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Abstract: A low-light image enhancement method based on a deep symmetric encoder–decoder
convolutional network (LLED-Net) is proposed in the paper. In surveillance and tactical
reconnaissance, collecting visual information from a dynamic environment and accurately processing
that data is critical to making the right decisions and ensuring mission success. However, due to
the cost and technical limitations of camera sensors, it is difficult to capture clear images or videos
in low-light conditions. In this paper, a special encoder–decoder convolution network is designed
to utilize multi-scale feature maps and join jump connections to avoid gradient disappearance.
In order to preserve the image texture as much as possible, by using structural similarity (SSIM) loss
to train the model on the data sets with different brightness level, the model can adaptively enhance
low-light images in low-light environments. The results show that the proposed algorithm provides
significant improvements in quantitative comparison with RED-Net and several other representative
image enhancement algorithms.

Keywords: deep convolutional neural network; convolution–deconvolution residual network;
low-light image enhancement; symmetric encoder–decoder network structure

1. Introduction

The visual system is one of the main ways for humans to obtain information. With the rapid
development of modern computer technology and multimedia technology, digital image processing
technology came into being and image and video have become important visual mediums for
information transmission, and have gradually been widely applied to everyday life, production,
work and other fields, promoting the development and progress of these various fields. However, in
the practical application process, the data captured by acquisition equipment are often low-quality
images with various problems; therefore, a series of image enhancement processing methods must be
carried out to output clear and high-quality images that meet the requirements of practical application.

Image enhancement refers to the mathematical operation and logical transformation of the image
data obtained by imaging equipment according to the specific application requirements, emphasizing
the interesting content in the image, weakening or removing the uninteresting information, and
obtaining high-quality images that meet the actual application conditions. Image enhancement will
not increase the inherent information content of image data, but will increase the dynamic range of
selected features to make them easily detected or more consistent with the visual effect of human eyes
and, thus, lay a solid foundation for subsequent image analysis and image understanding. Image
enhancement technology has been widely developed and applied in medical research, aerospace,
military applications, fingerprint recognition, face recognition, traffic management and other fields,
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so the research on image enhancement technology has always been an important part of image
processing technology research. For example, Mandić, I. et al. proposed an adaptive algorithm
based·on the LPA-RICI algorithm [1] to denoise X-ray images.

This article focuses on the study of low-light image enhancement. During the image acquisition
process, due to the poor lighting environment or the reflection of the object surface, the whole
image is insufficiently illuminated and dark, and the detail information of the image cannot be
distinguished. In addition, due to the inherent physical characteristics of mechanical equipment, image
acquisition systems cannot avoid adding noise during the acquisition process or, due to cost constraints,
the camera’s quality and imaging capability are poor, which usually leads to the overall darkness of the
captured image, resulting in image degradation. At last, the limitation of the image display device also
causes the decrease in the level sense of image display or the number of colors. Therefore, the research
on fast and efficient low-light image enhancement and denoising algorithms has become one of the key
contents to promote the development of low-light image analysis and image understanding. Low-light
image enhancement processing has been widely applied in many fields, such as security surveillance,
road traffic, medical imaging, military reconnaissance, daily photography and so on. In security
monitoring, the quality of the images obtained by the monitoring system under low-light conditions
has dropped significantly, which brings great challenges to social security video monitoring. Therefore,
it is necessary to process the image acquired under this condition to achieve the purpose of observation.
Traffic cameras and driving recorders often encounter poor lighting conditions or poor image exposure,
which can cause the video and image to be dark and distorted. In medicine, the quality of medical
examination images, such as B-ultrasound, will directly affect the diagnosis results and treatment
plans given by doctors. In the military aspect, the quality of military reconnaissance images will also
affect the commander’s orders and decision-making. In daily life, people use cameras to shoot a large
number of images and videos recording life and scenery, but due to the limitations of the shooting
environment and the low professionalism of photographers, the quality of images will also be low.

2. Related Work

The enhancement of low-light images has always been a research hotspot in the field of image
processing, and related image processing algorithms have emerged endlessly.

