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Abstract: Interest in sports predictions as well as the public availability of large amounts of structured
and unstructured data are increasing every day. As sporting events are not completely independent
events, but characterized by the influence of the human factor, the adequate selection of the analysis
process is very important. In this paper, seven different classification machine learning algorithms
are used and validated with two validation methods: Train&Test and cross-validation. Validation
methods were analyzed and critically reviewed. The obtained results are analyzed and compared.
Analyzing the results of the used machine learning algorithms, the best average prediction results
were obtained by using the nearest neighbors algorithm and the worst prediction results were obtained
by using decision trees. The cross-validation method obtained better results than the Train&Test
validation method. The prediction results of the Train&Test validation method by using disjoint
datasets and up-to-date data were also compared. Better results were obtained by using up-to-date
data. In addition, directions for future research are also explained.

Keywords: classification; cross-validation; machine learning; validation methods; predicting
outcomes; Train&Test

1. Introduction

Predicting outcomes in sport is a challenging and interesting task. Therefore, methodologies
that achieve better prediction results currently represent a hot topic for scientific researches. A basic
condition for building a good prediction model is a sufficient amount of the relevant data, in a structured
or unstructured form. Furthermore, it is important to have a good knowledge of the observed process
to understand the predicting process, how past events affect future events, and to know the causes and
consequences of particular process actions.

Outcome prediction in sports has been a very favored research area for the last 15 years. The
number of outcome prediction scientific papers is related to the popularity of the sport, such as football,
basketball, and baseball, but there are also scientific papers related to outcome prediction in tennis,
hockey, cricket, etc. In this paper, emphasis will be in predicting basketball games outcomes.

In this research, supervised machine learning was applied for basketball game outcome prediction,
and therefore binary classification was used. Seven classification machine learning algorithms were
applied, and their results were validated. In this research, two validation methods—Train&Test
validation and cross-validation—were applied and compared. One of the purposes of this research was
to determine the possibilities and disadvantages of each validation method in predicting basketball
games outcomes.
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The aim of this paper is, through the comparison of the classification machine learning algorithms
in predicting basketball game outcomes, to define which algorithm, validation method, and data
preparation method produces better prediction results.

This paper demonstrates what impact the different validation methods have on the prediction
accuracy when using different ML algorithms. Moreover, the impact of selecting a validation method
on the prediction results when applying ML to the disjoint datasets or the up-to-date data is revealed,
thereby enabling the formation of recommendations for the most appropriate combination of the ML
algorithm and validation method, depending on the available datasets.

After this introduction and the overview of sport outcome-related researches, the second chapter
provides the basic information about classification machine learning algorithms and the validation
methods applied in this research. The third chapter describes the data acquisition and data preparation
procedures. The research results are presented and discussed in the fourth chapter, and the conclusions
are given at the end of paper.

Related Literature Review

The most common algorithm in predicting outcomes in sports are neural networks coupled with
the Train&Test validation method. The authors of [1] used a variety of neural networks and Train&Test
validation for predicting game outcomes in the National Basketball Association (NBA) league, with
the best results of more than 70%. In [2], the authors used 37 algorithms in the Waikato Environment
for Knowledge Analysis (WEKA) and Train&Test validation method. The result with the best yield
was 72.8%, showing that the best classifiers have 5% better precision than the referent classifier, which
favors the team with the better rating. The authors of [3] used logistic regression, Naïve Bayes, Support
Vector Machine (SVM), and multilayer perceptron neural network for predicting NBA basketball games
by using two approaches: cross-validation and Train & Test validation method. The results achieved
a yield of slightly less than 70%, but this result was better with the Train & Test validation method.
The authors of [4] used the Train&Test validation method and multilayer perceptron backpropagation
neural network, linear regression and MaximumLikelihood Classifier for predicting NBA games
outcome and achieved accuracies of nearly 70 %.

