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Abstract: In this paper, we focus on the bending behavior of isotropic doubly-curved nanoshells
based on a high-order shear deformation theory, whose shape functions are selected as an accurate
combination of exponential and trigonometric functions instead of the classical polynomial functions.
The small-scale effect of the nanostructure is modeled according to the differential law consequent, but
is not equivalent to the strain-driven nonlocal integral theory of elasticity equipped with Helmholtz’s
averaging kernel. The governing equations of the problem are obtained from the Hamilton’s principle,
whereas the Navier’s series are proposed for a closed form solution of the structural problem involving
simply-supported nanostructures. The work provides a unified framework for the bending study
of both thin and thick symmetric doubly-curved shallow and deep nanoshells, while investigating
spherical and cylindrical panels subjected to a point or a sinusoidal loading condition. The effect
of several parameters, such as the nonlocal parameter, as well as the mechanical and geometrical
properties, is investigated on the bending deflection of isotropic doubly-curved shallow and deep
nanoshells. The numerical results from our investigation could be considered as valid benchmarks in
the literature for possible further analyses of doubly-curved applications in nanotechnology.

Keywords: doubly-curved nanoshells; high-order shear deformation theory; nonlocal elasticity
theory; static analysis

1. Introduction

Doubly-curved shells are three-dimensional structures, commonly used in many engineering
applications, such as aerospace structures, airplane vehicles, or big constructions such as stadium
cupolas. In their service life, doubly-curved shells are usually affected by different kinds of loading
conditions due to their special geometrical shapes. Therefore, the knowledge of their static response is
a crucial subject of investigation, especially from an applied design standpoint. The application of
adequate numerical models for the bending analysis of doubly-curved shell structures represents a key
aspect to be investigated, which is done herein for nanoshell applications. Doubly-curved shells can
feature a complex geometry, which makes the exact description of their mathematical problem difficult.
Based on the available literature, several theories have been developed to handle the mechanical
behavior of complex shell structures, namely, the 3D elasticity [1–3], the Equivalent Single Layer
(ESL) theories [4–7], and the Layer Wise (LW) [8–11] theories. In what follows, we propose an ESL
model for the static analysis of composite nanoshells with high mechanical magnetic, electronic, and
biomedical properties. In this context, classical continuum theories are known to be unable to accurately
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analyze microstructures or nanostructures and their size effect, whereas the nonlocal theories are more
appropriate to account for small scale effects [12–14], together with the physical interactions of atoms
and molecules at a microscale or nanoscale.

In recent years, a large number of works has focused on the structural behavior of beams, plates,
and shell structures, as briefly reviewed in the following. Ramirez et al. [15] investigated the static
analysis of functionally graded (FG) elastic anisotropic plates using a discrete layer approach together
with the Ritz method. Merdaci and Belghoul [16] applied a higher-order shear deformation theory
(HSDT) with trigonometric shear strain shape functions to study the statics of FG plates with porosities,
while assuming the Navier’s series to solve the equations of motion. In line with the previous works,
Alibeigloo and Nouri [17] studied the statics of FG cylindrical shell with piezoelectric layers by using
the differential quadrature method to handle the governing differential equations and boundary
conditions. A standard finite element approach was differently applied by Kumar et al. [18] for the
static and dynamic analysis of composite cylindrical shells based on the first-order shear deformation
theory (FSDT). A nonlinear analysis of the structural response of FG shells was also performed by
Frikha and Dammak [19] through the application of discrete double director shell elements. Thin and
thick shell theories were proposed alternatively, according to a HSDT, where the material properties
were graded throughout the thickness, according to a simple power-law. Moreover, Mantari et al. [20]
proposed a novel HSDT to investigate the static and dynamic response of laminated composite and
sandwich plates and shells with different geometries. They considered the transverse shear strain field
throughout the thickness, along with the tangential stress-free boundary conditions on the shell surface.
The governing equations of the problem and the associated boundary conditions were derived by the
principle of virtual work whose solution was determined numerically by means of the Navier series.

As far as nanotechnology is concerned, an increased number of works in literature has
focused on the nonlocal mechanics of nanostructures [21–26]. More specifically, Sahmani and
Aghdam [21] investigated the nonlinear instability of hydrostatic pressurized hybrid nanoshells
based on nonlocal elasticity theories, combined to the HSDT. Zeighampour et al. [22] employed
a strain gradient theory to investigate the torsional vibrations and static behavior of cylindrical
shells, whose equations of motion and non-classical boundary conditions were derived, according
to the Hamilton’s principle. A further application of the nonlocal elasticity theory can be found
in Reference [23] for a parametric study of the axial post-buckling behavior of nanoshells with
different nonlocal parameters. Various nonlocal theories have been applied within coupled problems,
such as piezoelectric, flexoelectric, or thermo-electro-mechanical shells at different scales both for
simple [24–32] or more complex [33–46] geometries.

Based on the available literature, however, limited attention has been paid to the nonlocal
mechanical behavior of symmetric doubly-curved deep nanoshells. This is explored for isotropic
doubly-curved nanoshells, where we propose a novel nonlocal shear deformation theory, based on a
combination of exponential and trigonometric functions. These functions are selected for their higher
accuracy compared to the polynomial functions [47]. The small-scale effect of the nanostructure is,
thus, modeled, according to a differential law consequent, but not equivalent to the strain-driven
nonlocal integral theory of elasticity supplemented with Helmholtz’s averaging kernel, whereby the
strain-displacement relations for symmetric nanoshells are based on the Reddy’s doubly-curved shells
theory. The governing equations and boundary conditions are derived by the Hamilton’s principle
whose theoretical formulation is detailed in Section 2. In Section 3, we propose a Navier-type procedure
to solve the problem in a closed-form, whose accuracy is checked against the open literature in Section 4,
along with a systematic investigation aimed at studying the influence of nonlocal and geometrical
parameters on the deflection response of both shallow and deep doubly-curved isotropic nanoshells.
The main conclusive remarks are discussed in the last section, which could be of great interest for
scientists and designers for many practical applications.
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2. Governing Equations of Doubly-Curved Nanoshells

