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Abstract: We consider the magnetic monopole in the axionic dark matter environment (axionic dyon)
in the framework of the Reissner-Nordström-de Sitter model. Our aim is to study the distribution
of the pseudoscalar (axion) and electric fields near the so-called folds, which are characterized by
the profiles with the central minimum, the barrier on the left, and the maximum on the right of this
minimum. The electric field in the fold-like zones is shown to change the sign twice, i.e., the electric
structure of the near zone of the axionic dyon contains the domain similar to a double electric layer.
We have shown that the described fold-like structures in the profile of the gravitational potential,
and in the profiles of the electric and axion fields can exist, when the value of the dyon mass belongs
to the interval enclosed between two critical masses, which depend on the cosmological constant.
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1. Introduction

Global and local phenomena in our Universe are interrelated. When we speak about the
cosmological constant Λ, first of all we think about the global structure of the Universe and about the
rate of its expansion [1]. On the other hand, the cosmological constant is associated with one of the
models of the dark energy [2–4], and the influence of the Λ term on the structure of compact objects,
black holes and wormholes can be interpreted as the dark energy fingerprints [5]. Specific details of
the causal structure of spherically symmetric objects, the number and types of the horizons can also be
associated with the cosmological constant. For instance, in the framework of non-minimal extensions
of the Einstein–Maxwell and Einstein–Yang–Mills models with non-vanishing cosmological constant
the solutions regular at the center appear, if the parameters of the non-minimal coupling are linked by
specific relationships with the cosmological constant [6,7]. In other words, the regularity at the center
is connected with the appropriate asymptotic behavior.

The dark matter, the second key element of all modern cosmological scenaria [8–10], can play
the unique role in the problem of identification of the relativistic compact objects with strong
electromagnetic fields. When one studies the properties of the gravitational field of the object,
the standard theoretical tool is based on the analysis of the dynamics of test particles; usually,
one studies the trajectories of massive and massless particles reconstructing the fine details of the
gravitational fields. When we deal with the axions, the light pseudo-bosons [11–13], as the possible
representatives of the dark matter [14–21], we can not monitor the motion of an individual particle,
and the analysis of the dark matter halos comes to the fore.
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The dark matter particles are not yet identified. There are few candidates, which can be classified
as WIMPs and non-WIMPs (Weekly Interacting Massive Particles); the sets of candidates include light
bosons and fermions; these candidates can compose the systems indicated as cold, warm and hot dark
matter components. In fact, one can assume that there are a few different fractions, which are united
by a common term dark matter. We analyze the axionic fraction of the dark matter, and below we use
the short terms axionic dark matter and axions. For the description of the axionic dark matter, we
use the master equations for the interacting pseudoscalar and electromagnetic field [22]; over the last
thirty years, they have been known as the equations of axion electrodynamics [23,24]. Furthermore, we
follow the idea that the axionic fraction of the dark matter behaves as a correlated system, in particular,
the axions can form the Bose–Einstein condensate [25].

The dark matter forms specific cosmological units: halos, sub-halos, filaments, walls, the structure
of which admits the recognition of the type of the corresponding central elements. We assume that
compact relativistic objects with strong gravitational and electromagnetic fields distort the axionic
fraction of the dark matter halos, which surround them (see, e.g., [26,27] for details). For instance,
when the magnetic field of the star possesses the dipolar component, the axionic halo is no longer
spherically symmetric and is characterized by dipole, quadruple, etc. moments. In other words,
the modeling of the halo profiles for the magnetic stars can be useful in the procedure of identification
of these objects, as well as, in the detailing of their structures.

Our goal is to analyze specific details of the axionic dark matter profiles, which can be formed
near the folds in the profile of the gravitational potential. The axion distribution near the folds is
non-monotonic, thus the electric field induced by the strong magnetic field in the axionic environment
can signal about the appearance of the inverted layers analogous to the ones in the axionically active
plasma [28]. We show that, when the spacetime is characterized by the non-vanishing cosmological
constant, the folds in the profiles of the gravitational potential appear, the solutions to the equations for
the pseudoscalar (axion) field inherit the fold-like behavior, and the axionically induced electric field
changes the sign in these domains in analogy with the phenomena of stratification in the axionically
active plasma [28].

