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Abstract: Symmetries play very important roles in the dynamics of electrical systems. The relevant
electronic circuits with fault diagnostics, including the optimized neural network algorithm model,
are designed on the basis of symmetry principles. In order to improve the efficiency of the circuit
pressure test, a circuit pressure function equivalent compression test method based on the parallel
neural network algorithm is proposed. For the implementation stage of the circuit pressure test, the
improved modified node algorithm (MNA) is used to build an optimization model, and the circuit
network is converted into an ordinary differential equation for the circuit pressure function equiv-
alent compression test. The test aims to minimize flux. Then, backpropagation (BP) neural network
algorithm data fusion is introduced to optimize the minimum flux model of the cyclic pressure
functional equivalent compression test. Finally, a simulation experiment is carried out to verify the
effectiveness of the algorithm in the accuracy and efficiency of the pressure test. The results show
that the improved BP neural network improves the data fusion accuracy and shortens the sample
training time; compared with the uncompressed algorithm, the running time of the proposed algo-
rithm is greatly reduced and the execution efficiency is high; compared with the vascular pressure
test method, there is no significant difference in the convergence accuracy and it is at a level of 10-.
Since the parallel computing problem is not considered in either of the two-pulse tube pressure test
methods, the convergence time of the algorithm increases exponentially with the increase in the
number of parallel threads. However, the algorithm in this research considers the problem of par-
allel execution and uses a quad-core processor, with no significant change in computing time and
high computing efficiency. Therefore, BP neural network data fusion can be used for the fault diag-
nosis of electronic circuits, with a high operating efficiency and good development prospects.

Keywords: multisim circuit; electronic circuit; fault diagnosis; neural network; data fusion; research
on algorithms

1. Introduction

With the development of system-on-chip (S0C) integrated circuits, the number and diversity of
mixed signal circuits using the molds have also increased significantly, such as high-speed interactive
operating system (IOs), sensors, power supply, clocks and other different circuit forms [1]. The man-
ufacturing test procedures are generally divided into the wafer/sequencing test, encapsulation test
(using function and structural test), stress test/aging test and system test. These steps need to be per-
formed on each component, thus resulting in a lot of testing workload on the components to be tested
[2].

In order to shorten the product’s research and development cycle, the test time of each compo-
nent should be shortened as much as possible. Although a short test time can be achieved by adding
test equipment, this is not a preferred choice because of the resulting dramatic increase in capital
costs. On the contrary, adopting a time compression mode for each test step is a cost-effective way to
control testing [3]. Since the test steps themselves cannot be eliminated, reducing the time for each
step is the best method. Therefore, reducing both the production and test costs have always been the
research foci of simulation tests. There are three ways to reduce the test time: (1) in order to reduce
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the test time, the optimal sequencing of the test process should strategically place the module with
the largest failure in the first place; (2) select the test subset based on the sampling method to achieve
the same coverage; (3) develop better and more effective tests to provide more coverage; (4) reduce
the communication time through compressing on-chip tests. Up to now, there are no effective meth-
ods to reduce the pressure test time of the circuit in the analog execution phase [4]. The test compres-
sion of analog and mixed signal circuits is a more challenging problem. Analog circuits are nonlinear
systems with continuous working signals, and consecutive input compression is very complex. Main-
taining the same precision and recall index for compression tests is challenging because compression
simulation testing may increase the false alarm rate and cause unnecessary losses [5]. Therefore, the
test compression algorithm should guarantee the functional equivalency as well as the consistent
performance under the original test and compression test. Test compression methods usually require
additional circuits, including on-chip and off-chip, so as to minimize communication and compres-
sion test time, while additional circuits may increase test costs [6]. In order to reduce the test time, we
introduced the automatic test compression method of analog and mixed signal circuits, and applied
the test compression algorithm to the pressure test in this work. In the pressure test, the integrated
circuit (IC) executive function sequence is tested based on high electrical activity. During this process,
the maximum and minimum values of voltage and current are obtained from the functional test sec-
tion of the circuit, and the input test sequence in pressure test can be obtained through the functional
test. Therefore, as long as the minimum electrical characteristics of the circuit can be provided, the
length of each functional test can be reduced [7].