In this section, we provide a brief overview of the mathematical fundamentals and governing
equations of the problem with a special focus on the nonlocal structural response of shallow and deep
isotropic doubly-curved nanoshells. The displacement field is modeled based on the combination of
exponential, sinusoidal, and cosine strain functions due to their accuracy, as verified in Reference [47].
Figure 1 shows the geometrical scheme of the doubly-curved nanoshell analyzed in this scenario,
where h is the thickness of the nanoshell, R1 and R2 refer to its curvature radii, a and b stand for its
width and length, respectively.
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Based on the HSDT [20], the displacement field of doubly-curved deep nanoshells are expressed
by the equation below.

u(ξ1, ξ2, ξ3, t) =
(
1 + ξ3

R1

)
u(ξ1, ξ2, t) + ξ3

(
y∗φ1 −

∂w(ξ1,ξ2,t)
a1∂ξ1

)
+ f (ξ3)φ1(ξ1, ξ2, t)

v(ξ1, ξ2, ξ3, t) =
(
1 + ξ3

R2

)
v(ξ1, ξ2, t) + ξ3

(
y∗φ2 −

∂w(ξ1,ξ2,t)
a2∂ξ2

)
+ f (ξ3)φ2(ξ1, ξ2, t)

w(ξ1, ξ2, ξ3, t) = w(ξ1, ξ2, t)

(1)

where u(ξ1, ξ2, ξ3, t), v(ξ1, ξ2, ξ3, t) and w(ξ1, ξ2, ξ3, t) are the displacement components along the ξ1,
ξ2 and ξ3 directions, respectively. u(ξ1, ξ2, t), v(ξ1, ξ2, t) and w(ξ1, ξ2, t) refer to the displacement field
at the mid-surface. y∗ = mπ/h is defined as in Reference [48], whereby the value m = 0.5 produces the
closest response to a 3D elasticity bending solution. Moreover, φ1 and φ2 denote the rotations about ξ1

and ξ2 axes, respectively. For an accurate study of the bending response of the doubly-curved deep
nanoshells, a combination of the exponential and trigonometric shape functions is proposed within the
formulation.

f (ξ3) =
πh

π4 + h4
e(

hξ3
π )

(
π2 sin

(
hξ3

π

)
+ h2 cos

(
hξ3

π

))
−

πh3

π4 + h4
(2)

This is in view of the lower accuracy of polynomial functions [47]. The selected shape function
follows the shear deformation distribution throughout the thickness, and satisfies the shear stress-free
surface conditions without considering any shear correction factor. Note that, due to the introduction
of the shear deformation effect, both thin and thick shell structures are treated in a unified framework.

For a doubly-curved deep shell, the strain-displacement relations can be expressed by the formula
below [49].
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v
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)
+
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(3)

where

A1 =

(
1 +

ξ3

R1

)
a1; A2 =

(
1 +

ξ3

R2

)
a2 (4)

a1 and a2 representing the tangent vectors along the ξ1 and ξ2 directions, respectively, and
εi = (i = 1, 2, . . . , 6) are strain components.

The doubly-curved shallow nanoshell represents a limit case when it is possible to neglect ξ3 due
to its small dimension compared to the curvature radii, i.e.,

ξ3

R1
→ 0⇒ 1 +

ξ3

R1
→ 1⇒ A1 = a1

ξ3

R2
→ 0⇒ 1 +

ξ3

R2
→ 1⇒ A2 = a2

(5)

By substituting Equation (1) into Equation (3), we get the following relations.
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(6)

The size effect of doubly-curved nanoshells starts considering the strain-driven gradient model by
Eringen [13] to include possible nonlocal long-range interactions, which is also discussed for beam
applications in References [50–53]. Thus, the stress-strain relations for both thin and thick isotropic
nanoshells, accounting for small effects, are expressed by the equation below

(
1− µ2

∇
2
)


σ1

σ2

σ6

σ4

σ5


=


Q11 Q12 0 0 0
Q12 Q22 0 0 0

0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55





ε1

ε2

ε6

ε4

ε5


(7)
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where
Q11 = Q22 =

E
1− ν2 , Q12 =

νE
1− ν2

, Q44 = Q55 = Q66 = G (8)

µ is the nonlocal parameter, E and G stand for the Young’s modulus and shear modulus of the nanoshell,
respectively, and ν is the Poisson’s ratio. By combining Equations (6) and (7), we get the following.
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2
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The equations of motion are derived from the Hamilton’s principle, defined in a variational form
as follows. ∫ t2

t1

(δU − δT + δW)dt = 0 (10)

where δU and δT denote the variation of the strain energy and kinetic energy, respectively, δW is the
variation of the external work. Equation (10) can be written in an extended version as follows

∫ t2

t1

∫ a
0

∫ b
0

∫ h
2

−
h
2
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2

−
h
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qδwa1a2a3dξ1dξ2dξ3dt = 0 (11)

where q is the transverse load. The variation of the strain energy can be defined in terms of axial, shear,
and moment resultants, as follows
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where

(Ni, Mi, Pi) =
∫ h

2

−
h
2

σi(1, ξ3, f (ξ))dξ3 (i = 1, 2, 6)

(Q1, K1) =
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(13)

By substituting Equation (12) in Equation (11), the static equations for the isotropic doubly-curved
nanoshells can be derived by the formula below
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∂ξ2

(
1 +

ξ3

R2

))
−

Q2

R2
= 0

δw :
∂2

∂ξ1
2

(
M1

A1a1

)
+

∂2

∂ξ22

( M2

A2a2

)
+

∂2

∂ξ1∂ξ2

(
M6

A1a2

)
+

∂2

∂ξ1∂ξ2

(
M6

A2a1

)
+

∂
∂ξ2

(Q2

A2

)
+

∂
∂ξ1

(
Q1

A1

)
+

−
∂
∂ξ2

(Q2

a2

)
−

∂
∂ξ1

(
Q1

a1

)
−

a1

R1

N1

A1
−

a2

R2

N2

A2
= −q

δφ1 :
∂
∂ξ1

(
M1y∗

A1

)
+

∂
∂ξ2

(
M6y∗

A2

)
+

∂
∂ξ1

(
P1

A1

)
+

∂
∂ξ2

( P6

A2

)
−Q1y∗ −K1 = 0

δφ2 :
∂
∂ξ2

(
M2y∗

A2

)
+

∂
∂ξ1

(
M6y∗

A1

)
+

∂
∂ξ2

( P2

A2

)
+

∂
∂ξ1

(
P6

A1

)
−Q2y∗ −K2 = 0

(14)

By substituting Equations (9) and (13) into Equation (14), the equations of motion for deep
spherical panels can be rewritten in terms of displacement components, as shown below