In [5], the authors proposed a Mixture Density Network (MDN) model with Train&Test validation
method and achieved maximum in-season (internal) accuracy of 86.7% and a maximum out of season
(external) accuracy of 82%. The MDN model was trained on 4440 games from 2002–2014 seasons and
tested on 500 games from 2002 to 2014 (internal) and 500 games from the held out 2016–2017 season
(external). The authors of [6] used the Naïve Bayes for outcome prediction and multivariate linear
regression for spread calculation. The database was always up-to-date while previous day data were
added to the existing data in the system. Using cross-validation, the authors produced an accuracy of
67% in outcome prediction and 10% in spread prediction. The authors of [7] used various classification
and regression-type machine learning methods and the cross-validation method to predict the outcome
of NBA games. The best result (more than 65%) yielded Gaussian discriminant analysis (GDA) with
accuracy followed by linear regression, SVM coupled with Principal Component Analysis (PCA),
random forest, and adaptive boosting method. In [8], the authors used SVM and logistic regression for
predicting the outcome of NBA basketball games and yielded best results of 70% using cross-validation.
The authors of [9] used logistic regression, adaptive boost, random forest, SVM, and Gaussian Naïve
Bayes to predict the outcome of NBA games. The prediction method random forest achieved the best
accuracy, thereby using Train&Test validation method.

The Train&Test validation method was also used in the next papers. The authors of [10] proposed
a model based on SVM with support of decision tree and using correlation-based feature selection
(CFS) feature selection algorithm achieved accuracy of 85.25%. Without feature selection, authors
achieved accuracy of 67%. In [11], the authors proposed a model based on k-nearest neighbours (K-NN)
for predicting Euroleague games. The authors used several models using different k and number of
seasons. The best results, having an accuracy of 83.96%, were achieved by using k = 3 for dataset of
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three seasons and dataset of one season and k = 5 or k = 7. The authors of [12] used feedforward neural
network and the Train& Test validation method for basketball games outcome prediction and achieved
an accuracy of 80.96%. In [13], the authors applied the Maximum Entropy principle to a set of features
and established the NBA Maximum Entropy model. The authors achieved accuracy of 74.40%. The
authors of [14] proposed a matrix factorization prediction model where different season number was
used as a training dataset and the 2015/2016 season was used for testing. The best results of 70.95%
were achieved by using a single season as a training dataset. The authors of [15] proposed a pioneering
modeling approach based on stacked Bayesian regressions and achieved accuracy of 85.28%.

In [16], the authors used ten fuzzy models to predict ACB league results and used the
cross-validation method. The author used two datasets. The first dataset, which refers to the
last three games, had six features and achieved a best result of 82%. The second, advanced model,
used eight feature selection methods results and picked 5 out of 15 features that have been repeatedly
selected by algorithms, including whole season results and achieved best accuracy of 71.5%. In [17],
the authors proposed a model for predicting college basketball game outcomes by using J48, random
forests, Naïve Bayes, and multilayer perceptron neural network. The authors used previous seasons
as a training dataset and a single season as a testing dataset. Naïve Bayes algorithm is also applied
as an underlying classifier for predictions in [18], whereas in [19], the optimal results of prediction
are achieved with random forest classifier. The authors in [20] describe the developed Hybrid Fuzzy
Support Vector Machine (HFSVM) model for analyzing the outcomes of basketball competitions.

2. Applied Algorithms and Methods

The types of machine learning differ in their approach, the type of data, and the type of
solving problem. Machine learning is usually subcategorized into three types: supervised learning,
unsupervised learning, and reinforcement learning. Supervised learning develops a predictive model
based on both input and output data. Unsupervised learning groups and interprets data based only
on input data, whereas reinforcement learning trains the algorithm by using a system of reward
and punishment.

Supervised learning algorithms include classification and regression. Classification algorithms
are used when the output is restricted to a limited set of values and regression algorithms are used
when the outputs may have any numerical value within a range. Lately, the term of semisupervised
learning, a combination of supervised and unsupervised learning, has also been frequently used.
Semisupervised learning algorithms include algorithms capable of working with partially labelled
data and large amounts of unlabeled data. Sports predictions are usually treated as a classification
problem by which one class is predicted [21], and rare cases are predicted by numerical values. The
results in [22] also reveal that the classification predictive schemes predict game outcomes better than
the regression schemes.

This chapter will provide basic information about seven classification machine learning algorithms
and two validation methods applied in this research.

2.1. Supervised Classification Machine Learning Algorithms

A total of seven classification machine learning algorithms were used during this research: logistic
regression, Naïve Bayes, decision tree, neural multilayer perceptron network, random forest, k-nearest
neighbors, and LogitBoost. The classifiers that are used in the prediction process are implemented in
WEKA, freely available software licensed under the GNU General Public License and the companion
software to the book “Data mining: Practical Machine Learning Tools and Techniques”. WEKA was
developed at the University of Waikato, New Zealand [23,24].