At the same time, for a series of problems in the above electronic circuit testing process, data
fusion technology can be used to reduce redundancy and error data, reduce data transmission vol-
ume, improve information accuracy and energy and channel utilization, and achieve the purpose of
reducing energy consumption. However, in this era of information explosion, information of various
types and sources is widely available. The parallel structure and non-linear characteristics of neural
networks enable them to accept and store large amounts of information data, like the human brain.
The information can be simulated, to a large extent, on the basis of a nonlinear mechanism. The neural
network is the abstraction and modeling of the human brain or biological nervous system, with the
ability to learn from the environment and adapt to the environment alongside similar biological in-
teractions. It has the characteristics of nonlinearity, nonlocality, nonconstancy, self-organization and
self-learning ability, nonconvexity, etc. The ability to distribute fuzzy conditions in parallel requires
more information processing problems. The neural network can process a large amount of infor-
mation to reduce the amount of data, and it can also analyze some qualitative data. It has been widely
used in data fusion, breaking the traditional reasoning mode, making data fusion technology no
longer limited to strict logical reasoning and accurate calculation, and overcoming many problems
that cannot be solved by traditional fusion technology [8-10].

Based on this, the improved MNA is used to build an optimization model for the implementa-
tion stage of the circuit pressure test, and the circuit network is converted into an ordinary differential
equation for the circuit pressure function equivalent compression test. The test aims to minimize flux.
Then, backpropagation (BP) neural network algorithm data fusion is introduced to optimize the min-
imum flux model of the cyclic pressure functional equivalent compression test. Finally, a simulation
experiment is carried out to verify the effectiveness of the algorithm in the accuracy and efficiency of
the pressure test.

2. Circuit Pressure Test Problems Based on Electric Flux

The symmetry principle was applied in the modeling method. The nonlinear time-varying cir-
cuit is modeled as a set of ordinary differential equations, and MNA is used to transform the electric
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network into an ordinary differential equation. Let ” represent the sectionally continuous time-vary-

te[0,00) | . ScR

ing nonlinear function of control circuit dynamics, represent the continuous

.oooox(t . " . o .
state space of the circuit, ( ) represents the circuit condition at time . The initial state of the circuit
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is ( ) Let USR represent the input interval of the circuit, »represent the state variable and « the
input variable of the circuit. The test ( ) is a continuous input signal. An N-dimensional ordinary
differential equation is adopted to describe the nonlinear analog circuit:

x=f(xur). (1)

. . o 1t . o 4
A solution for a circuit at time interval [ 1”2 ] is the path of the circuit from the state x(n) to the

state of the given input test " (t) . For a given state x(tl ) and input u<t1) , the differential constraint

el

in Equation (1) determines the running path of the circuit in the interval L] . Then, the solving
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problem of the circuit running track of the initial state x( ! ) attime © ~ % canbe expressed as an initial
value problem (IVP) :

x(T)=x(0)+ [ £ (x(1).u(e))dr. @

Let jrepresent the length of the test sequence u(t) , x(T) represents the boundary value that
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denotes the final state of the test process; there may be multiple boundary values in the

n

solution of the test sequence. Then, the problem can be decomposed into _lsingle boundary test

compression problems, and each boundary value ¥ can be expressed as:
% () =5 () + [ £ (5 (6). (1)), 3)

X

where Yand %+ are the initial value and boundary value of the test compression problem. For sim-

plicity, this paper only focuses on the case of one initial value %o (O) and a single boundary value

& <T) , because multiple boundary values can be divided into multiple unilateral value problems.
The dynamics of the analog circuit are smooth and continuous, meeting the local Lipschitz property,
which ensures the existence and uniqueness.

Definition 1: (functional equivalence test) we define two test input signals as functionally equiv-
alent ones, if and only if their initial and boundary values are the same for the same nonlinear system.

That is, input signal »and Uare equivalent under the following circumstance:

J.Orf(x,t,u)dt=I:f(x,t,ﬁ)dt, @)

where land Tdenote the length of the input signal «and u respectively, which means that, if its ini-

tial value 0 is equal, the boundary value of initial test signal »and big equal. For the test compres-
sion process, the functionally equivalent test length after compression should be less than the original

test length. Therefore, T<T.
The purpose of the compression test problem is to find all possible functionally equivalent input

X
stimuli, which need to reach the boundary value /" from the initial value 0 in as short a time as
possible. We propose the following optimized objective function:

Xy

min J. t(x)dx, ®)

X0
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where ( ) is the time dimension of each state in the solution. ~denotes the state, which is a vector
n

in R Equation (5) is an integral describing the electric flux of the circuit along the solution path

x(t) . Flux is a physical entity that captures both voltage and time. The magnetic flux is measured

=Vx
and quantized by weber and expressed as voltage times time in seconds o=V S). We can meas-

ure flux by integrating voltage dv or time dt . Since we want to minimize the time while keeping
the boundary voltage unchanged, we use the Lebasque integral in Equation (5) to define the test
compression objective function.