A11
R1

∂w
a1∂ξ1

+ A13
∂2u
∂ξ2

1
+ A16

(
y∗ ∂

2φ1

a2
1∂ξ

2
1
−

∂3w
a3

1∂ξ1
3

)
+ A17

∂2φ1

a2
1∂ξ

2
1
+ B11

R2
∂w

a1∂ξ1
+

+B15
∂2v

a1a2∂ξ1∂ξ2
+ B16

(
y∗ ∂2φ2

a1a2∂ξ1∂ξ2
−

∂3w
a1a2

2∂ξ1∂ξ22

)
+ B17

∂2φ2
a1a2∂ξ1∂ξ2

+

+D13
∂2u

a2
2∂ξ

22
+ D15

∂2v
a1a2∂ξ1∂ξ2

+ D16

(
y∗

(
∂2φ1
∂ξ22

+
∂2φ2

a1a2∂ξ1∂ξ2

)
−

2∂3w
a1a2

2∂ξ1∂ξ22

)
+

+D17

(
∂2φ2

a1a2∂ξ1∂ξ2
+

∂2φ1

a2
2∂ξ

22

)
−

G11
R1

(
∂w

a1∂ξ1
+ 1

R1
u + y∗φ1 −

∂w
a1∂ξ1

)
−

1
R1

G13φ1 = 0

B12
R1

∂w
a2∂ξ2

+ B15
∂2u

a1a2∂ξ1∂ξ2
+ B18

(
y∗ ∂2φ1

a1a2∂ξ1∂ξ2
−

∂3w
a2

1a2∂ξ1
2∂ξ2

)
+ B19

∂2φ1
a1a2∂ξ1∂ξ2

+

+C12
R2

∂w
a2∂ξ2

+ C14
∂2v

a2
2∂ξ

22
+ C18

(
y∗ ∂

2φ2

a2
2∂ξ

22
−

∂3w
a3

2∂ξ23

)
+ C19

∂2φ2

a2
2∂ξ

22
+

+D13
∂2u

a1a2∂ξ2∂ξ1
+ D15

∂2v
a2

1∂ξ1
2 + D16

(
y∗

(
∂2φ2

a2
1∂ξ

2
1
+

∂2φ1
a1a2∂ξ2∂ξ1

)
−

2∂3w
a2

1a2∂ξ1
2∂ξ2

)
+

+D17

(
∂2φ1

a1a2∂ξ1∂ξ2
+

∂2φ2

a2
1∂ξ

2
1

)
−

F11
R2

(
∂w

a2∂ξ2
+ 1

R2
v + y∗φ2 −

∂w
a2∂ξ2

)
−

1
R2

F13φ2 = 0
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−
A4
R1

2 w− A5
R1

(
y∗ ∂φ1

a1∂ξ1
−

2∂2w
a2

1∂ξ1
2

)
+ A6

(
y∗ ∂

3φ1

a3
1∂ξ

3
1
−

∂4w
a4

1∂ξ1
4

)
−

A8
R1

∂φ1
a1∂ξ1

+ A9
∂3φ1

a3
1∂ξ

3
1
+

−
A11
R1

∂u
a1∂ξ1

+ A16
∂3u

a3
1∂ξ

3
1
−

2B4
R1R2

w− B5

(
1

R1

(
y∗ ∂φ2

a2∂ξ2
−

2∂2w
a2

2∂ξ22

)
+ 1

R2

(
y∗ ∂φ1

a1∂ξ1
−

2∂2w
a2

1∂ξ1
2

))
+

+B6

(
y∗

(
∂3φ2

a2
1a2∂ξ2

1∂ξ2
+

∂3φ1

a2
2a1∂ξ22∂ξ1

)
−

2∂4w
a2

1a2
2∂ξ

2
1∂ξ22

)
− B8

(
1

R1

∂φ2
a2∂ξ2

+ 1
R2

∂φ1
a1∂ξ1

)
+

+B9

(
∂3φ1

a2
2a1∂ξ22∂ξ1

+
∂3φ2

a2
1a2∂ξ2

1∂ξ2

)
−

B11
R2

∂u
a1∂ξ1

−
B12
R1

∂v
a2∂ξ2

+ B16
∂3u

a2
2a1∂ξ22∂ξ1

+ B18
∂3v

a2
1a2∂ξ2

1∂ξ2
+

−
C4
R22

w− C5
R2

(
y∗ ∂φ2

a2∂ξ2
−

2∂2w
a2

2∂ξ22

)
+ C6

(
y∗ ∂

3φ2

a3
2∂ξ

32
−

∂4w
a4

2∂ξ24

)
−

C8
R2

∂φ2
a2∂ξ2

+ C9
∂3φ2

a3
2∂ξ

32
−

C12
R2

∂v
a2∂ξ2

+ C18
∂3v

a3
2∂ξ

32
+

+2D6

(
y∗

(
∂3φ1

a1a2
2∂ξ1∂ξ22

+
∂3φ2

a2
1a2∂ξ2

1∂ξ2

)
−

2∂4w
a2

1a2
2∂ξ1

2∂ξ22

)
+

+2D9

(
∂3φ1

a1a2
2∂ξ

22∂ξ1
+

∂3φ2

a2
1a2∂ξ2

1∂ξ2

)
+ 2D16

∂3u
a1a2

2∂ξ1∂ξ22
+ 2D18

∂3v
a2

1a2∂ξ2
1∂ξ2

=
(
1− µ2

∇
2
)
(−q)

(15)