2.1.1. Logistic Regression Algorithm

Logistic regression is a generalization of linear regression [25], and it is used for estimating binary
or multi-class dependent variables, and the response variable is discrete. Logistic regression is a
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statistical model that uses sigmoid functions (2) to model binary dependent variables. Sigmoid (logistic
functions) are suitable for statistical analyzes of binary classification problems, because they always
position any real number in the interval between 0 and 1. Logistic regression is very similar to linear
regression, which calculates output for a given input, using specific coefficients or weights. The only
difference is that logistic regression always gives binary outputs 0 or 1.

Logistic regression is used to classify the low-dimensional data having nonlinear boundaries. For
the binary classification problem, as explained in [3], the linear function (1) is extended by the logistic
function (2) to form the function (3).

y(X) = WT
·X + w0 (1)

f (z) =
1

1 + e−z (2)

y(X) = F(θT
·X + w0) = f (z) (3)

Thereby, the parameter z can be defined as

z = θT
·X + w0 (4)

where W, w0, and θ are the parameters of the model.

2.1.2. Naïve Bayes Algorithm

Naive Bayes is a group of simple classification techniques that assume complete independence of
all values of feature vectors. The first applications were in the categorization of texts and later began to
be used in medical diagnostics and in sports.

The core concept of Naïve Bayes classifier is Bayes theorem with independent assumptions
between predictors. The simplest approach of Bayesian network is Naïve Bayes in which all attributes
of a dataset are independent to its class variable value. Therefore, Naïve Bayes classifier is a Bayesian
network where the class has no parents and each attribute has the class as its sole parent. Naïve
Bayes classifiers require a small amount of training data to predict the parameters for classification.
For classification, the standard Naïve Bayes algorithm computes the posterior probability P (cj | x) of
sample x belonging to class cj according to the Bayes’ rule:

P
〈
c j
∣∣∣x〉 = P

〈
x
∣∣∣c j

〉
·P(c j)

P(x)
(5)

2.1.3. Decision Trees Algorithm

Decision trees is a method for classification by modeling a tree structure model with leaves
representing class labels and branches representing conjunctions of features. The decision tree algorithm
belongs to a group of supervised learning algorithms used to solve regression and classification
problems. The main goal is to create a training model that can predict the target variables based on the
learned decision rules. There are two types of Decision Tree algorithms, based on the type of target
variables: categorical variable decision tree and continuous variable decision tree.

The output of the learning process is a classification tree where the split at each node of the tree
represents an if-then decision rule and each leaf corresponds to one value of the target variable.

2.1.4. Multilayer Perceptron Neural Network Algorithm

A multilayer perceptron neural network is a variant of the original Perceptron model proposed by
Rosenblatt in the 1950 [26]. A multilayered perceptron network is a subset of artificial neurons that
utilize activation discontinuous step function. Depending on the activation function, they can be used
for classification or regression.
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The network has one or more hidden layers between, the neurons are organized in layers, the
connections are always directed from lower layers to upper layers, and the neurons in the same layer
are not interconnected.

2.1.5. Random Forest Algorithm

Random forest consists of a large number of individual decision trees and is a generic name for a
group of methods used by tree classifiers (6), where {θk} is a set of uniformly distributed, completely
independent vectors and x is input vector pattern.{

h(x,θk) = 1, . . . . ,
}

(6)

When training, the random forest algorithm creates many trees, which are each trained on a
defined number of samples of the original training set. The idea is to train each tree on different
samples to gain lower variance for the entire forest, but not at the cost of increasing the bias; although,
each tree might have high variance with respect to a particular set of the training data. The prediction
that most often occurs in individual trees becomes the final selection of a random forest.

2.1.6. K-NN Algorithm

The K-NN algorithm is a nonparametric supervised machine learning method that can be used
for classification and regression problems. Both methods (classification and regression) assign weights
to the contributions of the neighbors, where the nearer neighbors contribute more than the others.
The method fundamentally relies on a metric distance value. The most common metric is Euclidean
distance (7), although other metrics that can be used as well [11].

dEuclidean(x, y) =

√√ n∑
i

(xi − yi)
2 (7)

2.1.7. LogitBoost Algorithm

LogitBoost is an influential boosting algorithm for classification and represents an application of
established logistic regression techniques to the AdaBoost method. Its main objective is to reduce bias
and variance in supervised learning, as well as to convert poor (weak) classifiers into classifiers that
are well-correlated with the true classification.