The paper is organized as follows. In Section 2, we discuss mathematical details, describing the
magneto-electro-statics of the axionic dyons. In Section 3, we introduce and mathematically describe
the idea of folds in the profile of the gravitational potential. In Section 4, we analyze the solutions to
the key equations of the model and illustrate the appearance of the fold-like structures in the profiles
of axion and electric fields. Section 5 contains discussion.

2. Description of the Axionic Dark Matter Profiles

2.1. The Total Action Functional

We consider the model, which can be described by the total action functional

S(total) = S(EH) + S(BMF) + S(AE) . (1)

Here S(EH) is the Einstein–Hilbert functional with the Ricci scalar R and cosmological constant Λ

S(EH) =
∫

d4x
√
−g

(R + 2Λ)

2κ
, (2)

and S(BMF) describes the contribution of a matter and/or fields, which form the background spacetime.
The action functional of the axiono-electromagnetic subsystem is represented in the form

S(AE) =
∫

d4x
√
−g
{

1
4

Fmn (Fmn + φF∗mn) +
1
2

Ψ2
0 [V −∇mφ∇mφ]

}
, (3)



Symmetry 2020, 12, 455 3 of 14

where Fmn is the Maxwell tensor and F∗mn is its dual tensor; φ denotes the dimensionless pseudoscalar
(axion) field, V is the potential of the pseudoscalar field, and Ψ0 = 1

gAγγ
is the parameter reciprocal to

the constant of the axion-photon coupling gAγγ.

2.2. Background State

We follow the hierarchical approach, according to which the background gravitational field is
considered to be fixed, and the axionic dark matter is distributed in this given spacetime. Why we
do it? The relativistic objects of the neutron star type are compact, but the mass density inside these
objects is very high, about ρn ∝ 1015g/cm3. The average mass density of the dark matter is known to
be estimated as ρDM ∝ 10−24g/cm3, but, in contrast to the dense objects, the dark matter is distributed
quasi-uniformly in the whole Universe. Thus, the gravitational field in the vicinity of the dense
magnetic stars is predetermined by the baryonic matter and by the magnetic field with very high
energy. From the mathematical point of view, in order to describe the background state we use only two
elements of the total action functional (1), namely, S(EH)+S(BMF), and consider the known solutions to
the corresponding master equations. As for the axionic and electric subsystems, we obtain the master
equations and analyze their solutions with the assumption that the gravity field is already found.

2.3. Master Equations of the Axion Electrodynamics

In this work we assume that the potential of the axion field is of the form V(φ) = m2
Aφ2.

More sophisticated periodic potential is considered in the papers [27,28]. Mention should be made,
that we use the system of units, in which c=1, h̄=1, G=1; in this case the dimensionality of the axion
mass mA coincides with the one of the inverse length. In the standard system of units we have to
replace mA with mAc

h̄ . Variation of the action functional (3), with respect to pseudoscalar field φ gives
the known master equation

∇m∇mφ + m2
Aφ = − 1

4Ψ2
0

F∗mnFmn . (4)

Variation procedure associated with the electromagnetic potential Ai gives the equation

∇k

[
Fik + φF∗ik

]
= 0 . (5)

This equation, being supplemented by the equation

∇kF∗ik = 0 , (6)

can, as usual, be transformed into
∇kFik = −F∗ik∇kφ . (7)

The Equations (7), (6) and (4) are known as the master equations of the axion
electrodynamics [22,23].

2.4. Static Spacetime with Spherical Symmetry

We assume that the background spacetime is static and spherically symmetric, and is described
by the metric

ds2 = N(r)dt2 − dr2

N(r)
− 1

r2

(
dθ2 + sin2 θdϕ2

)
. (8)

When the pseudoscalar and electromagnetic fields inherit the spacetime symmetry, we obtain
that φ is the function of the radial variable only, φ(r), and the potential of the electromagnetic field can
be presented in the form

Ai = δ0
i A0 + δ

ϕ
i Aϕ . (9)
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When one deals with the magnetic monopole of the Dirac type, the azimuthal component of the
potential is considered to be chosen in the form

Aϕ = Qm(1− cos θ) , (10)

where Qm is the magnetic charge (see, e.g., [24,29]). The Equations (7) and (6) can be reduced to one
equation only, which contains the electrostatic potential A0(r)

d
dr

(
r2 dA0

dr
+ Qmφ

)
= 0 . (11)

The Equation (4) takes now the form

1
r2

d
dr

(
r2N

dφ

dr

)
−m2

Aφ = − Qm

Ψ2
0r2

(
dA0

dr

)
. (12)

Integration of the Equation (11) gives

dA0

dr
=
Q(r)

r2 , Q(r) ≡ K−Qmφ , (13)

where K is the constant of integration. The function Q(r) = K−Qmφ(r) plays here the role of an
effective electric charge, which is virtually distributed around the object at the presence of the axion
field. This idea allows us to use the term axionically induced electric field.