A5 y∗

R1
∂w

a1∂ξ1
+ A6y∗

(
y∗ ∂

2φ1

a2
1∂ξ

2
1
−

∂3w
a3

1∂ξ1
3

)
+ A8

R1
∂w

a1∂ξ1
+ A9

(
2y∗ ∂

2φ1

a2
1∂ξ

2
1
−

∂3w
a3

1∂ξ1
3

)
+ A10

∂2φ1

a2
1∂ξ

2
1
+

+A16y∗ ∂2u
a2

1∂ξ
2

1
+ A17

∂2u
a2

1∂ξ
2

1
+

B5 y∗

R2
∂w

a1∂ξ1
+ B6y∗

(
y∗ ∂2φ2

a1a2∂ξ1∂ξ2
−

∂3w
a1a2

2∂ξ1∂ξ22

)
+ B8

R2
∂w

a1∂ξ1
+

+B9

(
2y∗ ∂2φ2

a1a2∂ξ1∂ξ2
−

∂3w
a1a2

2∂ξ1∂ξ22

)
+ B10

∂2φ2
a1a2∂ξ1∂ξ2

+ B18y∗ ∂2v
a1a2∂ξ1∂ξ2

+ B19
∂2v

a1a2∂ξ1∂ξ2
+

+D6y∗
(
y∗

(
∂2φ1

a2
2∂ξ

22
+

∂2φ2
a1a2∂ξ1∂ξ2

)
−

2∂3w
a1a2

2∂ξ1∂ξ22

)
+ 2D9

(
y∗

(
∂2φ1

a2
2∂ξ

22
+

∂2φ2
a1a2∂ξ1∂ξ2

)
−

∂3w
a1a2

2∂ξ1∂ξ22

)
+

+D10

(
∂2φ1

a2
2∂ξ

22
+

∂2φ2
a1a2∂ξ1∂ξ2

)
+ D16y∗ ∂2u

a2
2∂ξ

22
+ D17

∂2u
a2

2∂ξ
22
+ D18y∗ ∂2v

a1a2∂ξ1∂ξ2
+ D19

∂2v
a1a2∂ξ1∂ξ2

+

−G11y∗
(

1
R1

u + y∗φ1
)
−G13

(
1

R1
u + 2y∗φ1

)
−G14φ1 = 0

B5 y∗

R1
∂w

a2∂ξ2
+ B6y∗

(
y∗ ∂2φ1

a1a2∂ξ1∂ξ2
−

∂3w
a2

1a2∂ξ1
2∂ξ2

)
+ B8

R1
∂w

a2∂ξ2
+ B9

(
2y∗ ∂2φ1

a1a2∂ξ1∂ξ2
−

∂3w
a2

1a2∂ξ1
2∂ξ2

)
+

+B10
∂2φ1

a1a2∂ξ1∂ξ2
+ B16y∗ ∂2u

a1a2∂ξ1∂ξ2
+ B17

∂2u
a1a2∂ξ1∂ξ2

+
C5 y∗

R2
∂w

a2∂ξ2
+ C6y∗

(
y∗ ∂

2φ2

a2
2∂ξ

22
−

∂3w
a3

2∂ξ23

)
+

+C8
R2

∂w
a2∂ξ2

+ C9

(
2y∗ ∂

2φ2

a2
2∂ξ

22
−

∂3w
a3

2∂ξ23

)
+ C10

∂2φ2

a2
2∂ξ

22
+ C18y∗ ∂2v

a2
2∂ξ

22
+ C19

∂2v
a2

2∂ξ
22
+

+D6y∗
(
y∗

(
∂2φ1

a1a2∂ξ1∂ξ2
+

∂2φ2

a2
1∂ξ

2
1

)
−

2∂3w
a2

1a2∂ξ
2

1∂ξ2

)
+ 2D9

(
y∗

(
∂2φ1

a1a2∂ξ1∂ξ2
+

∂2φ2

a2
1∂ξ

2
1

)
−

∂3w
a2

1a2∂ξ
2

1∂ξ2

)
+

+D10

(
∂2φ1

a1a2∂ξ1∂ξ2
+

∂2φ2

a2
1∂ξ

2
1

)
+ D16y∗ ∂2u

a1a2∂ξ2∂ξ1
+ D17

∂2u
a1a2∂ξ2∂ξ1

+ D18y∗ ∂2v
a2

1∂ξ
2

1
+

+D19
∂2v

a2
1∂ξ

2
1
− F11y∗

(
1

R2
v + y∗φ2

)
− F13

(
1

R2
v + 2y∗φ2

)
− F14φ2 = 0

More details about the parameters of Equation (15) are provided in Appendix A. The mathematical
background defined in this case has been implemented and solved numerically by using a Navier type
procedure, as specified in the following.

3. Solution Procedure

Since the exact solution of the partial differential Equation (15) determined in Section 2, for general
boundary conditions is difficult, a Navier-type solution is applied for simply-supported doubly-curved
nanoshells in this scenario. Thus, the equations related to boundary conditions are defined by the
equation below.

u(ξ1, 0) = u(ξ1, b) = v(0, ξ2) = v(a, ξ2) = 0
w(ξ1, 0) = w(ξ1, b) = w(0, ξ2) = w(a, ξ2) = 0
φ1(ξ1, 0) = φ1(ξ1, b) = φ2(0, ξ2) = φ2(a, ξ2) = 0

(16)

Based on Equation (16), the solution functions to the partial differential Equation (15) can be
expressed by the equation below [54,55].
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u(ξ1, ξ2; t) =
∞∑

r=1

∞∑
s=1

Urs cos(αξ1) sin(βξ2)

v(ξ1, ξ2; t) =
∞∑

r=1

∞∑
s=1

Vrs sin(αξ1) cos(βξ2)

w(ξ1, ξ2; t) =
∞∑

r=1

∞∑
s=1

Wrs sin(αξ1) sin(βξ2)

φ1(ξ1, ξ2; t) =
∞∑

r=1

∞∑
s=1

φ1
rs cos(αξ1) sin(βξ2)

φ2(ξ1, ξ2; t) =
∞∑

r=1

∞∑
s=1

φ2
rs sin(αξ1) cos(βξ2)

(17)

where
α =

rπ
a

, β =
sπ
b

(18)

Substituting Equation (17) into Equation (15), the following equations are derived.

[
Ki j

]


Urs

Vrs

Wrs

φ1
rs
φ2

rs


=



0
0

Qrs

0
0


, (i, j = 1, 2, .., 5) (19)

where Urs, Vrs, Wrs, φ1
rs, and φ2

rs are the unknown coefficients.
[
Ki j

]
is the stiffness matrix, whose

additional details are provided in Appendix B. Qrs are the coefficients in the double Fourier expansion
related to the transverse load, i.e.,

q(x, y) =
∞∑

r=1

∞∑
s=1

Qrs sin(αx1) sin(βx2) (20)

4. Numerical Results and Discussion

This section is devoted, first, to validate the proposed theory, and then, to evaluate the sensitivity
of the static response of symmetric doubly-curved nanoshells by means of a systematic study. The
results obtained in the following are divided in two categories, namely, shallow and deep nanoshells.
The governing equations of the problem, defined by Equation (19), in compact form, together with
its stiffness matrix detailed in Appendix B, are implemented and solved in a MATLAB subroutine in
this scenario. The effect of several parameters, such as the nonlocal parameter, the mechanical and
geometrical properties, is, thus, investigated on the bending deflection of isotropic doubly-curved
shallow and deep nanoshells, while comparing their final response.