Xy

Because the initial value *0 and boundary value are fixed, the minimization of the integral

result can be directly realized by minimizing 1 Although reducing flux function does not necessarily
reduce time, the test of the minimum flux function is consistent with that of the minimum time, which
means that minimizing the flux function is necessary, but not sufficient to minimize the test time.
When the flux function converges to the minimum value, we also prove that the test time converges
to the optimal value. Since the time required to reach the boundary value in the output is the same
as the input test time, the minimization Equation (5) also compresses the input test signal.

3. Neural Network Model Based on BP Algorithm

3.1. Algorithm Description

The three-layer BP neural network model adopted in this paper is composed of input layer, hid-
den layer and output layer. Figure 1 shows a typical three-layer BP neural network model.

Hidden

Input layer
P Y m!j laver

Output laver
Wiy gt
- . -}"1

Figure 1. A simple backpropagation (BP) neural network model.

The feedforward significance of the network is that the input of each layer node only comes from
the output of the previous layer nodes. For the input signal, it is transmitted to the hidden layer node
first, and then the output information of the hidden layer nodes is transmitted to the output nodes
after the activation function and, finally, the output results are obtained.

(1) For the input layer nodes l(l = 1, 2, .
variable value is transmitted to the second layer;

M), their output ! is equal to the input ~ ¢, and the

i(7= I 0.
(2) For the hidden layer nodes JG=L2...p), their input ’ and output / are:

I; = Za)jioi +0, , (6)

i=1

0,=f)=1/+ep(-)], ?



where /' is the weight between hidden layer node/and input layer node l, / is the bias of hid-

J

, and f is a Sigmoid function with the following expression:
J)=/[1+exp(-x)]. (8)
k(k=1,2,...,m), Vi,

den layer node

1
(3) For output layer nodes their input k and output re:

P
Ik:Za),qu+¢9k, )
=1

Ye=fU)=V/[1+exp(1,)], (10)
k

,; - Jj. b
where " is the connection weight between input layer node "and hidden layer node 7, and

k.

X (X 5geens X =
For a given training sample ( L2 ), p is the number of samples (p=12,..P) ,and
the mean square error between network output and training target can be expressed as:

is the bias of output layer node

1 )4
E=—)E,, (11)
p p=1
1 !
E, :52(% ), (12)
=1

P

where © is the number of samples, tp Lis the target output result of the Ith output unit of the pth
sample, and ol is the network operation result of the Ith output unit of the pth sample. The process
of BP network training includes the forward calculation within the network and the backpropagation
of error, and it aims to minimize the output error of the network through adjusting the connection
weight within the network. The connection weight between the input layer and the hidden layer and
between the hidden layer and the output layer in the multi-layer feedforward network is adjusted by
the BP algorithm.

The essence of data fusion using the BP neural network is to use the gradient descent method to
train the weights according to the error function to minimize the error value. The weight training is
described as follows.

(1) The correction coefficient of connection weight between hidden layer and output layer is

calculated. At the time, Yo ¥, the network training rules make ¥ descend by gradient in each
training cycle, then the modified equation of weight coefficient is as follows:

OF

P

Ao, =-n (13)

7
0w,

1 - 7
where ~ ¥ Ain the output layer, is the step length searched by the gradient,

O<n<l

is the input of node

, then the equation as below is obtained.
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OE  OE oF
p 95 O _ L-0.. (14)
ow, o, ow, o,

The backpropagation error signal of the output layer is defined as follows:

OE OE, oy 0
O, =—L=-—"L. k=t —y )—f(I)=(t,— "(1,). 15
k ol oy, o, (pl J’k)a]k f( k) (pl yk)f ( k) (15)
Taking the derivative of both sides, the equation below is obtained.
5k:yk(l_yk)(tpl _yk)akzlazamam- (16)
The correction equation of weight coefficient is as follows:
OE
Aa)jk =—n aa)ﬁ = 7751(0, =1y, (1 —yk)(tpl —yk)Oj, (17)
jk