As the next step, we replace the term dA0
dr in the right-hand side of (12) with (13), and obtain the

master equation for the pseudoscalar (axion) field

1
r2

d
dr

(
r2N

dφ

dr

)
=

[
m2

A +
Q2

m

Ψ2
0r4

]
φ− QmK

Ψ2
0r4

. (14)

Below, we analyze the solutions to the Equation (14) for models, in which the known metric function
N(r) contains the non-vanishing cosmological constant.

3. On the Features of the Exact Solution Describing the Dirac Magnetic Monopole in the
Spacetime with Cosmological Constant

3.1. Geometrical Aspects and Definition of the Fold

The magnetic monopole forms the background spacetime with the well-known metric

N = 1− 2M
r

+
Q2

m
r2 −

1
3

Λr2 . (15)

Since we work with the units with c = 1 and G = 1, the asymptotic mass M and the magnetic
charge of the monopole Qm have the formal dimensionality of the length. The metric (15) covers the
following exact solutions.

1. When Qm = 0 and M = 0, we obtain the de Sitter metric in the so-calledR-representation.

N(r) = 1− Λ
3

r2 . (16)

It is well-known that using the coordinate transformations

t = τ−1
2

√
3
Λ

ln
(

1−Λ
3

R2 · e2
√

Λ
3 τ
)

, r = e
√

Λ
3 τ · R , (17)
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one can obtain the de Sitter metric in the T form:

ds2 = dτ2 − e2
√

Λ
3 τ
[
dR2 + R2

(
dθ2 + sin2 θdϕ2

)]
. (18)

When the cosmological constant is positive, Λ > 0, the coordinate transformation (17) is defined

for the domain, in which the argument of the logarithm is positive, i.e., when r < rH ≡
√

3
Λ , in other

words, rH indicates the cosmological horizon. When Λ < 0, we deal with the anti-de Sitter spacetime,
which has no horizons.

2. When Qm = 0, we obtain the Schwarzschild-de Sitter metric

N(r) = 1− 2M
r
− Λ

3
r2 . (19)

When Λ > 0, depending on the value of the mass M, the spacetime can have two, one or zero horizons.
When Λ < 0, there is one horizon. When Λ = 0, we deal with the Schwarzschild model, which is
characterized by one event horizon at r = 2M.

3. General case: The Schwarzschild–Reissner–Nordström–de Sitter solution. Searching for the horizons

from the equation N(r) = 0, we happen to be faced with the algebraic equation of the fourth order,
and this spacetime is known to be equipped by three horizons as maximum. But our goal is more
detailed: we would like to find the sets of parameters M, Qm and Λ, for which the profile N(r) contains
folds. We define the fold as the domain, which is characterized by the following two features:

1. the profile N(r) has the central minimum, the barrier on the left of the minimum, and the maximum
on the right;

2. this domain is inside the cosmological horizon, but it is not hidden inside the event horizon,
i.e., N(r) > 0 in this domain.

We have to stress, that when Λ = 0, the metric function N(r) can have the barrier on the left,
the minimum, but there is no maximum on the right-hand side, there is only the monotonic curve,
which tends asymptotically to the horizontal line N = 1. Furthermore, one can imagine the folds of the
second kind, for which the barrier is on the right-hand side of the minimum, and the maximum on the
left-hand side, respectively. In this paper we consider the first variant of the fold only.

3.2. Horizons

3.2.1. Auxiliary Function Indicating the Number of Horizons

The analysis of the causal structure and of the folds appearance is based on the following approach
(this approach was successfully applied in [6,7] for the case with the equation of the sixth order). First,
we consider that Λ > 0, and rewrite the equation N(r) = 0 in the form

M =
1
2

f (r) , f (r) ≡ r +
Q2

m
r
− Λ

3
r3 . (20)

The auxiliary function f (r) starts from infinity at r = 0 and tends to minus infinity at r →
∞; it can possess two or zero local extrema depending on the value of the dimensionless guiding
parameter ΛQ2

m.