4.1. Comparison and Validation

This section is devoted to the validation and parametric study of the static behavior of
doubly-curved nanoshells. For validation purposes, we determine the deflection and stress response
in dimensionless form in agreement with References [56–60], as follows.

w = w
(

a
2

,
b
2

, 0
)

102Eh3

q0a4
, σxx = σxx

(
a
2

,
b
2

,
h
2

)
h2

q0a2

τxy = τxy

(
0, 0,

h
2

)
h2

q0a2 , τxz = τxz

(
0,

b
2

, 0
)

h
q0a

, z =
z
h
× 10

(21)

The deflection response is evaluated comparatively between a nonlocal and local theory. Table 1
summarizes the deflection and stress results for square plates under a uniform load, and different
side-to-thickness ratios a/h. This example represents the limit case for a doubly-curved nanoshell,
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when the curvature radii tends to infinite values (R1 = R2 →∞ ). The numerical results based on our
proposed formulation are in line with predictions by Reddy [56,57], Ferreira et al. [58,59], and Xiang
et al. [60], where the proposed HSDT yield results in terms of deflection and a stress response. As
notable in Table 1, an increased a/h ratio enables a general decrease in the non-dimensional deflection
of the plate, and an overall increase in the stress value, which is in agreement with findings by
References [56–60]. A similar parametric study is repeated for symmetric doubly-curved shells under
a sinusoidal lateral loading, as summarized in Table 2. The results are successfully verified against
predictions based on a parabolic shear deformation theory (PSDT) and classical thin shell theory (CST),
as shown in Reference [61]. Based on results in Table 2, it is visible that an increased R/a ratio enables
a general increase in the non-dimensional deflection of the doubly-curved shell, for each fixed value
for h/a ratio, whereby, an increased h/a ratio decreases the overall structural deflection due to the
increased stiffness of the curved shells. The accuracy of our proposed theory against the available
literature [61] is confirmed once again by good agreement between results in Table 2.

Table 1. Non-dimensional deflection and stress state for square isotropic plates under a uniform load.

a
h Method w σxx

10

Exact [56] 4.791 0.2762
Reddy [57] 4.77 0.2899

Ferreira et al. [58] 4.787 0.2739
Ferreira et al. [59] 4.788 0.2762
Xiang et al. [60] 4.609 0.288

present 4.758 0.3193

20

Exact [56] 4.625 0.2762
Reddy [57] 4.57 0.2683

Ferreira et al. [58] 4.613 0.2737
Ferreira et al. [59] 4.616 0.2749
Xiang et al. [60] 4.442 0.276

present 4.587 0.32

50

Exact [56] 4.579 0.2762
Reddy [57] 4.496 0.2667

Ferreira et al. [58] 4.575 0.2787
Ferreira et al. [59] 4.578 0.2745
Xiang et al. [60] 4.396 0.284

present 4.55 0.3203

100

Exact [56] 4.572 0.2762
Reddy [57] 4.482 0.2664

Ferreira et al. [58] 4.573 0.2844
Ferreira et al. [59] 4.5715 0.2744
Xiang et al. [60] - 0.282

present 4.5455 0.3203
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Table 2. Non-dimensional deflection of doubly-curved shallow shells under a sinusoidal distribution
of the lateral loading.

R/a Method h/a = 0.01 h/a = 0.1 h/a = 0.15

1

Present 98.1142 7.4312 3.877
3-D [61] 100.59 8.7095 4.9497

PSDT [61] 99.645 7.4751 3.8929
CST [61] 99.644 7.3702 3.6979

2

Present 392.8533 16.9774 6.8716
3-D [61] 396.45 18.451 7.724

PSDT [61] 394.37 17.013 6.9261
CST [61] 394.37 16.48 6.3322

3

Present 870.5856 22.1878 8.0018
3-D [61] 875.36 23.381 8.5912

PSDT [61] 872.02 22.277 8.094
CST [61] 872 21.371 7.2945

4

Present 1512.3 24.8495 8.4892
3-D [61] 1518.3 25.785 8.9235

PSDT [61] 1513.6 24.983 8.6017
CST [61] 1513.6 23.849 7.7043

5

Present 2294.2 26.3088 8.7352
3-D [61] 2301.4 27.061 9.0755

PSDT [61] 2295.4 26.471 8.8589
CST [61] 2295.3 25.201 7.9099

10

Present 7370.9 28.5417 9.0861
3-D [61] 7383.1 28.91 9.2502

PSDT [61] 7371.3 28.754 9.2267
CST [61] 7370.2 27.262 8.2019

20

Present 16,485 29.1602 9.1782
3-D [61] 16,499 29.356 9.2666

PSDT [61] 16,485 29.388 9.3235
CST [61] 16,479 27.831 8.2783

∞

Present 28,039 29.3723 9.2094
3-D [61] 29,504 29.44 9.2352

PSDT [61] 28,041 29.606 9.3562
CST [61] 28,026 28.026 8.304

4.2. Static Analysis of Doubly-Curved Thin Nanoshells

This subsection studies the mechanical behavior of doubly-curved thin nanoshells, and its
sensitivity to the nonlocal and geometrical properties of the nanostructures.

In Figure 2a–c, we present the evolution of the stress components in a non-dimensional form,
throughout the thickness for a thin spherical panel with different nonlocal parameters. Based on
these figures, it is worth observing that the stiffness decreases for an increasing nonlocal parameter,
along with a general decrease in the natural frequency of the nanostructure, and an increase in the
stress components. More specifically, the nonlocal parameter affects the axial and longitudinal shear
stress more significantly near the top and bottom sides of the panel, while assuming a null value at
the mid-plane, independently of the nonlocal parameter (Figure 2a,b). The contrary occurs for the
shear stress component, whose value remains unaltered and equal to zero at both extremity sides,
and reaches the peak value at the mid-plane with an increasing magnitude for an increased nonlocal
parameter (Figure 2c).
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Figure 2. Variation with the nonlocal parameter of the dimensionless axial stress (a), longitudinal
shear stress (b), and transverse shear stress (c) through the thickness of shallow spherical panels with
R1 = R2, R/a = 10, a/h = 10.