Therefore, error backpropagation adjusts the weight from the hidden layer to the output layer
as follows:

@, (k+1) =, (k) +Aay, =@, (k)+1y, (1-3,) (1, ~2,) O, (18)
(2) The correction coefficient of connection weight between the input layer and hidden layer is
calculated. At the time, Yo =4 , the correction equation of weight coefficient is as follows:
A oF,
W, =— 19

; 7
where 7 is the input of node J in the hidden layer, is the step length searched by the gradient,
O<n<l

, then the equation below is obtained.
OE, CE, . oI, OE
ow,

ij

= =—+-0,, (20)
ol, dw, ol

The backpropagation error signal of hidden layer is defined as follows:

0E, OE, 80, OE

O, =——FF=-—"=>r —L=—"+f"1, 21
=, a0, a, w0, (1) -
Taking the derivative of both sides, the equation as below is obtained.
!
5,=0,(1-0,)Y 5,0, (22)
I=1

Therefore, the error backpropagation adjusts the weight from the input layer to the hidden layer
as follows:

@y (k+1) =, (k) + A0, = o, (k) +16,0. @)

The training process of the BP neural network is shown in Figure 2. When the network structure
is determined, the training of the BP neural network begins. BP neural network learning is composed
of two processes: forward signal propagation and back error propagation. In the case of forward
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propagation, the input sample signal enters the network from the input layer and is finally transmit-
ted to the output layer through hidden layer processing. If the output result is not consistent with the
expected value, the error will be backpropagated and the weight will be adjusted according to the
above weight adjustment coefficient until the output result of the network output layer meets the

requirements.
‘Weight initialization
Enter sample data

| Calculating BP network output |

l

Find the error between the actual
| Adjust the weight of each layer | output and the target output

No —Whether to meet the requiremenfS—
Yes

|Calculate weight correction
Output result

Figure 2. The training process of BP neural network.

3.2. Diagnosis Steps of Neural Network Information Fusion Fault

Neural network knowledge representation is an implicit representation of knowledge, and
knowledge shows the topology structure and connection weight of the network. Meanwhile, it adopts
the expert system of neural network technology, because the neural network is a unified network
system of information storage and processing. Therefore, among expert systems adopting neural net-
work technology, knowledge storage and reasoning in the problem-solving process are carried out
in the neural network module of the system, and they are the unity of the knowledge base and infer-
ence machine. First of all, the feature data is extracted from the existing equipment characteristic
signal, then, after data preprocessing (normalized processing), it is used as the input of the neural
network. The data extracted from known fault results is used as the neural network output to build
the BP neural network, and the training sample set formed by the existing characteristic data and
known fault data is used to carry out the learning and network self-learning of the BP neural network,
so as to make the corresponding relation between the weights, threshold values and known fault
results of the BP neural network achieve the expected results output. When the BP neural network
training is completed, the BP neural network which has successfully completed training can be used
for fault diagnosis. The process of fault diagnosis is as follows:

(1) Input the fault sample to each node of the input layer, and it is also the output of neurons in
this layer;

(2) Obtain the output of hidden layer neurons by Equation (22) and take it as the input of the
output layer;

(3) Obtain the output of neurons in the output layer from Equations (2)—(5);

(4) Determine the final output result of neurons in the output layer by the threshold function.
The fault diagnosis of diesel engine firstly extracts data from the fault signals to be diagnosed for
preprocessing, and then the fault data to be diagnosed is input into the neural network which has
finished training successfully. The fault diagnosis steps of using neural network information fusion
are shown in Figure 3. Firstly, the pressure sensor is used to measure the voltage signal at the key
points of the components to be diagnosed, the temperature sensor is used to test the temperature
signal of the components to be diagnosed, and then the fuzzy set theory is used for analysis.
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Figure 3. Steps of information fusion for fault diagnosis.