2.2. Data Validation Methods

The possibilities and disadvantages of two validation methods—Train&Test validation and
cross-validation—applied in predicting basketball games outcomes were explored during this research.

By using the Train&Test model validation method, the input dataset is divided into two or three
different, but not necessarily chronologically ordered, datasets: training dataset, validation dataset, and
testing dataset. The validation dataset is not always used and is usually used for the parameter tuning
of the final model. For the prediction of sporting events, it is recommended to use chronologically
ordered datasets, as sporting events are not completely independent events. Historical data can
provide very useful information in predicting future events. With the Train&Test method, the model
learns on the training dataset, and then it is evaluated on the testing dataset. The Train&Test validation
method flow chart is shown in Figure 1.
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Figure 1. Train&Test validation method.

In the cross-validation method, the initial dataset is divided into k separate subsets Ti for i = 1, 2,
. . . , k. The parameter k is not strictly defined but depends on the situation and the expert’s assessment.
With this method, one of the k subsets is used for testing, and the other subsets are used for training.
The procedure is repeated k times and the average accuracy of the model is calculated (Figure 2).
Cross-validation has an advantage over the Train&Test method because all Ti subsets are used for
training as well as for testing.

 

2 

 

 

 
Figure 2. Cross-validation method.

3. Data Acquisition and Preparation

A sufficient amount of relevant data is a basic condition for building a good prediction model.
This chapter will provide information about data acquisition, and two data preparation methods will
be presented.

3.1. Data Acquisition

The dataset used for this research was originally downloaded from the Basketball-reference.com
website. Publicly available statistics of nine consecutive NBA seasons, from 2009/2010 to 2017/2018,
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known as Box-score data, are used in this research. This data contains detailed statistics of each
analyzed game during all analyzed seasons. The database contains a total of 11,578 games, which
provide sufficient data to reveal classification machine learning algorithm possibilities and to present
validation methods results. Both the regular and playoff games are included, and a total of basic
13 features per team are used. Table 1 shows used Box-score feature.

Table 1. List of feature vectors.

Name/Abbrev. Full Name/Explanation

2fgm, 2fga Number of three pointers made/attempts by the player/team
3fgm, 3fga Number of two pointers made/attempts by the player/team

ftm, fta Number of free throws made/attempts by the player/team
defReb, offReb Number of defensive/offensive rebounds by the player/team

ast Number of assists by the player/team
st Number of stolen balls by the player/team
to Number of turnovers by the player/team

blcks Number of blocks made by the player/team
flsCmmtd Number of fouls committed by the player/team

Unstructured data from the Basketball-Reference website are extracted, transformed, and loaded
(ETL) into a relational database suitable for further analysis by using a web scraping process. Due
to the specificity of data retrieval, a web scraper in the scripting programming language PHP is
programmed. The web scraper passes through the website Basketball-Reference, extracts data from a
page, transforms them into suitable form, and stores them into a relational database (MySQL). Figure 3
shows the prepared single-game data for all players who participated in the game.
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3.2. Data Preparation

The training dataset and testing dataset are prepared depending on the used validation method.
The Train&Test validation method splits the input dataset into two chronologically ordered datasets:
training dataset and testing dataset. In the variant of using disjoint datasets, the training dataset
contains actual game statistics, whereas the test dataset contains the average team statistics based
on the training dataset. In principle, the training dataset remains unchanged throughout the entire
prediction process. The variant of using up-to-date data in later iterations of prediction also uses known
test phase data. That means, the training dataset and the testing dataset are no longer disjoint after
predicting the first outcome. The testing dataset, as in the previous variant, contains the average team
statistics based on the training dataset. Figure 4 shows used Train&Test validation data preparation
variants graphically.
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In the cross-validation method, the initial dataset is divided into five separate subsets. With this
method, one of the subsets is used for testing and the other subsets are for training. Training subsets
contain actual game statistics, whereas the test dataset contains the average team statistics based on
the other four subsets. The above-mentioned data preparation variants are used for all used machine
learning algorithms.