Low-light image enhancement based on the histogram equalization (HE) was the mainstream
method used in the early days of image enhancement. The histogram is the most basic statistical
feature of an image, reflecting the distribution of the gray value and the light and dark distribution of
the image. For a gray image, the gray statistical histogram can reflect the statistical situation of different
gray levels in the image. Generally speaking, the visual effect of an image has a direct relationship with
its histogram. By adjusting and transforming the histogram, the visual effect of an image can be greatly
affected. The histogram equalization method proposed by Pizer, S. M. et al. [2] in 1987 can change the
gray value of the input image point by point, so that each gray level has a similar number of pixel
points; that is, to maintain the relative relationship between the pixel values and transform them into
a uniform distribution, so as to increase the dynamic range of the pixel values, so as to enhance the
overall contrast of the image and obtain a better visual effect. Based on this principle, many extended
and improved HE methods were subsequently proposed.

Pizer, S. M. et al. [3] proposed a contrast limited adaptive histogram equalization (CLAHE) and
Abdullah, A. W. et al. [4] proposed an intelligent contrast enhancement method based on dynamic
histogram equalization (DHE), which controlled the effect of traditional HE methods and enhanced
the image without losing the image details. Wu, C. M. et al. [5] put forward a new model of adjustable
histogram equalization based on information entropy as a regular term. Using the probability
distribution information of the image’s gray level, the method of selecting a regular term coefficient in
the adjustable histogram equalization is proposed, which improves the traditional HE method and
solves the problem of detail loss in image enhancement. Jiang, B. J. et al. [6] combined the characteristics
of global HE and local HE, improving the HE algorithm by using incremental HE. This kind of method
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can effectively remove the noise in low-light image enhancement, but there are still the problems of local
detail information loss and color distortion. Adaptive extended piecewise HE (AEPHE) [7] divides the
original histogram into a set of segmented histograms, and then applies adaptive HE to these extended
histograms. The final result of AEPHE is a weighted fusion of these equalized histograms.

However, for non-uniformly illuminated images, the histograms of different regions are different.
The HE-based method may need to apply different constraints in different local regions, which is
difficult to achieve.

Retinex theory has been extensively studied in low-light image enhancement. Land, E. H. et al. [8]
first proposed the theory of the retinex algorithm in 1977. The theory holds that the color of the surface
of an object that people perceive is closely related to the reflectance factor of the surface of the object.
The color change caused by light is generally gentle, which is shown as a smooth lighting gradient,
while the color change effect caused by the change in the object surface appears as a sudden change.
By distinguishing these two different change forms, one can distinguish the change in the light source
and the change in the object’s surface. Noting that the color change is caused by the change in the light
source means that people’s perception of the surface color of objects remains constant. The degree of
color constancy is not affected by the changes in the lighting environment, but is only related to the
perception of the reflection properties of the object’s surface by the human visual system. Therefore,
understanding how to estimate the reflection component of the object is the focus of this kind of
method. According to the different estimation of the reflection components of the object, several
improved algorithms were developed, such as multi scale retinex with color recovery (MSRCR) [9,10],
the probabilistic method for image enhancement (PLE) [11] algorithms, simultaneous reflectance and
illumination estimation (SRIE) [12] algorithms and robust retinex model algorithms [13]. Although the
method based on retinex theory has a good effect on image enhancement, the edge sharpening is still
insufficient and sometimes the color of the image after enhancement deviates from the original color.

Guo X. et al. [14] proposed the low-light image enhancement (LIME) algorithm. Red, green and
blue (RGB) are the three primary colors of the additive mixing color model, which can can represent
almost all the colors that can be perceived by human vision. The main idea of the LIME algorithm is to
find the maximum value in the three color channels of RGB, to firstly estimate the illumination of the
image, and then to perfect and modify the initial illumination by adding a structure prior to it serving
as the final illumination. The LIME algorithm greatly improves the quality of low-light images, but it
also brings problems, such as too high brightness and too bright colors in the reconstructed image.