Figure 3 also shows the combined effect of the nonlocal parameter, µ, and side-to-thickness ratio,
a/h, on the deflection response of thin spherical (Figure 3a) and cylindrical (Figure 3b) panels. In
both cases, an increased non-local parameter clearly yields a monotonic increase in deflection for each
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fixed a/h ratio. The deflection also increases for a decreased geometrical a/h ratio, while keeping the
nonlocal parameter fixed due to an overall stiffness reduction. Based on a comparative evaluation of
the curves in Figure 3a,b under the same assumptions for µ and a/h, the spherical panels seem to be
more flexible than the cylindrical panels due to the higher deflections registered for the first geometry.
This is in line with the well-known size-dependence of the mechanical properties for small-scaled
structures and nanoelectromechanical systems (NEMS), as largely observed in many experimental
investigations and atomistic simulations in literature.
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Figure 3. Effect of the nonlocal parameter and a/h ratio on the deflection of shallow (a) spherical panels
with R1 = R2, R/a = 20, and (b) cylindrical panels with R1/a = 20, R2 →∞ .

In Figure 4a,b, we plot the effect of the nonlocal parameter and Poisson’s ratio on the deflection of
the shallow spherical panel and cylindrical panel, respectively, under a uniform load. Both figures
clearly show that the structural deflection increases with the nonlocal parameter under a fixed Poisson’s
ratio, whereby an increased value of the Poisson’s ratio reduces the structural deformability under a
fixed nonlocal parameter. The double effect of the nonlocal parameter and length-to-side ratio b/a
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is also considered in Figure 5a,b, for a shallow spherical or cylindrical panel, respectively, whose
deflection seems to increase for an increased nonlocal parameter and length-to-side ratio. By comparing
Figure 5a,b, it is worth noticing the higher deformability of spherical panels compared to cylindrical
panels under the same assumptions of the µ and b/a ratio. This variation in stiffness is simply related
to topological reasons, which is more pronounced for increasing the ratios b/a, as visible in the plots of
Figure 5a,b.
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Tables 3 and 4 summarize the results in terms of a deflection response for a thin (a/h = 20) and
moderately thick (a/h = 10) shallow spherical (Table 3) and cylindrical (Table 4) panel, under a uniform
load, with different nonlocal parameters, side-to-thickness ratios (R/a), and length-to-side ratios (b/a).
As visible in both tables, the deflection response of shallow panels increases for an increased nonlocal
parameter as well as for a decreased R/a ratio and an increased b/a ratio due to a global decreased
structural stiffness. From a physical standpoint, these results would confirm the importance of a correct
definition of nonlocality parameters within nanostructures by means of appropriate experimental tests
for different geometries, which could considerably affect the global structural stiffness and functionality
of nanosystems.
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Table 3. Non-dimensional deflection of shallow spherical panels (w̃ = w
(
102Eh3

)
/
(
q0a4

)
) under a

uniform load.

µ R/a
b/a = 1 b/a = 2 b/a = 3

a/h = 10 a/h = 20 a/h = 10 a/h = 20 a/h = 10 a/h = 20

0.25

5 12.0386 11.0094 30.0962 28.7524 40.5842 38.0363
10 10.9468 6.7840 22.8961 19.6583 28.0741 27.3571
20 10.7041 6.1901 21.6039 15.0639 26.0654 19.1014
50 10.6381 6.0420 21.2679 14.1387 25.5534 17.6132
100 10.6287 6.0214 21.2207 14.0157 25.4819 17.4193

plate 10.6256 6.0146 21.2050 13.9752 25.4582 17.3556

0.5

5 31.9859 18.7949 69.4048 42.6926 90.0968 54.7284
10 29.0851 11.5815 52.8006 29.1893 62.3243 39.3627
20 28.4402 10.5675 49.8209 22.3674 57.8650 27.4840
50 28.2648 10.3147 49.0459 20.9936 56.7285 25.3427
100 28.2399 10.2796 48.9371 20.811 56.5698 25.0637

plate 28.2316 10.2679 48.9010 20.7508 56.5171 24.9721

0.75

5 65.2313 31.7707 134.9192 65.9262 172.6177 82.5485
10 59.3154 19.5772 102.6416 45.0744 119.4080 59.3719
20 58.0004 17.8633 96.8491 34.540 110.8644 41.4551
50 57.6426 17.4359 95.3426 32.4185 108.6870 38.2252
100 57.5918 17.3765 95.1312 32.1365 108.3829 37.8044

plate 57.5749 17.3567 95.0609 32.0436 108.2819 37.6662

1

5 111.7749 49.9368 226.6394 98.4534 288.1471 121.4968
10 101.6379 30.7713 172.4189 67.3136 199.3252 87.3849
20 99.3836 28.0773 162.6887 51.5815 185.0636 61.0145
50 98.7715 27.4055 160.1579 48.4134 181.4289 56.2606
100 98.6845 27.3121 159.8028 47.9923 180.9213 55.6413

plate 98.6555 27.2811 159.6848 47.8535 180.7527 55.4379

Table 4. Non-dimensional deflection of shallow cylindrical panels (w̃ = w
(
102Eh3

)
/
(
q0a4

)
) under a

uniform load.

µ R1/a
b/a = 1 b/a = 2 b/a = 3

a/h = 10 a/h = 20 a/h = 10 a/h = 20 a/h = 10 a/h = 20

0.25

5 10.9468 6.784 21.4586 14.6529 25.5534 17.6132
10 10.7041 6.1901 21.2679 14.1387 25.4819 17.4193
20 10.6451 6.0575 21.2207 14.0157 25.4641 17.3715
50 10.6287 6.0214 21.2076 13.9816 25.4592 17.3582
100 10.6264 6.0163 21.2057 13.9768 25.4584 17.3563

plate 10.6256 6.0146 21.205 13.9752 25.4582 17.3556

0.5

5 29.0851 11.5815 49.4858 21.7572 56.7285 25.3427
10 28.4402 10.5675 49.0459 20.9936 56.5698 25.0637
20 28.2835 10.3412 48.9371 20.811 56.5303 24.9949
50 28.2399 10.2796 48.9068 20.7604 56.5192 24.9757
100 28.2337 10.2708 48.9024 20.7532 56.5176 24.973