3.2.2. The Case ΛQ2
m < 1

4

When ΛQ2
m < 1

4 , the function f (r) has minimum and maximum, respectively, on the spheres,
indicated as

r1 =

√
1

2Λ

(
1−

√
1− 4ΛQ2

m

)
, r2 =

√
1

2Λ

(
1 +

√
1− 4ΛQ2

m

)
. (21)
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The sketch of this function is depicted on the Figure 1a. The number of horizons is predetermined
by the number of the intersection points of the horizontal mass line y = M and of the graph of the
function y = 1

2 f (r).

(a) (b) (c)

Figure 1. Typical sketches of the auxiliary function (20), which illustrate the number of horizons
depending on the values of the guiding parameter ΛQ2

m and of the asymptotic mass M. Panel (a)
illustrates the case ΛQ2

m < 1
4 ; panel (b) relates to the case ΛQ2

m = 1
4 , and panel (c) corresponds to

ΛQ2
m > 1

4 .

According to the sketch (a), the values r1 and r2 define two critical values of the mass:

M1,2 =
1
2

f (r1,2) =

(
1∓

√
1− 4ΛQ2

m + 4ΛQ2
m

)
√

18Λ
(

1∓
√

1− 4ΛQ2
m

) . (22)

Let us analyze the ratioH ≡ M1
|Qm| as a function of the dimensionless parameter z =

√
4ΛQ2

m:

H(z) =
√

2
3z2

(
1−

√
1− z2 + z2

)√
1 +

√
1− z2 , H′(z) = −

√
2z

√
1− z2

√
1 +
√

1− z2
. (23)

Clearly, we deal with defined on the interval 0 ≤ z < 1 monotonic function, which takes it
maximal value H(0) = 1 at z = 0, and tends to H(1) = 2

√
2

3 < 1 at z = 1. In other words, when
0 < ΛQ2

m < 1
4 , the ratio M1

|Qm| does not exceed one, and the critical mass M1 belongs to the interval
2
√

2
3 |Qm| < M1 < |Qm|. In the standard units we have to replace M1 → GM

c2 and Qm →
√

GQm√
4πε0c2 ,

where ε0 is the vacuum permittivity; thus, the condition M1 < |Qm| reads M1 < |Qm|√
4πε0G .

For different values of the asymptotic mass of the object, M, we obtain the following results.

• When M < M1, the mass line crosses the indicated graph in one point, i.e., there is only one
(cosmological) horizon.

• When M = M1, the mass line is the tangent one with respect to the minimum of this graph, thus,
there are two horizons: the double event horizon and the simple cosmological one.

• When M1 < M < M2, there are three intersection points, thus, there are three horizons: the inner
and outer event horizons and the cosmological one.

• When M = M2 there are two horizons: the simple event horizon and the double cosmological one.
• When M > M2, there is only one horizon; but in contrast to the case M < M1, it is the specific case,

when all the apparent Universe is inside the event horizon (see, e.g., [30,31] for some analogy).

3.2.3. The Case ΛQ2
m = 1

4

For this case the values r1 and r2 coincide, r1 = r2 =
√

1
2Λ ; the critical masses also coincide,

M1 = M2 = 1
3

√
2
Λ . Now, according to the panel (b) of Figure 1, there are simple cosmological horizons

for every M 6= 1
3

√
2
Λ , and the event horizons are absent. In the case M = 1

3

√
2
Λ the graph of the



Symmetry 2020, 12, 455 7 of 14

function f (r) has the cubic inflexion point, when the minimum and maximum coincide; now one has
triple horizon, i.e., the inner, outer horizons coincide with the cosmological one.

3.2.4. The Case ΛQ2
m > 1

4

For this case the values r1 and r2 are complex, thus, the extrema of the auxiliary function f (r) are
absent, and according to the panel (c) of Figure 1. for every mass M there is only one intersection
point corresponding to the cosmological horizon.

Short Resume

If we search for the models with the cosmological horizon, but without the event horizons, we
can choose one of the following conditions:

1. ΛQ2
m < 1

4 , M < M1;

2. ΛQ2
m = 1

4 , M < 1
3

√
2
Λ ;

3. ΛQ2
m > 1

4 .

We consider below the first case.