In addition, with He’s dark channel prior defogging algorithm [15], the dark channel prior method
should also be used in low-light image enhancement. In [16,17], the authors enhance the dark region
of the image according to the dark channel prior technology, but this often leads to obvious noise
amplification; in addition, Banić, Nikola et al. [18] used a statistical-based method and proposed the
green stability assumption method for illumination estimation, which improved the speed of image
processing. The fractional-order fusion model (FFM) [19] algorithm was also proposed to extract
more invisible content from the darker areas of the image through the fractional order fusion model,
which achieved a better effect. Recently, with the improvement of computers’ computing powers, the
method based on deep learning has achieved great success in the field of image processing, driven
by the application of big data sets. For example, Ledig, C. et al. [20] proposed the super-resolution
using a generative adversarial network (SRGAN) algorithm to achieve super-resolution reconstruction
of images, while, in the field of image deblurring, Kupyn, O. et al. [21] proposed the deblurring
using conditional adversarial networks (DeblurGAN) algorithm to remove motion blur from images.
In addition, Ai, S. et al. [22] proposed the attention U-shaped neural network algorithm to enhance the
image. Lore, K. G. et al. [23] proposed a depth neural network for enhancing low-light images. Firstly,
the non-linear method is used to simulate low illumination conditions to darken the natural images
which are set as training data. Then, a depth neural network is formed by stacking a sparse denoising
auto coder. After training, these encoders can learn the signal features of low-light images and enhance
the brightness adaptively. However, the image processed in [23] is a grayscale image, and there are
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some problems, such as unclear image texture and loss of image details. To solve these problems,
in this paper, a low-light image enhancement method based on the depth encoder–decoder convolution
network is proposed. A low-light encoder–decoder network (LLED-Net) is designed to enhance
low-light images. Through training on the image sets of different low-light levels, the multi-scale feature
maps are combined to generate an enhanced high-quality image. Structural similarity (SSIM) [24] is
integrated into LLED-Net to preserve better original features and textures, thereby to complete the
end-to-end mapping from a low-light image to high-quality image. The experimental results show
that the image enhancement effect of LLED-Net is better than other methods.

The innovative work of this article is mainly reflected in the following aspects:

1. An image enhancement network structure is proposed. The network consists of a series of
symmetrical convolutional layers and deconvolutional layers. The input image first passes
through a convolution layer. The convolution layer acts as a feature extractor, encodes the main
features of the image content, and then the deconvolution layer decodes the image to restore
image details and enhance image brightness;

2. In order to better train the deep network, a skip connection is added between the corresponding
convolutional layer and the deconvolutional layer. These skip connections help to propagate
features to the front end of the network and pass image details to the end of the network, making
the training of end-to-end mapping from low-light images to high-quality images easier and
more effective, accelerating the speed of neural network training, and achieving performance
improvement at last;

3. SSIM is introduced into the network model, and the SSIM loss function is constructed instead of
the default L2 loss function to pay more attention to the generation of image texture and make
the output brightness-enhanced image texture clearer.

3. Low-Light Image Enhancement Based on LLED-Net

3.1. The Network Structure of LLED-Net

In view of the good results achieved by RED-Net [25] in the field of image enhancement, the network
structure of LLED-NET proposed in this paper draws on the network structure of RED-Net [25]. As shown
in Figure 1, the entire network consists of convolutional layers and deconvolutional layers. After each
convolution or deconvolution layer, a linear rectification function (ReLU) is used for activation. It should
be noted that the pooling layer is not used in the network model, because the purpose of this model is to
enhance the image, reconstruct high-quality images, and restore the texture and details of the image,
rather than image classification tasks. The existence of the pooling layer usually results in the loss of
image details, which are very important to the image restoration task, and reduces the performance of
image reconstruction.
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The size of the convolution kernel of LLED-Net’s convolution and deconvolution also refers to
the 3 × 3 size setting that is more common in the areas of image recognition and image enhancement.
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As a feature extractor, the convolutional layer extracts the main features of the object in the image and
improves the image brightness. After processing by the convolution layer, the input low-light image is
converted into a high-quality image. However, the details in the image may be lost during this process,
so a deconvolution layer follows to restore the details in the image. In the network model, since the
convolutional layer and the deconvolutional layer are symmetrical, the input image is allowed to be
of any size. The skip connections are also used in the model, which help to propagate features back
to the shallow layer of the network, pass image details to the end of the network, and speed up the
training of the network. Meanwhile, the SSIM Loss function is used as the loss function of the network,
focusing on the reconstruction of image texture and detail.

3.2. Convolution and Deconvolution Structure

The difference between LLED-Net and traditional convolution neural networks is that the
convolution and deconvolution structure is used in the former. The traditional convolutional neural
network is a fully convolutional neural network, which is very different in structure from the proposed
network. Using a fully convolutional neural network, the image is processed by the convolutional
layers, and the image features are extracted and passed to the next layer, which gradually increases
the brightness of the image. However, with the continuous increase in convolutional layers, the main
content of the image will be recorded, but some small details of the image may be lost, so a deconvolution
layer corresponding to the convolutional layer is designed to restore and compensate the details
of the image, make up for the deficiency of fully convolutional neural network and, finally, output
high-quality images. Among them, the deconvolution layer and the corresponding convolution layer
have the same number of layers and the same number of convolution kernels or deconvolution kernels,
which makes the proposed neural network form a symmetrical structure.