Feature Vector

The feature vector contains 13 basic features related to team’s performance during a particular
game. As two teams participate in one game, the feature vector should be prepared according to the
defined problem. The feature vector uses a total of 26 features, 13 features for each team listed in
Table 1, and a classification feature that defines the game winner. Team-specific features are the average
team performance over a defined time period. The input file is prepared according to the needs of the
WEKA toolkit and the applied validation method. Equation (8) shows a feature vector for one team,
where tm denotes the team and indices present basketball game statistics, as presented in Table 1.

tmvector =

[
tm2 f gm, tm2 f ga, tm3 f gm, tm3 f ga, tm f tm, tm f ta, tmde f Reb,

tmo f freb
, tmast, tmst, tmto, tmblcks, tm f lsCmmtd

]
(8)

Full input vector, shown in Equation (9), consists of home and guest team statistics and a
classification feature that defines the game winner.

f eaturevector =
[
tmvectorhomeTeam

]
+

[
tmvectorguestTeam

]
+ [classi f ication_ f eature] (9)

The data that the feature vector contains depends on the machine learning phase. The training
phase data contains the actual played game data, whereas the test phase data contains average team
performance data during the training phase.

4. Results and Discussion

This chapter gives an insight into the results of using the seven aforementioned classification
machine learning algorithms in predicting the outcome of NBA games by using team-related features
and binary classification. The research was conducted in WEKA toolkit and prediction results were
compared. First, the results were compared by using the Train&Test method and the cross-validation
method where mutually disjoint datasets were used, and then the datasets with up-to-date data.

The results reveal how accurate the model is when using described classification machine learning
algorithms and different data validation methods. That enables to define a validation method for using
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in later proposed outcome prediction algorithm. The assumption was that cross-validation method
and up-to-date data will give better prediction results.

4.1. Prediction Results by Using Disjoint Datasets and Train&Test Validation Method

The algorithms use one to three training seasons and one or two testing seasons, mutually disjoint
datasets, and the Train&Test validation method. Datasets are chronologically ordered, more specifically,
the training dataset precedes the testing dataset. Table 2 shows the obtained average prediction results
by using disjoint datasets and the Train&Test validation method.

Table 2. Average prediction results by using disjoint datasets and Train&Test validation method.

Machine
Learning

Algorithm

1 Training
Season + 1

Testing
Season

2 Training
Seasons + 1

Testing
Season

1 Training
Season + 2

Testing
Seasons

2 Training
Seasons + 2

Testing
Seasons

3 Training
Seasons + 2

Testing
Seasons

Average

Logistic regr. 57.09% 56.47% 55.63% 56.01% 55.62% 56.16%
Naive Bayes 57.40% 57.20% 55.76% 54.97% 53.65% 55.80%
Decision tree 55.03% 55.16% 53.75% 53.66% 49.87% 53.49%

Multilayer perc. 57.13% 56.32% 55.64% 55.86% 55.58% 56.11%
K-NN 58.94% 59.04% 57.76% 57.33% 56.42% 57.90%

Random forest 57.96% 56.94% 56.94% 55.39% 54.14% 56.27%
LogitBoost 56.46% 54.48% 55.31% 53.36% 52.84% 54.49%

Average 57.14% 56.52% 55.83% 55.23% 54.02% 55.75%

Analyzing the results in Table 2, the best average prediction result of 57.90% was obtained by
using the K-NN algorithm, whereas the worst prediction result was obtained by using decision trees.
The best individual prediction result was also obtained by the K-NN algorithm. It is notable that all the
best individual results were obtained using a single testing season. Thus, the results of the paper [27],
which prove that the best results for predicting basketball games are obtained by using one to three
training seasons and one testing season, are confirmed. Likewise, it is also easy to notice that the worst
individual results, independent of used algorithm, were obtained by using three training seasons and
two testing seasons. It is significant to compare the results of each machine learning algorithm by
increasing the dataset; in this case, by increasing the number of seasons. The results in [27] suggest
that average prediction results should decrease as the number of training and testing seasons increases.
Figure 5 shows a drop in the average prediction results by increasing the number of training and/or
testing seasons.
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4.2. Prediction Results by Using Disjoint Datasets and Cross-Validation Method

The results presented here are obtained by using the cross-validation with parameter k = 5 as
the validation method. The cross-validation method uses future events in predicting outcomes, but
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on the other hand, it does not consider the current state of the team in relation to the future. The
assumption was that the cross-validation method gives slightly better results than the Train&Test
validation method. The research results are presented in Table 3.

Table 3. Average prediction results by using disjoint datasets and cross-validation method.

