4.5 0.8736 0.8868 NS 0.8792 NS 0.8833 NS 0.8701 NC 0.8861 NS 0.8868 NS

AMAN-NF SVM 0.8910 0.8847 NC 0.8715 NC 0.8792 NC 0.8840 NC 0.8847 NC 0.8847 NC
37-13 JRip 0.8799 0.8889 NS 0.8799 NC 0.8875 NS 0.8903 NS 0.8861 NS 0.8889 NS

GBS6 C4.5 0.8007 0.7839 NC 0.8185 NS 0.8287 NS 0.8084 NS 0.8041 NS 0.7839 NC
AMSAN-MF SVM 0.7388 0.7534 NS 0.7646 NS 0.7651 NS 0.7522 NS 0.7469 NS 0.7534 NS

59-13 JRip 0.8430 0.8720 * S 0.8393 NC 0.8306 NC 0.8213 NC 0.8111 NC 0.8061 NC

NC = Not computed; NS = Not significant; S = Significant.
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Table 13 shows results obtained after applying SMOTE at 100%, 200%, 300%, 400%, 500%,
and 1000% to the 6 imbalanced subsets obtained through OVO. A total of 108 data balanced cases
were obtained as result from applying 3 classifier to 36 imbalanced subsets. In 72 cases, balanced data
could not improve imbalanced data. In 29 cases, balanced data improved the imbalanced data with no
a statistically significant difference. 7 cases presented a statistically significant difference. These cases
are listed below with their corresponding ROC value.

GBS4
OVO

SMT100/JRip
= 0.9065 GBS4

OVO

SMT400/JRip
= 0.9043 GBS6

OVO

SMT100/JRip
= 0.8720

GBS4
OVO

SMT200/JRip
= 0.9042 GBS4

OVO

SMT500/JRip
= 0.9071

GBS4
OVO

SMT300/JRip
= 0.9019 GBS4

OVO

SMT1000/JRip
= 0.9065

GBS4 subset obtained the best results. In 6 cases, a statistically significant difference was found.
In 2 cases, balanced data improved the imbalanced data with no statistically significant difference.
In 10 cases, balanced data could not improve the imbalanced data. GBS3 subset obtained the worst
performance. In all 18 cases, balanced data could not improve the imbalanced data.

For OVO and SMOTE techniques, the best performance was obtained applying SMOTE at
100%, since in 5 cases, balanced data improved the imbalanced data without a statistically significant
difference, however, in 2 cases a statistically significant difference was found. In 11 cases, balanced
data could no improve the imbalanced data. SMOTE at 400% obtained the worst performance since in
14 cases balanced data could no improve the imbalanced data. In 4 cases, balanced data improved the
imbalanced data, however, only one case obtained a statistically significant difference.

As for the classifiers, JRip obtained the best performance. In 8 cases balanced data improved
the imbalanced data with no statistically significant difference, however, in 6 cases we founded a
statistically significant difference. In 16 cases balanced data could no improve the imbalanced data.
Applying C4.5, in 19 cases balanced data could no improve the imbalanced data, in 11 cases balanced
data improved the imbalanced data, without a statistically significant difference. SVM obtained worst
performance, only in 5 cases balanced data improved the imbalanced data, however, a statistically
significant difference was not found.

We conclude, as in OVA, for OVO and SMOTE at 100% combined with JRip obtained the
best results.

6. Conclusions

The aim of this work was to investigate if balancing the original GBS dataset improves the
predictive models to identify GBS subtypes created in a previous study. We performed 4 independent
experiments applying data-level techniques.

We started by creating 10 binary datasets divided into two groups. We used OVA and OVO
techniques on the original dataset obtaining 4 and 6 binary subsets respectively. We divided each
GBSn subset into 2 sets, 66% for training and 34% for testing. We balanced the training subset using
two sampling methods. The majority class for each training subset was undersampled applying 4
different methods: RUS, NCR, OSS, and TML. Furthermore, the minority class of the training subset
was oversampled applying SMOTE at 100%, 200%, 300%, 400%, 500%, and 1000%. Undersampling
and oversampling were applied for OVA and OVO.

Once the training subsets were balanced, we applied 3 different classifiers: C4.5, JRip, and SVM.
The scores are the average ROC curve obtained through 60 runs, each with a different seed. We used
the Wilcoxon test to assess whether there is a statistically significant difference between the imbalanced
models versus the balanced models.
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The number of cases with statistically significant difference between imbalanced data and
balanced data across the 4 experiments was: 8 for OVA with undersampling, 12 for OVO with
undersampling, 18 for OVA with SMOTE, and 7 for OVO with SMOTE.

From all 4 sampling experiments, the best results were obtained combining SMOTE with OVA.
Regarding classifiers, JRip obtained the best performance since it found more cases with statistically
significant differences for all experiments.

Purple Balance a subset data using oversampling obtained better performance. Adding synthetic
instances to minority class applying SMOTE helped classifiers get the best performance. On the other
hand, eliminating instances of the majority class resulted in losing information that the classifiers
needed to achieve better performance. However, factors independent of imbalanced data, such as
noise, can affect the performance of the classifiers. We found that the best results were obtained in the
combinations where the majority class clearly exceeds the minority class. In these cases, the instances
clearly distinguish each other and the undersampling algorithms were only responsible for eliminating
noise or class overlapping that helped improve the performance of the classifiers. On the contrary,
when the classes have a similar number of instances, the worst results were produced.

The results achieved in this research shows that balancing the original dataset improves the
previous predictive models. In addition, this predictive model can help specialists to identify the
subtype of GBS that a patient suffers. Early identification of the subtype will allow starting with the
appropriate treatment for patient recovery. This is a contribution to exploring the performance of
balancing techniques with real data.

As future work, we will experiment with different variants of SMOTE, and we will apply a hybrid
approach using the OVA and OVO techniques. Also, we plan to build more accurate predictive models
using different single and ensemble methods.
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