3.3. Residual Learning

The skip connection is constructed by imitating the residual module [26]. The residual module
is shown in Figure 2, where x is the input of the residual block, and F (x) is called residual mapping,
which is the output after the first level of linear change and activation by the ReLU activation function,
then the second level of linear change and activation. F (x) is activated and output after adding the
input value x, which constitutes a residual module. The x added to the output value of the second
layer before activation is called a skip connection.
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In many computer vision tasks, better performance will be achieved by using deep networks
than non-deep networks. According to the description in [26], with the increase in convolution neural
network layers, the gradient of backpropagation in the neural network will become unstable, especially
large or small, which will often lead to gradient explosion and gradient disappearance. It will hinder
the convergence in the training process, and the deeper convolution layer will lead to more and more
serious loss of image details. The reason for this phenomenon is that, with the deepening of network
layers, the change in features within the network has reached the best situation in one layer, but at this
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time, the deep convolution layer of the network will continue to change the features, which will cause
the performance of the network to decline; ideally, when the neural network has a large number of
layers, the deep convolutional layers of the network should be automatically learned to be the identity
mapping form without any change to the features—that is, H(x) = x.

Assuming that the convolutional layer before a certain convolutional layer has optimally extracted
and changed the image features, then the latter convolutional layer is redundant. Before the introduction
of residual learning, it is very difficult to make the parameters learned in this layer realize identity
mapping; that is, when the input data is x, the output is still x after the convolution layer and activation
by the activation function. However, after the residual learning is introduced, the network avoids
directly fitting the parameters to realize the identity mapping at this layer, but, instead, the network is
modified to the structure shown in Figure 2 by introducing skip connections to make H(x) = F(x) + x.
It will be easy to know from the network structure shown in Figure 2 that, in order to make the
convolution layer achieve identity mapping, it is only necessary to let F (x) = 0. Obviously, it is easier
to let F (x) = 0 than H (x) = x, because when the network is just trained, the parameter initialization in
each layer of the network is often close to zero, which makes the value of F (x) approach zero, and the
parameters of this layer can be perfectly fitted without too much change. In this way, skip connection
is introduced to the network module to realize the residual learning. Compared with updating the
parameters of the network layer in the process of training to get H (x) = x, using the redundancy layer
to get the update parameters to achieve F(x) = 0 can make the network convergence faster.

Inspired by residual learning, LLED-Net connects the convolutional layer to the corresponding
mirrored deconvolution layer by using a skip connection, so that not only the convolutional feature
maps transmitted by the layers are summed up, item by item, as the input of the deconvolution layer,
but also the detailed information of the image can be transmitted to the corresponding mirrored
deconvolution layer through the skip connection, which will help the deconvolution layer to better
recover the high-quality image. In the process of backpropagation in the network, the skip connection
also provides a simpler path for backpropagation parameters. Skip connection not only solves the
problem of gradient explosion and gradient disappearance of LLED-Net during the training process,
but also accelerates the convergence speed of the network and reduces the training time of the network.

It is easy to train a deep convolution neural network and improve the quality of image
reconstruction by using this residual learning strategy.

3.4. SSIM Loss

The SSIM loss function is adopted in the network instead of the L2 loss function of RED-Net [25].
L2 loss function is also known as least square error loss function. It minimizes the quadratic sum of the
difference between the target value and the estimated value. The L2 loss function can easily amplify
the gap between the maximum error and the minimum error, and easily fall into the local optimal
solution. SSIM is a measure of similarity between two images. Considering human visual perception,
the result of SSIM loss function is more detailed than that of L2 loss function.

For a clear image captured in normal light, the visual perception of the image can be changed
by increasing or reducing all pixel values. However, in this case, the image structure hardly changes,
and the peak signal to noise ratio (PSNR) [27] before and after the image change will be very different.
PSNR is the most widely used objective image evaluation index, which is used to reflect the degree of
image distortion. The higher the value, the less the distortion. Therefore, the L2 loss function may not
be suitable for the task of this paper. For low-light image enhancement, there will be better protection
for the texture of the image by using SSIM loss, so using SSIM loss is more suitable for the task of
this paper.