4. Experimental Analysis

According to the theory of symmetry in electronic circuit research, a prototype tool C++ was
developed to evaluate the accuracy and efficiency of our algorithm. The input of our tool is the circuit
meshwork list in Simulation Program with ICEmphasis (HSPICE) format. The user-defined test input
signal is a piecewise linear (PWL) signal source. The tool’s other level signal output can be used for
the test circuit, with 100,000 iterations for each experiment. Each iteration includes a small HSPICE

simulation with a duration of dt=1ps . The hardware selected in the experiment in this paper is
equipped with four-core Central Processing Unit (CPU) 2.5GHz, 6 MB of L3 buffer memory and 16
GB of memory size, and there is no hyperthreading. The parameters and operational amplifier circuit
used in the experiment are listed in Table 1, as shown in Figure 4.

| Vaa

Qg%—w'_@@
. |Fos
ool

Va ‘ |_ Vout
= I—WV;{W E 0 I G
o ﬁgz T

vl
Figure 4. Schematic diagram of operational amplifier circuit.
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Table 1. Parameter setting of neural network.

Parameter Value Description
Maximum Iter- 10000 Maximum iterations in neural network algo-
ations rithm
Neural network 10000 The size of neural network and the number of
scale HSPICE simulations
dr lus The length of each edge in the neural network
and the duration of each SPICE simulation.
. The total running time of the neural network al-
Total time 3hour . .
gorithm tested each time
a 0.5 Target weight of the state sequencing

First of all, the proposed algorithm is set to generate a single test compression experiment which

v, =04V
an

saturates the output of the operational amplifier, and then sets the hyperplane

v, =08V

d

as the target boundary conditions. The neural network is used to generate two input stim-
uli, so that the output voltage of the saturated circuit is 0.4 and -0.8V, respectively (and the process is
run twice).

Table 2 shows the temperature and pressure signal values measured by pressure and tempera-
ture sensors and the fault identification results of single sensor and double sensor signal data fusion.
The first and second terms are the fault signal values of each component measured from temperature
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and voltage, and the third term is the fault signal values after fusion. It can be found from the table
that when three fault components are diagnosed, part of the fault signal values extracted by the two
sensors are close to each other. If only the signal values of one sensor are used to identify the fault
components, the fault components cannot be determined. For example, when Element 3 fails, the
fault signal value extracted by the temperature sensor is very close to that of the fault, and the fault
element cannot be determined when identified separately. However, the signal value of Element 3
after data fusion is greatly improved, and the signal value is quite different from that of the other two
elements, which can accurately identify the fault element—that is, compared with the signal value of
a single sensor, the fused signal value can reduce the uncertainty of fault diagnosis and increase the
signal value assignment of the actual target component.

Table 2. The fault identification results of single fault identification of two kinds of sensors and fusion
fault identification of multi-sensor.

Signal value of the fault

Fault components Sensor and fusion Fault diagnosis

1 2 3

Temperature 0.5436 0.0782 0.0000 Not sure

1 Pressure 0.4092 0.0743 0.2731 Not sure
Fusion 0.8906 0.1072 0.0048 Component 1 fault
Temperature 0.0748 0.6161 0.0000 Component 2 fault

2 Pressure 0.0022 0.2935 0.1763 Not sure
Fusion 0.0527 09462 0.0076 Component 2 fault

Temperature 0.2435 0.2424 03217 Not sure

3 Pressure 0.0038 0.0036 0.1956 Not sure
Fusion 0.0098 0.0441 0.9842 Component 3 fault

Figure 5 shows the average error comparison curve of the BP neural network and the BP neural
network after weight adjustment and improvement in the training process. The downward slope of
the curve represents the convergence rate of the training samples. The higher the slope of the curve,
the faster the convergence rate, and the shorter the training time of the samples as the convergence
rate increases [11]. With the increase in the training times of the samples, the average error becomes
smaller and smaller, indicating that the weights of training samples tend towards the optimal weight
vector, and the data fusion precision gradually improves. As shown in the figure, when the improved
BP neural network data fusion algorithm based on weight adjustment is used, the sample converges
faster in the training process and the training time of the sample can be shortened [12]. Although the
average error of the samples of the BP neural network data fusion algorithm before and after the
weight adjustment and improvement is the same at the beginning of the training, the average error
value of the improved sample after 15 training sessions is close to 0.7, less than 0.8 before the algo-
rithm improvement, indicating that the sample fusion accuracy under the improved algorithm is
higher [13].