3.3. Folds

The next point of our analysis is the study of the folds. We consider now the derivative of the
metric function

N′(r) =
2M
r2 −

2Q2
m

r3 − 2Λ
3

r , (24)

and rewrite the equation N′(r) = 0 as follows:

M = f̃ (r) , f̃ (r) ≡ Q2
m

r
+

Λ
3

r3 . (25)

When we consider the extrema of the auxiliary function f̃ (r), we obtain that there exists the

minimum at r=r∗=
(

Q2
m

Λ

) 1
4
, which corresponds to the critical value of the mass

Mc =
4
3
|Qm|(ΛQ2

m)
1
4 . (26)

When 4ΛQ2 ≤ 1, it is simply to show that M1 ≥ Mc. Indeed, the ratio M1
Mc

can be rewritten
as follows:

M1

Mc
= µ(z) =

1 + z2 −
√

1− z2

2z
3
2

√
1−
√

1− z2
, (27)

where z =
√

4ΛQ2
m. This ratio is equal to one, when z = 1, and tends monotonically to infinity at

z → 0, in other words, the graph of the function µ(z) locates above the horizontal line y = 1, when
0 < z < 1.

Taking into account these features, we can state the following.

• When M > Mc, the horizontal mass line y = M crosses the graph of the function f̃ (r) twice;
this means that there are two extrema: the minimum and maximum.

• When M = Mc, two extrema coincide forming the cubic inflexion point.
• When M < Mc, the profile N(r) is monotonic.

We are interested to study the case M > Mc, since only this case relates to the presence of the fold,
which we search for. At the same time we hope to find the solution without event horizons (only the
cosmological horizon can exist). It is possible when M1 > M > Mc.
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3.4. Final Remarks about the Features of the Spacetime Geometry

3.4.1. The Choice of the Appropriate Scale for the Radial Variable

In order to clarify the possibility of the folds existence, we rewrite the basic equations using
the replacement

r =
x|Qm|

(ΛQ2
m)

1
4

. (28)

Keeping in mind that that there are two specific radii: first, the quantity rΛ =
√

1
Λ , which relates

to the cosmological scale, second, rQ = |Qm|, which is the Reissner-Nordström radius, we see that
(28) can be rewritten using the geometric mean value r = x√rΛrQ. In terms of the new dimensionless
variable x we obtain

N(x) = 1 +
√

ΛQ2
m

[
1
x2 −

x2

3
− 8

3x

(
M
Mc

)]
. (29)

This representation of the Reissner-Nordström-de Sitter metric shows explicitly that there are,
in fact, two dimensionless guiding parameters of the model: the parameter

√
ΛQ2

m =
rQ
rΛ

and the
reduced mass M

Mc
. In Figure 2, we present three illustrations of the folds in the profile of the metric

function N(x), which has no event horizons, but possesses the cosmological horizon.

Figure 2. Folds in the profiles of the metric function N(x) (29). There exists the infinite barrier on the
left-hand side, the central minimum, and the maximum on the right-hand side. The fold is situated in
the domain with positive N(x) and is not harbored by the event horizon. The dimensionless guiding
parameters

√
ΛQ2

m and M
Mc

are presented near the graphs in the box.

3.4.2. On the Problem of Naked Singularity and Cosmic Censorship Conjecture

The point r = 0 is singular for the metric with the coefficient (29). Since we consider the spacetime
without event horizons, this point should be indicated as the naked singularity, which is typical for the
Reissner–Nordström metric with dominating charge Q2

m > M2 (the so-called super-extremal case).
The discussions about physical sense of such solutions were activated by Roger Penrose, who has
formulated the cosmic censorship conjecture [32]. Active debates concerning the physical status of the
naked singularity continue until now, and there are three groups of disputants. The representatives of
the first group insist that the solutions describing the naked singularity are non-physical. Scientists
from the second group admit that such naked singularities exist in the nature, that it is still open
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problem, and they propose the tests to verify this hypothesis (see, e.g., [33–36] and references therein).
We belong to the third group, and we believe that the paradigm of the non-minimal coupling of the
photons with the spacetime curvature removes this problem at all. In the paper [37] we have shown,
that in the model of non-minimal Dirac monopole an additional horizon, formed due to the coupling
of the photons to the curvature, appears, so that the point r = 0 inevitably becomes hidden inside
this non-minimal horizon; in other words, the non-minimal interaction plays the role of the cosmic
censor. Then in the work [6] we have found the exact solution to the non-minimally extended Einstein
equations, which is regular at the center. For that solution the metric coefficient N(r) has the form

N(r) = 1 +
(

r4

r4 + 2qQ2
m

)(
−2M

r
+

Q2
m

r2 −
1
3

Λr2
)