plate 28.2316 10.2679 48.901 20.7508 56.5171 24.9721

0.75

5 59.3154 19.5772 96.1977 33.5977 108.687 38.2252
10 58.0004 17.8633 95.3426 32.4185 108.3829 37.8044
20 57.6807 17.4807 95.1312 32.1365 108.3072 37.7006
50 57.5918 17.3765 95.0721 32.0584 108.286 37.6717
100 57.5791 17.3617 95.0637 32.0473 108.2829 37.6675

plate 57.5749 17.3567 95.0609 32.0436 108.2819 37.6662

1

5 101.6379 30.7713 161.5943 50.1744 181.4289 56.2606
10 99.3846 28.0773 160.1579 48.4134 180.9213 55.6413
20 98.8368 27.4759 159.8028 47.9923 180.7948 55.4886
50 98.6845 27.3121 159.7037 47.8757 180.7594 55.446
100 98.6628 27.2889 159.6895 47.8591 180.7544 55.4399

plate 98.6555 27.2811 159.6848 47.8535 180.7527 55.4379
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The systematic study of the deflection response for shallow spherical and cylindrical panels
under a uniform loading condition is finally plotted in Figure 6a,b, respectively, for different nonlocal
parameters and side-to-thickness ratios a/h. Based on the histograms of Figure 6, the deflection
response seems to be almost unaffected by the a/h ratio, under a fixed nonlocal parameter µ, while
being significantly affected by the nonlocal parameter with a gradual increase in flexibility for increasing
values of µ under the same assumption for a/h.
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Figure 6. Effect of the nonlocal parameter and a/h ratio on the deflection ratio of shallow (a) spherical
panels with R1 = R2, R/a = 20, and (b) cylindrical panels with R1/a = 20, R2 →∞ .

4.3. Static Analysis of Doubly-Curved Deep Nanoshells

The same unified formulation is applied in this subsection to study the structural response
of doubly-curved deep nanoshells with R/a ≤ 5. In Figure 7a–c, we plot the distribution of the
non-dimensional stress components throughout the thickness for a deep spherical panel and for a
varying nonlocal parameter. According to results in Figure 7a–c, an increased nonlocal parameter
clearly yields a decreased structural stiffness, a decreased natural frequency, and an overall increase
in the axial (Figure 7a), longitudinal, and transverse shear (Figure 7b,c) stress components. More
specifically, the transverse shear stress assumes its highest value at the mid-plane, whereby the axial
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and longitudinal shear stresses are reached at the top and bottom sides, while featuring higher values
for a shallow spherical panel compared to the deep one. Once again, this variation in stress distribution
for different nonlocalities can clearly affect the global stiffness of a nanostructure, and must be carefully
accounted for design purposes.
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Table 5 summarizes the effect of the nonlocal parameter, and length-to-width ratio b/a on the
deflection of a thick (a/h = 5) and moderately thick (a/h = 10) deep spherical panel under a uniform
load. Based on the results in Table 5, the non-dimensional deflection clearly increases with the nonlocal
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parameter due to the reduced structural stiffness. In addition, the deformability of the deep spherical
panel seems to reduce for an increased a/h ratio and a decreased b/a ratio. Based on a comparative
evaluation of Tables 3 and 5, it can be concluded that the deflection of shallow panels is greater than
deep panels, or equivalently shallow panels are more flexible than deep counterparts. As plotted in
Figure 8, the non-dimensional deflection of the deep spherical panel increases for an increased nonlocal
parameter, and length-to-side ratio.

Table 5. Non-dimensional deflection of deep spherical panels (w̃ = w
(
102Eh3

)
/
(
q0a4

)
) under a uniform

load. R1 = R2, R/a = 5.

µ(nm)
b/a = 1 b/a = 2 b/a = 3

a/h = 5 a/h = 10 a/h = 5 a/h = 10 a/h = 5 a/h = 10

0 5.2322 4.2624 12.0728 9.2637 14.8348 11.0326
0.1 6.265 5.1038 13.5622 10.4066 16.4617 12.2425
0.2 9.3633 7.6279 18.0305 13.8352 21.3421 15.872
0.3 14.5273 11.8347 25.4776 19.5495 29.4762 21.9213
0.4 21.7568 17.7243 35.9036 27.5496 40.864 30.3903
0.5 31.0519 25.2966 49.3085 37.8354 55.5054 41.2791
0.6 42.4126 34.5516 65.6921 50.4069 73.4004 54.5875
0.7 55.8388 45.4894 85.0547 65.2642 94.5491 70.3157
0.8 71.3306 58.1099 107.4 82.4072 118.95 88.4636
0.9 88.888 72.4131 132.72 101.8359 146.61 109.0312
1 108.51 88.399 161.02 123.5504 177.52 132.0185

1.1 130.2 106.0677 192.29 147.5506 211.68 157.4255
1.2 153.95 125.4192 226.55 173.8365 249.1 185.2523
1.3 179.77 146.4533 263.79 202.4082 289.77 215.4988
1.4 207.66 169.1702 304.14 233.2656 333.69 248.165
1.5 237.61 193.5698 347.19 266.4088 380.87 283.2509
1.6 269.63 219.6522 393.37 301.8376 431.3 320.7565
1.7 303.71 247.4173 442.52 339.5522 484.99 360.6818
1.8 339.86 276.8651 494.65 379.5526 541.93 403.0269
1.9 378.07 307.9957 549.76 421.8386 602.12 447.7917
2 418.35 340.8089 607.84 466.4104 665.56 494.9762
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A further parametric investigation considers the combined sensitivity of the deflection response
to the nonlocal parameter and Poisson’s ratio for a thick deep spherical panel with a/h = 5 under
a uniform loading condition. As observed in Figure 9, by increasing the nonlocal parameter, the
non-dimensional deflection of the deep spherical panel is increased for each value of Poisson’s ratio.
Moreover, by increasing the Poisson’s ratio, the non-dimensional deflection of the deep spherical panel
is gradually decreased.
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Figure 9. Effect of the nonlocal parameter and Poisson’s coefficient on the deflection of deep spherical
panels under a uniform load. R1 = R2, R/a = 5, a/h = 5.

In the histograms of Figure 10, we quantify the effect of the nonlocal parameter and side-to-thickness
ratio, a/h, on the deflection ratio of the deep spherical panel under a uniform load. Based on Figure 10,
please note that the side-to-thickness ratio does not significantly affect the deflection ratio of the deep
spherical panel, independently of the nonlocal parameter, where the only variation in deformability is
related to the nonlocal parameter. This justifies the necessity of applying a nonlocal theory instead of
the classical elastic ones, which could underestimate the deformability of a nanostructure, in agreement
with findings from References [12–14].
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5. Conclusions

In the present work, we propose a novel nonlocal shear deformation theory to study the bending
deflection of isotropic doubly-curved deep nanoshells. The Hamilton’s principle is applied to
derive the equations of motion, whose solution is determined by means of the Navier method. The
proposed formulation is able to handle both thin and thick, shallow and deep nanoshells within a
unified framework.