Machine Learning
Algorithm 2 Seasons 3 Seasons 4 Seasons 5 Seasons Average

Logistic regr. 58.14% 57.50% 57.01% 56.02% 57.17%
Naive Bayes 58.67% 58.08% 57.54% 56.00% 57.57%
Decision tree 55.07% 53.61% 52.95% 51.85% 53.37%

Multilayer perc. 57.89% 57.38% 56.95% 56.00% 57.06%
K-NN 60.12% 59.46% 58.53% 57.69% 58.95%

Random forest 58.74% 57.23% 55.85% 53.59% 56.35%
LogitBoost 55.78% 55.83% 54.80% 52.50% 54.73%

Average 57.77% 57.01% 56.23% 54.81% 56.46%

As with the Train&Test validation method, the lowest average prediction results are obtained by
using decision trees and the K-NN algorithm gives the best prediction results. The best individual
prediction result was also obtained by the K-NN algorithm. It is notable that all of the best individual
results, except random forest, were obtained when using two seasons. Also, the results in paper [27]
were confirmed when considering the number of seasons used. Figure 6 shows that, as with the Train
& Test method, the average prediction accuracy decreases as the number of seasons used increases.
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4.3. Comparison of Prediction Results of Train&Test Validation Method and Cross-Validation Method by Using
Disjoint Datasets

In this chapter, the outcome prediction results by using the Train&Test validation method and the
cross-validation method will be compared. Figure 7 provides a comparison of the average algorithm
accuracy by using the Train&Test method and the cross-validation method regardless of the used
dataset length.

The results presented in Figure 7 show that all used machine learning algorithms except the
decision trees produce better average prediction results, independent on the length of the used dataset,
by using the cross-validation method. In addition to the overall average prediction results, it is
meaningful to compare the results using different datasets length. Figure 8 shows a comparison
of validation methods based on disjoint datasets and different datasets lengths, where is clearly
evident that better results are obtained by using cross-validation method and initial assumption is
confirmed. The use of disjoint datasets gave better results for the cross-validation method; however,
the cross-validation method uses future, currently unknown data, and as basketball games are not
completely independent events, the use of cross-validation method is suitable only when it is possible
to predict the accurate future events data. However, the assumption that the cross-validation method
produces better results has been proven.
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4.4. Prediction Results by Using Up-To-Date Data and Train&Test Validation Method

The previous chapters present the results of using the Train&Test validation method and
cross-validation method by using disjoint datasets.

The results presented here were also obtained by use of one to three training seasons and one or two
testing seasons; however, up-to-date data were used, instead of future, currently unknown data. These
results are compared with results obtained by using mutually disjoint Train&Test validation method
datasets. The term up-to-date refers to the use of known test phase data during training phase. The
up-to-date data of predicted events were added to the training dataset after each outcome prediction
iteration. Datasets can no longer be disjoint after predicting the first testing dataset game outcome.
In principle, training is no longer strictly supervised, but also receives elements of reinforcement
learning. More specifically, the training dataset is fulfilled with known examples of the testing phase,
and the system is able to learn based on using a system of reward and punishment, which is generally
reinforcement learning. The assumption was that the results of using up-to-date data give better results
compared to results obtained by using mutually disjoint datasets. Table 4 shows the results obtained
by using up-to-date data and the Train&Test validation method.

Table 4. Average prediction results by using up-to-date data and Train&Test validation method.

Machine Learning
Algorithm

1 Training
Season + 1

Testing
Season

2 Training
Seasons + 1

Testing
Season

1 Training
Season + 2

Testing
Seasons

2 Training
Seasons + 2

Testing
Seasons

3 Training
Seasons + 2

Testing
Seasons

Average

Logistic regr. 59.29% 58.97% 59.97% 59.47% 59.44% 59.43%
Naive Bayes 59.22% 58.03% 58.58% 57.77% 57.58% 58.24%
Decision tree 54.97% 55.10% 54.85% 54.20% 54.18% 54.66%

Multilayer perc. 58.23% 58.70% 59.97% 59.46% 59.50% 59.17%
K-NN 60.06% 59.23% 60.82% 59.87% 60.06% 60.01%

Random forest 59.56% 58.63% 58.92% 57.50% 56.60% 58.24%
LogitBoost 57.55% 56.24% 55.82% 54.57% 54.39% 55.71%

Average 58.41% 57.84% 58.42% 57.55% 57.39% 57.92%

Table 4 clearly shows that the decision trees algorithm produces the worst prediction results, and
the best results are produced by the algorithm K-NN, as well as by the use of disjoint sets of data.
The best individual prediction result was also obtained by the K-NN algorithm. Also, all the best
individual results, except decision trees, were obtained using a single testing season. Thus, the results
in [27], which prove that the best results of predicting basketball games are obtained by using one to
three training seasons and one testing season, are confirmed.