Given two images, x and y, the structural similarity of the two images can be obtained as follows:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ

2
y + c1)(σ2

x + σ
2
y + c2)

(1)
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where µx is the mean of x, µy is the mean of y, σ2
x is the variance of x, σ2

y is the variance of y, and σxy is
the covariance of x and y. c1 = (k1l) and c2 = (k2l) are constants used to maintain stability and prevent
the error of denominator equal to 0, so take a small value of k1 and k2 to avoid affecting the final result.
l∈L, where L is the dynamic range of pixel values.

The value of SSIM is in the range [0,1]. The value of one means that the two images are exactly
the same. Therefore, 1-SSIM (X, Y) is used to calculate the loss. The loss function of SSIM is defined
as follows:

lssim =
1
N

∑
x∈X,y∈Y

1− SSIM(x, y) (2)

where N represents the number of samples in the data set.

4. Experimental Process and Result Analysis

4.1. Data Set

The biggest difficulty of using deep learning to enhance low-light images is the collection of
training data, because it is very difficult to collect a natural low-light image and a high-quality image
of normal lighting in the same scene at the same time. The general solution in the field of image
enhancement is to synthesize the low-light image as the training data. The public data set BSD500 [28]
is selected as our training data. There are 500 images of various people, houses, streets, animals,
natural landscapes, etc. in BSD500 [28]. The number of images is expanded to 1200 by using the
data enhancement method of rotation and flipping, then the images are enlarged by two, three, and
four times, and 720,000 image blocks with the size of 41 × 41 pixels are randomly selected. Then,
non-linear adjustment is performed on these 720,000 image blocks to make them become low-light
images. The value of γ is randomly selected in the interval [2,5]. When the value of γ is 2, the image
appears darker, which is in line with the image taken when the light conditions are slightly weak,
and when the value of γ is 5, the image becomes very dark, which is consistent with an image taken
under extremely weak light conditions. Therefore, the value of γ in the interval [2,5] can simulate the
common natural environment of insufficient light when taking images, so as to make the generated
images more closer to the images obtained naturally, Among them, 648,000 images are used as training
images, and 72,000 images are used as verification images. The experimental environment is Ubuntu
16.04 operating system, the deep learning framework used is Pytorch, and GTX780 is used as the GPU
for accelerated training.

Seven images of a bird, a cheetah, a parrot, a woman, a boat, an elephant, and a baby in the
public data set ImageNet [29] were selected for the test data, and these images were also adjusted
non-linearly into low-light images. When the value of γ is 3, it is in line with images taken in dark
environments in most cases, so the value of γ is set to 3 to simulate low-light images taken under poor
lighting conditions.

4.2. Selection of Parameters

The network configuration of LLED-Net is shown in Table 1. Since the network structure of
super-resolution using very deep convolutional networks (VDSR) [30] has achieved great success in
the field of super-resolution reconstruction, the network structure and parameter settings of VDSR [30]
are taken as references in this paper. The total number of network layers is set to 20, and the size
of each convolution kernel is 3 × 3. The number of feature maps of the final deconvolution layer is
three, which outputs the RGB three-channel image and completes the reconstruction of the color image.
In the experiment, the stochastic gradient descent (SGD) method [31] and the Adam optimizer were
used. The number of batch training samples is 128, the initial learning rate is 0.01, and the learning
rate becomes one tenth of the original after every three epochs.
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Table 1. LLED-Net configuration.

Convolution Type Convolution Kernel Size Number of Feature Maps Convolutional Layers

convolution 3 × 3 128 4
convolution 3 × 3 256 3
convolution 3 × 3 512 3

deconvolution 3 × 3 512 2
deconvolution 3 × 3 256 3
deconvolution 3 × 3 128 4
deconvolution 3 × 3 3 1

4.3. Selection of Loss Function

The SSIM loss was compared with the L2 loss in the experiment. If L2 norm loss is used,
the network structure of LLED-NET will be the same as the 20-layer RED-Net [25] network structure.
Taking PSNR as the evaluation standard, using the same LLED-Net network structure, the bird,
elephant, cheetah, baby and boat images to test, and taking the average PSNR of the five images after
reconstruction, the results are shown in Figure 3. It can be clearly seen that SSIM loss function is better
than L2 loss function in the quality of reconstructed images in the network. Therefore, the SSIM loss
function is adopted in this article.
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Figure 3. Comparison using different loss functions.