, (30)

where q is the non-minimal coupling parameter. The solution (30) with Λ = 0 was obtained in [38],
and then we studied it in [39,40]. Clearly, for the solution (30) we obtain N(0) = 1, i.e., the solution is
regular at the center, and the question about the naked singularity disappears. To be more precise, we
can attract attention of the Reader to the curve III in Figure 2 presented in the paper [6]: one can see
the analog of the fold, but the function N(r) is regular at the center. Why in the presented paper we
considered the non-regular metric, if we have the example of the regular one? The explanation is very
simple: the non-minimal scale associated with the coupling parameter q is estimated to be extremely
small (of the order of the Compton radius of electron). This means that the folds, which we search for
in the presented paper, are arranged rather far from the non-minimal zone, and the metric (15) gives
the appropriate approximation for (30) in the fold zone.

4. Analysis of Solutions to the Key Equation of the Axion Field

4.1. The Profile of the Axion Field Distribution

In terms of the variable x the key equation for the axion field (14) takes the form

φ′′(x) + φ′(x)
[
x2N(x)

]′
x2N(x)

=
φ|Qm|√

ΛΨ2
0x4N(x)

(
m2

AΨ2
0x4+Λ

)
−K
√

Λ sgnQm

Ψ2
0x4N(x)

. (31)

Keeping in mind that the function x2N(x) is the polynomial of the fourth order, and that it has
no zeros in the domain inside the cosmological horizon, x < x∗, we can see that this equation has
only two singular points, x = 0 and x = x∗, which are situated on the edges of the admissible interval
0 < x < x∗. Equation (31) belongs to the class of the Fuchs equations [41].

When Λ > 0, we can not prolong the values of the radial variable to the infinity; we have to stop
the analysis on the cosmological horizon x = x∗. In other words, when we speak about the far zone,
we mean the requirement x → x∗, and N(x∗) = 0. One can see, that in this limit the axion field φ tends
to the value φ∞ given by

φ∞ =
KΛ

Qm
(
m2

AΨ2
0x4∗ + Λ

) . (32)

The results for the near zone can be obtained numerically. Numerical simulation includes the
variation of the following set of guiding parameters: first, the parameter

√
ΛQ2

m (it already appeared
in the analysis of the function N(x)); second, the parameter m2

AQ2
m; third, the parameter K

Qm
, fourth,

the coupling constant Ψ0. The analysis has shown that the graphs φ(x) inherit the fold-like structure
of the gravitational potential; for illustration, we presented three graphs in Figure 3.
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Figure 3. Axion field profiles φ(x), as the solutions to the master Equation (31). The guiding parameters
of the model:

√
ΛQ2

m, and M
Mc

are fixed in the box near the graphs; for the simplicity of illustration
we put Ψ0 = 1 and m2

A = 0.1 in the chosen system of units. The vertical line symbolizes the delimiter
associated with the boundary of the solid body of the object, and its intersection with the graph φ(x)
defines the boundary value φ(x0). In the far zone, the graph of the function φ(x) tends to the horizontal
asymptotic line, which corresponds to φ∞ given by (32). The profiles of the axion field distribution
inherit the fold-like structure of the profiles of the metric function N(x).

4.2. The Profile of the Energy-Density of the Axionic Dark Matter

The scalar of the axion field energy density is standardly defined as W=UiUkT(axion)
ik , where Ui

is the global four-velocity vector, coinciding with the normalized time-like Killing vector ξ i = δi
0.

Normalization of this Killing four-vector gives Ui = ξ i
√

ξsξs
= 1√

N
δi

0. The quantity T(axion)
ik is the

stress-energy tensor of the pseudoscalar axion field. The energy density scalar can be written as

W = UiUkΨ2
0

{
∇iφ∇kφ+

1
2

gik

[
m2

Aφ2−∇nφ∇nφ
]}

. (33)

In the static spherically symmetric case we obtain

W(r) =
1
2

Ψ2
0

[
N(r)φ′2(r) + m2

Aφ2
]

. (34)

Using the profiles of the functions N(x) and φ(x) we can illustrate the typical behavior of the
profile of the function W(x) (see Figure 4). These profiles happen to be more sophisticated than the
fold-like profile of the function N(x), since the extrema of the functions N(x) and φ do not coincide.