To propose a future prediction model, it is essential to compare the results obtained by using
disjoint sets and by using up-to-date data during the testing phase. Figure 9 shows the comparison of
the average prediction results obtained by using disjoint and up-to-date data.
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As presented in Figure 9, up-to-date datasets produce better prediction results compared to results
obtained by using disjoint datasets. The result is logical given that when using up-to-date data, known
test phase data is added to the training dataset. The assumption that the results of using up-to-date
data will give better results has been proven.

5. Conclusions

Predicting outcomes in sport is a challenging task. Games are not completely independent
events, such as coin tossing, and are largely dependent on previous played games. In addition,
analyzing team sports in particular, it is clear that the game outcome depends on a variety of
factors. Therefore, it is very important to define under what circumstances the prediction algorithms
produce the best results. This paper analyses the model validation methods and capabilities of
seven classification machine learning algorithms to determine the best validation methods and what
are the initial capabilities of analyzed algorithms in predicting basketball games outcomes. Two
validation methods—Train&Test and cross-validation—and seven machine learning classification
algorithms were analyzed. Cross-validation has proven to be a better validation method. Problem is
that cross-validation uses future, at the moment unpredictable event data. The Train&Test validation
method gave satisfactory results. Two methods of data preparation for the Train&Test validation
method were analyzed. The first data preparation method involved the use of disjoint datasets for
the training and testing phase, whereas the second method involved the use of up-to-date data in
the training phase. Logically, better results were obtained by using up-to-date data. Analyzing used
machine learning algorithm, generally the best results were obtained by using algorithm nearest
neighbors, whereas the worst results were obtained by using decision trees.

In cases where it is not possible to predict accurate future event data, it is recommended to use
the Train & Test validation method and up-to-date data. Machine learning algorithms yielded almost
similar prediction results, but the best results were obtained by using nearest neighbors algorithm.
Considering that there is no universal classifier which is consistently better at any task than others, it is
necessary to compare multiple classifiers on different datasets and specific problems. When predicting
basketball games, the nearest neighbors algorithm was the best. This paper showed that using different
season numbers leads to a change in prediction outcome results. Therefore, in future research, an
optimal time window should be examined. The task of that research must be to find the time period
that at the given moment best describes the team, and accordingly provides the best outcome prediction
results. Furthermore, it is planned to extend the proposed prediction model by adapting the feature
vector. Thereby, the impact of feature selection and/or feature extraction will be explored.

In the future, the possibilities of unsupervised learning which includes only input data should be
explored. More specifically, the effect of cross-validation on unsupervised learning will need to be
explored to determine the aforementioned validation method possibilities. The effect of the Train&Test
validation method using timeline ordered data is explored in this article. It is also planned to explore
the effect of random order of training data, which will disrupt the chronology, but may find patterns
and regularities not possibly found using time-ordered data. Using random order offers the ability to
avoid time dependencies reduces the impact of the sporting factor and increases the impact of finding
specific patterns or regularities among the retrieved data. Data preparation certainly represents an
interesting area related to processes that involve the human factor and therefore requires finding the
optimal validation method.
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Table of Notations

Notations used in this article are detailed below:

y(x) linear function
f (z) logistic (sigmoid) function
W, w0, θ parameters of the Logistic regression model
P (cj | x) posterior probability in Naïve Bayes algorithm
x sample
cj class according to the Bayes’ rule
dEuclidean (x,y) Euclidean distance in k-NN algorithm
2fgm, 2fga Number of three pointers made/attempts by the player/team
3fgm, 3fga Number of two pointers made/attempts by the player/team
ftm, fta Number of free throws made/attempts by the player/team
defReb, offReb Number of defensive/offensive rebounds by the player/team
ast Number of assists by the player/team
st Number of stolen balls by the player/team
to Number of turnovers by the player/team
blcks Number of blocks made by the player/team
flsCmmtd Number of fouls committed by the player/team
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