4.4. Impact of Using Skip Connections on Network Training

In the experiment, the results of network training with and without a skip connection are compared.
Taking SSIM loss as an indicator, using the same loss function and the same network parameters, the
bird, elephant, cheetah, baby and boat images to test and recording the training situation of the two
network structures, the results are shown in Figure 4. During the training process, the SSIM losses of the
two network structures have different convergence conditions. It can be seen that the network structure
using skip connections obviously converges faster than the network structure without skip connections.
Therefore, in the experiment, skip connections are used to speed up the training of the network.
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4.5. Experimental Results and Analysis

When γ = 3, the five pictures in [23] are processed by using LLED-Net, the PSNR and SSIM
values are shown in Table 2, and the processed pictures are shown in Figure 5. It can be seen that the
processing results of five pictures with LLED-Net are better than the algorithm proposed in [23] in
both PSNR and SSIM indicators.

Table 2. Peak to signal noise ratio (SNR) and structural similarity (SSIM) indicators of [23] and
LLED-Net on test images.

[23] LLED-Net

PSNR SSIM PSNR SSIM

Bird 24.01 0.72 24.07 0.89
Girl 23.16 0.68 31.01 0.98

Pepper 20.54 0.69 26.23 0.91
Town 23.56 0.62 28.05 0.97
House 17.26 0.34 24.00 0.82
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Figure 5. LLED-Net processing results of five images in [23].

By using HE, CLAHE, MSRCR [9,10], PLE [11], SRIE [12] algorithms, the LIME algorithm based on
retinex theory and the LLED-Net model in this paper, the bird, cheetah, parrot, woman, boat, elephant,
and baby images were processed and compared. The difference between the reconstructed image and
the original image was used to evaluate the algorithm performance. The results are shown in Table 3.

As shown in Table 3, the best results of the seven algorithms on the test images are labeled in bold.
It can be seen that, in most cases, whether using PSNR or SSIM as the evaluation index, LLED-Net is
superior to other algorithms.

Table 3 shows the PSNR and SSIM values of several image enhancement algorithms after processing
the test image when γ = 3, and when the γ value of the test image is one, three and five, the average
values of PSNR and SSIM of the image processed by several image enhancement algorithms are shown
in Table 4.

It can be seen from Table 4 that the LLED-Net algorithm has a higher processing effect on low-light
images than other algorithms and has a higher robustness.
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Table 3. PSNR and SSIM indicators of different algorithms on test images.

HE CLAHE PLE SRIE MSRCR LIME LLED-Net

bird
PSNR 11.34 14.79 16.39 15.88 23.49 18.96 31.75
SSIM 0.5677 0.7689 0.8454 0.8446 0.9655 0.8885 0.9825

cheetah
PSNR 17.56 20.23 15.22 14.33 16.73 13.08 27.37
SSIM 0.5940 0.8048 0.7812 0.7332 0.8732 0.5212 0.8608

parrot PSNR 21.06 20.59 15.55 13.62 23.25 15.13 23.34
SSIM 0.7643 0.8493 0.5758 0.4701 0.8553 0.6020 0.8608

woman PSNR 13.69 15.78 14.04 13.03 22.18 18.54 26.51
SSIM 0.7184 0.7615 0.6554 0.6086 0.8412 0.7309 0.9263

boat
PSNR 21.19 17.48 14.68 13.52 24.46 13.66 27.88
SSIM 0.8218 0.7468 0.6283 0.5867 0.9217 0.6717 0.9635

elephant PSNR 22.98 17.89 13.66 13.37 23.37 15.07 27.93
SSIM 0.8480 0.7665 0.5860 0.5894 0.9324 0.6545 0.9512

baby PSNR 12.33 17.40 13.43 12.63 27.36 16.91 27.68
SSIM 0.6891 0.8121 0.6679 0.6139 0.9083 0.7692 0.9324

Table 4. Average values of PSNR and SSIM indicators of different algorithms on test images with
different γ values.