14

— BP neural network
1.3 | - - - - Improved BP neural network after weight adjustment

1.2
1.1
1.0 ]

0.9 |

Training sample mean error

0.8 ]

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of training cycles
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Figure 5. Average error of training samples before and after weight adjustment and improvement.

Figure 6 shows the accuracy of data fusion between the BP neural network and the BP neural
network after weight adjustment and improvement. The higher the accuracy, the better the fusion
effect. For the improved BP neural network fusion after weight adjustment, the fusion accuracy of
each type of signal is higher than that before the improvement, and the data fusion effect is better.

1.10

—=&— BP neural network

1.05+ —o— Improved BP neural network after weight adjustment

1.00

0.95

0.90

0.85

Correct rate

0.80

0.75

Signal
Figure 6. The accuracy of data fusion before and after weight adjustment.

Figure 7 shows the comparison of the output curve between the circuit pressure test compression
process and the uncompressed process of the proposed algorithm. As shown in Figure 4, the output
of the proposed algorithm can be greatly reduced in execution time compared with that of the un-
compressed algorithm, which embodies the efficiency advantage of the proposed method.

1.4
1.3

12}

Compression
output

1.1 |
1
0.9
0.8 B
0.7

0.6
0

Output/V

1
Uncompression output

AARAAR
1 2 3 4 5 6 7 8 9 10 11
Time/ns

Figure 7. Comparison of compression test output.

To further verify the algorithm’s performance advantages in test accuracy and efficiency, the
circuit pressure test methods proposed by the authors in [14] and the authors in [15] are selected for
contrast experiment. The study in [14] is a single-threaded pressure test process which takes no ac-
count of test compression, and the study in [15] is a pressure test process which takes account of test
compression in the setup phase. The experimental indexes select the boundary state convergence
value and convergence time, and select the circuit pressure test to execute one, five, 10 and 15 times
in parallel —that is, the algorithm in [15] executes one, five, 10 and 15 times in serial because it does
not design the parallel execution process. The experimental results are shown in Table 3.



Table 3. Test results of algorithm performance.

Parallel Literature Literature Parallel com-
. Index .
times [14] [15] pression
Convergence |, ok 5 4286 E5 4.149E-5
1 precision
Convergence 5.368 2.418 0. 156
time/ps
Convergence 5 c0p s 4173E5 3.942 E-5
5 preClSlOH
Convergence 26.416 11.598 0.249
time/ps
Convergence | ,eop s 3946E5 2.928E-5
precision
10 Con
onvergence 55.943 28.418 0.317
time/ps
Convergence ) (/0F5 2851 E-5 2516 E-5
preCISlon
15 c
onvergence 78.634 35.76 0.729
time/ps

On the basis of the results in Table 3, the performance indexes of the three algorithms do not

have significant differences in convergence accuracy, and they are at a level of 107 . Although there
are slight differences in numbers, the differences are almost negligible. However, in terms of conver-
gence time, the two methods in [14] and [15] did not consider the parallel computing problem, so the
convergence time of the algorithm increased exponentially with the increase in the number of parallel
threads. In the meantime, since the algorithm in [16,17] takes account of the compression problem in
the setting stage, its calculation time is slightly better than the algorithm in [18,19]. In addition, the
algorithm in this paper considers the problem of parallel execution and uses a quad-core processor,
so there is no obvious change in the computing time, thus showing the higher computational effi-
ciency of the algorithm [20,21].

5. Conclusion

In this paper, a circuit pressure functional equivalent compression test method based on the
parallel neural network algorithm is proposed and minimizing the flux is the optimization goal to
establish the circuit pressure functional equivalent compression test model. Meanwhile, the neural
network algorithm is introduced to optimize the flux minimization model of the circuit pressure
functional equivalent compression test, and a parallel execution algorithm is specially designed to
promote the computational efficiency of the algorithm. The improved BP neural network with weight
adjustment improves the data fusion accuracy and shortens the sample training time. Compared to
the uncompressed algorithm, the proposed algorithm has a shorter running time and a higher exe-
cution efficiency. Compared to the vascular pressure test method, this algorithm considers the prob-
lem of parallel execution and uses a quad-core processor. There is no significant change in calculation
time and the calculation efficiency is high. Therefore, this method can be used for multi-threaded
parallel optimization tests of large-scale circuits, as well as to effectively reduce the product’'s R&D
cycle.
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