A large parametric investigation is performed systematically to check for the sensitivity of the
deflection response for the nonlocal, mechanical, and geometrical parameters, where the following
concluding remarks can be summarized.

• An increased nonlocal parameter decreases the stiffness of the isotropic shallow and deep panels,
along with a decreased natural frequency, an increased deflection of the nanostructure, and
increased stress components.

• An increased value for the side-to-thickness ratio, Poisson’s ratio, and length-to-side ratio yields a
reduced deflection in the isotropic shallow and deep panel.

• The side-to-thickness ratio does not significantly affect the deflection ratio of shallow and
deep panels.

• The axial and longitudinal shear stress components at the top and bottom sides of shallow panels
feature higher values than the deep ones.

• Shallow panels are more flexible than deep panels, as visible from their higher deformable
response, when compared to deep panels.
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Appendix A

An explicit definition of parameters in Equation (15) is given below
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Q22
(
1 + ξ3

R2

)(
1,

(
1 + ξ3

R2

)
, ξ3, f

)
dξ3
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(D11, D13, D15, D16, D17) =
∫ h

2

−
h
2

Q66
(
1 + ξ3

R1

)(
1,

(
1 + ξ3

R1

)
,
(
1 + ξ3

R2

)
, ξ3, f

)
dξ3

(D12, D14, D18, D19) =
∫ h

2

−
h
2

Q66
(
1 + ξ3

R2

)(
1,

(
1 + ξ3

R2

)
, ξ3, f

)
dξ3

(G11, G12, G13, G14) =
∫ h

2

−
h
2

Q55
(
1 + ξ3

R1

)2
(
1, f , d f

dξ3
,
(

d f
dξ3

)2
)
dξ3

(F11, F12, F13, F14) =
∫ h

2

−
h
2

Q44
(
1 + ξ3

R1

)2
(
1, f , d f

dξ3
,
(

d f
dξ3

)2
)
dξ3

Appendix B

By substituting Equation (17) into Equation (15), the stiffness matrix is defined as follows

K(1, 1) = −A13α2
−D13β2

−
G11
R2

1

K(1, 2) = −B15αβ−D15αβ

K(1, 3) = A16α3 + B16αβ2 + 2D16αβ2 + A11α
R1

+ B11α
R2

K(1, 4) = −A16y∗α2
−A17α2

−D16y∗β2
−D17β2

−
G13
R1

K(1, 5) = −B16y∗αβ− B17αβ−D16y∗αβ−D17αβ
K(2, 1) = −B15αβ−D13αβ

K(2, 2) = −C14β2
−D15α2

−
F11
R2

2

K(2, 3) = B18α2β+ B12
β

R1
+ C18β3 +

C12β
R2

+ 2D16α2β

K(2, 4) = −B18y∗αβ− B19αβ−D17αβ−D16y∗αβ
K(2, 5) = −C18y∗β2

−C19β2
−D16y∗α2

−D17α2
− F11

y∗

R2
−

F13
R2

K(3, 1) = A16α3 + B16αβ2 + 2D16αβ2 + A11α
R1

+ B11α
R2

K(3, 2) = B18α2β+ C18β3 + 2D18α2β+
B12β
R1

+
C12β
R2

K(3, 3) = −A6α4
−

A5α
2

R1
− 2B6α2β2

−
B5α

2

R2
−

B5β
2

R1
−C6β4

−
C5β

2

R2
− 4D6α2β2

−
A5α

2

R1
−

A4
R2

1
−

B5β
2

R1
+

−
B4

R1R2
−

B5α
2

R2
−

B4
R1R2

−
C5β

2

R2
−

C4
R2

2

K(3, 4) = A6y∗α3 + A9α3 + B6y∗αβ2 + B9αβ2 + 2D6y∗αβ2 + 2D9αβ2 + A5y∗ αR1
+ A8

α
R1

+ B5y∗ αR2
+ B8

α
R2

K(3, 5) = B6y∗α2β+ B9α2β+ C6y∗β3 + C9β3 + 2D6y∗α2β+ 2D9α2β+ B5y∗ βR1
+ B8

β
R1

+ C5y∗ βR2
+ C8

β
R2

K(4, 1) = −A16y∗α2
−D16y∗α2

−A17α2
−D17α2

−G11
y∗

R1
−

G13
R1

K(4, 2) = −B18y∗αβ−D18y∗αβ− B19αβ−D19αβ

K(4, 3) = A6y∗α3 + A5
y∗α
R1

+ B6y∗αβ2 + B5
y∗α
R2

+ 2D6y∗αβ2 + A9α3 + A8
α

R1
+ B9αβ2 + B8

α
R2

+ 2D9αβ2

K(4, 4) = −A6y∗2α2
−A9y∗α2

−D6y∗2β2
−D9y∗β2

−A9y∗α2
−A10α2

−D9y∗β2
−D10β2

−G11y∗2 −G13y∗

K(4, 5) = −B6y∗2αβ− B9y∗αβ−D6y∗2βα−D9y∗βα− B9y∗αβ− B10αβ−D9y∗αβ−D10αβ
K(5, 1) = −B16y∗αβ−D16y∗αβ− B17αβ−D17αβ

K(5, 2) = −C18y∗β2
−D18y∗α2

−C19β2
−D19α2

− F11
y∗

R2
−

F13
R2

K(5, 3) = B6y∗α2β+ B5
y∗β
R1

+ C6y∗β3 + C5
y∗β
R2

+ 2D6y∗α2β+ B9α2β+ B8
β

R1
+ C9β3 + C8

β
R2

+ 2D9α2β

K(5, 4) = −B6y∗2αβ− B9y∗αβ−D6y∗2αβ−D9y∗αβ− B9y∗αβ− B10αβ−D9y∗αβ−D10αβ

K(5, 5) = −C6y∗2β2
−C9y∗β2

−D6y∗2α2
−D9y∗α2

−C9y∗β2
−C10β2

−D9y∗α2
−D10α2

− F11y∗
2
− 2F13 y∗ − F14
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