HE CLAHE PLE SRIE MSRCR LIME LLED-Net

PSNR 16.17 14.93 14.62 13.46 16.70 14.73 27.89
SSIM 0.6891 0.6670 0.6701 0.6456 0.7518 0.6914 0.9453

The processing results of the five images of the elephant, bird, boat, cheetah, and baby are shown
in Figure 6. It can be seen that the LLED-Net proposed in this paper has the best effect, while the
HE, CLAHE, MSRCR [9,10] and LIME algorithms based on retinex theory cannot restore the image
to a higher quality state. Among them, there is almost no enhancement in brightness for the image
processed by HE, and the whole image is still in a dark situation. The enhanced brightness is very
uneven, resulting in many irregular white spots and color distortion, which is quite different from the
original image. The image processed by CLAHE is much better than HE, but the enhanced brightness
still cannot reach a satisfactory level. The image becomes more blurred, and many non-existent textures
and stains appear in the background. The image processed by the LIME algorithm has a very high
quality, but the image color is too gorgeous and deviates from the original color seriously. Although
the image processed by MARCR [9,10] is better in color restoration, the various evaluation values
are lower, the detail restoration of the image is poor, and there are some cases where the background
color of some images are very different from the original images. As to the images processed by
PLE [11] or SRIE [12], not only the evaluation indicators of SSIM and PSNR are low, but also there is no
high improvement in image brightness, and most of the details in the image are hidden in the dark.
The color of the image processed by LLED-Net is more vivid, and the texture details in the image are
clearer. The original colors and features of the image are better retained, and they are closer to the
original image. In short, by using all the algorithms listed above, the image processed by LLED-Net is
closest to the original high-quality image.Symmetry 2020, 12, 446 12 of 15 
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4.6. Processing of Real Low-Light Images

Five real low-light images are downloaded from the network and processed by the HE, CLAHE,
MSRCR [9,10], PLE [11] and SRIE [12] algorithms based on retinex theory, the LIME algorithm and
the LLED-Net model in this paper, and the results are shown in Figure 7. It can be seen that the
image processing by the HE and CLAHE algorithms is prone to high color sharpness and color spots.
For example, in the fourth image, the contour of the sun in the sky is too obvious and the edge is
sharp after the HE algorithm processing, while rasters that do not exist in the original image appear
in the sky after the CLAHE algorithm processing. MSRCR [9,10] produces the phenomenon of color
deviation and too gorgeous color. After the MSRCR [9,10] algorithm processes the second and third
pictures, the color of the image is too strong and gorgeous, and the entire image tends to a certain hue.
After the PLE [11] and SRIE [12] algorithms process these five images, the brightness of the processed
images does not increase. For example, in the fourth image, the person in the figure can be recognized
by an approximate outline, but the body and the clothing are still not clear enough, and the details of
the doors and windows on the building in the distance are hidden in the dark. The image processed by
the LIME algorithm appears to be too bright and obviously over exposed. All the five real low-light
images are processed well by the LLED-Net model. In subjective visual evaluation, the five images
generated by the model have better enhancements in brightness, the details hidden in the dark in the
original image are clearly visible in the processed image, and the color and texture of the image are
kept relatively complete. It can be seen that the LLED-Net algorithm has a very good performance on
real low-light images.Symmetry 2020, 12, 446 13 of 15 
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5. Conclusions

Image brightness enhancement plays a very important role in many applications based on
computer vision, and is the basis for subsequent image analysis and processing. However, the existing
algorithms have problems, such as unclear image texture and loss of image details. Aiming to combat
this, a convolutional network with a 20-layer convolution–deconvolution network structure and a
SSIM loss function is proposed. This network learns the ability to brighten the image from a large
number of synthesized low-brightness images, then applies it to enhance low-light images to restore
clarity and achieve end-to-end image enhancement. It is not constrained by various existing algorithms,
such as the need to estimate various lighting levels, reflection and other parameters. At the same
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time, the skip connection is used to solve the problem of gradient descent in the training process,
which makes the network easier to optimize and avoids problems, such as gradient disappearance and
gradient explosion.

Experimental results show that the method proposed in this paper is very suitable for enhancing
low-light images with different light intensities. On the synthesized low-light images, the images
processed by this method are better than the previous several image enhancement algorithms in SSIM
and PSNR evaluation indicators. Even if the subjective experience of the naked eye is used, its color
and detail restoration effect is better than other image enhancement algorithms; in the processing of
real low-light images, the quality of the image processed by this algorithm is higher and clearer, and
the texture of the image and the details are also richer. However, in the generated image, there are still
problems such as loss of image texture and insufficient color restoration. The next step is to conduct
in-depth research on the issue of image detail preservation and further improve the quality of images.
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