4.3. Profiles of the Axionically Induced Electric Field

When the profile of the axion field φ(x) is found, we can reconstruct the profile of the axionically
induced electric field using the formula

E(x) =

√
ΛQ2

m
x2Qm

[
K

Qm
− φ(x)

]
. (35)

The electric field changes the sign on the surfaces x = xj, for which φ(xj) = K
Qm

. The typical
profiles of the electric field are presented on Figure 5; these profiles look like the inverted fold-like
structure (the fold-like structure will be recovered, if we change the sign of the magnetic charge Qm
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and the parameter K simultaneously). On these profiles one can see two values of xj, in which the
electric field changes the sign. Near the cosmological horizon, the behavior of this electric field is of
the Coulombian type, i.e., E ∝ 1

x2 .

Figure 4. Typical profiles of the energy density scalar of the axion field (34). The basic profile has the
typical fold-like structure: the minimum, the barrier on the left of the minimum, the maximum on its
right-hand side. In the far zone the axion energy density tends to a constant, and the graphs have the
horizontal asymptotes. The vertical line relates to the object boundary and defines the corresponding
boundary value W(x0).

Figure 5. Typical profiles of the axionically induced electric field. The profiles have inverted fold-like
structure. The electric field changes sign twice; its profile tends to the Coulombian curve in the far zone
near the cosmological horizon. The vertical line relates to the boundary of the solid body of the object;
the dot relates to the boundary value of the electric field.

5. Discussion

We described an example of a new specific substructure, which can appear in the outer zone of
the axionic dyon; we indicated it as a fold. The fold is presented in the profile of the metric function
N(r) as a specific zone, which contains the minimum, the barrier on the left, and the maximum on the
right of this minimum. The fold is entirely located in the outer zone, i.e., it can not be harbored by the
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event horizon. The necessary condition of the fold appearance is the inequality M1 > M > Mc, where
M is the asymptotic mass of the dyon, and M1, Mc are the critical masses given by the formulas

M1 =

(
1−

√
1− 4ΛQ2

m + 4ΛQ2
m

)
√

18Λ
(

1−
√

1− 4ΛQ2
m

) , Mc =
4
3
|Qm|(ΛQ2

m)
1
4 . (36)

Both of the critical masses M1 and Mc contain only two model parameters: the cosmological
constant Λ and the magnetic charge Qm. When Λ = 0 the fold can not be formed, since the maximum
on the right of the central minimum disappears. On the fold bottom the derivative of the gravitational
potential vanishes, thus there the massive particle does not feel the gravitational force and can be at rest.
The width and depth of the fold are regulated, according to the Formula (29), by two dimensionless
parameters ΛQ2

m and M
Mc

.
Then we analyzed the solution to the key equation for the axion field (31), and have found

that the profile of the axion field reveals the substructure of the same type. To be more precise,
the fold-like zones are found in the profile of the function φ(x), and in the energy density profile W(x)
(see Figures 3 and 4, respectively). In other words, the axionic distribution bears the imprint of the fold
in the gravitational potential.

Finally, we studied the profile of the electric field, induced by the magnetic field in the axionic
environment. Again, the fold-like structure has been found in this profile (see Figure 5). In more
detail, we have seen, that the electric field changes the sign twice in this zone; such a behavior
is typical for the double electric layers. Similar results are obtained in the paper [28], where the
change of the electric field direction was associated with the stratification of plasma in the axionic
dyon magnetosphere. We think that development of this idea can be interesting for the procedure
of identification of the magnetars based on the fine spectroscopic analysis of obtained data. Why
do we think so? The magnetars possess huge magnetic field of the order 1013–1015G; this magnetic
field produces spectroscopic effects, such as Zeeman effect [42]. If the dark matter has the axionic
nature, the axionically induced electric field appears in the vicinity of magnetic star. The corresponding
coefficient of transformation is estimated to be less than 10−8; however, the axionically induced electric
field near magnetars is able to produce the quite distinguishable Stark effect. When one has both effects
in the magnetic and electric fields (parallel and/or crossed), then the possibility appears to combine
the well-elaborated methods and to organize an extended diagnostics [43]. Clearly, the standard
Coulombian type radial electric field can be produced in many standard charged astrophysical
objects, but if we hope to identify, say, the axionic dyon, we have to find some very specific detail
distinguishing this object. In this sense the fold-like structure of the profile of the electric field of the
axionic dyon, which is described in our work, gives just such a specific detail. Of course, this idea
needs detailed estimations and description of the corresponding diagnostics, however, the discussion
of such questions goes beyond the scope of this work.
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