
symmetryS S

Article

Semantic Image Segmentation with Deep
Convolutional Neural Networks and Quick Shift

Sanxing Zhang 1,2,† , Zhenhuan Ma 1,2,†, Gang Zhang 1,2 , Tao Lei 1,*, Rui Zhang 1,2

and Yi Cui 1

1 Institute of Optics and Electronics Chinese Academy of Science, Chengdu 610209, China;
sanxingZhang27@163.com (S.Z.); mazhenhuan17@mails.ucas.edu.cn (Z.M.); zhanggang@ioe.ac.cn (G.Z.);
zhangrui182@mails.ucas.ac.cn (R.Z.); cuiyi@ioe.ac.cn (Y.C.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: taoleiyan@ioe.ac.cn
† These authors contributed equally to this work.

Received: 6 February 2020; Accepted: 3 March 2020; Published: 6 March 2020
����������
�������

Abstract: Semantic image segmentation, as one of the most popular tasks in computer vision, has been
widely used in autonomous driving, robotics and other fields. Currently, deep convolutional neural
networks (DCNNs) are driving major advances in semantic segmentation due to their powerful
feature representation. However, DCNNs extract high-level feature representations by strided
convolution, which makes it impossible to segment foreground objects precisely, especially when
locating object boundaries. This paper presents a novel semantic segmentation algorithm with
DeepLab v3+ and super-pixel segmentation algorithm-quick shift. DeepLab v3+ is employed to
generate a class-indexed score map for the input image. Quick shift is applied to segment the
input image into superpixels. Outputs of them are then fed into a class voting module to refine the
semantic segmentation results. Extensive experiments on proposed semantic image segmentation
are performed over PASCAL VOC 2012 dataset, and results that the proposed method can provide a
more efficient solution.

Keywords: semantic segmentation; deep convolutional neural network; superpixel; quick shift;
class voting

1. Introduction

Semantic image segmentation is a typical computer vision problem. Its task is to assign different
categories to each pixel in an image according to the object of interest [1]. In the past several years,
due to a large amount of training images and high-performance GPUs, deep learning techniques-in
particular, supervised approaches such as deep convolutional neural networks (DCNNs)-have
achieved relentless success in various high-level computer vision tasks, such as image classification,
object detection, semantic segmentation, etc. [2–4]. The key advantage of these deep learning
techniques is to learn high-level feature representations in an end-to-end fashion, which are more
discriminative than traditional ones. Inspired by the success of deep learning techniques in image
classification tasks, researchers explored the capabilities of such networks for pixel-level annotations
and proposed many prominent deep learning networks for semantic segmentation.

Nowadays, most DCNNs for semantic segmentation are based on a common pioneer:
fully convolutional network (FCN) proposed by Long et al. [5]. It transforms the well-known DCNNs
used for image classification, such as AlexNet [6], VGG [7], GoogleNet [8], into fully convolutional
ones by replacing the fully connected layers with convolutional ones in order to output spatial feature
maps instead of classification probabilities. Those feature maps are then decoded [5] to produce

Symmetry 2020, 12, 427; doi:10.3390/sym12030427 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-7800-0751
https://orcid.org/0000-0002-6730-045X
https://orcid.org/0000-0002-6889-1247
http://dx.doi.org/10.3390/sym12030427
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/3/427?type=check_update&version=2


Symmetry 2020, 12, 427 2 of 11

dense pixel-level annotations. FCN is considered a milestone in deep learning techniques for semantic
segmentation, since it demonstrates how DCNNs can be trained end-to-end to solve this problem,
efficiently learning how to produce dense pixel-level predictions for input of arbitrary sizes. It achieved
20% relative improvement in segmentation accuracy over traditional methods on the PASCAL VOC
2012 dataset [9].

DeepLab series [10–13] are successful and popular in DCNNs based semantic segmentation model.
DeepLab v1 [10] introduces atrous convolution [14] in DCNN to effectively enlarge the receptive field
without increasing the number of network parameters. To localize objects boundaries, it combines the
last layer of DCNN with fully connected CRF [15]. Due to these two advanced techniques, it reached
71.6% mIOU accuracy in the PASCAL VOL 2012 dataset. Based on DeepLab v1, DeepLab v2 [11]
further proposes atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales.
By employing multiple parallel atrous convolutional layers with different dilation rates, ASPP can
exploit multi-scale features, thus capturing objects as well as image context at multiple scales. DeepLab
v2 combines atrous convolution, ASPP and fully connected CRF, achieving 79.9% mIOU accuracy in
the PASCAL VOC 2012 dataset. DeepLab v3 [12] incorporates improved ASPP, batch normalization
and a better way to encode multi-scale context to further improve performance, reaching 85.7%
mIOU accuracy in the PASCAL VOC 2012 dataset. Improved ASPP involves concatenation of
image-level features, a 1x1 convolution and three 3x3 atrous convolution with different dilation
rates. Batch normalization is used after each of the parallel convolution layers. Fully connected CRF
is abandoned from Deeplab v3. In Deeplab v3+ [13], ASPP and Encoder-Decoder structure are used.
The Decoder module refines the segmentation results in pixel-level. Deeplab v3+ further explores the
Xception model [16] and applies the depthwise separable convolution [17] to ASPP and the Decoder
module. In PASCAL VOC 2012 test set and Cityscapes datasets, it achieved performance of 89.0% and
82.1% separately.

Superpixel has been commonly used as a preprocessing step for image segmentation since it was
first introduced by Ren et al. [18] in 2003, because it reduces the number of inputs for subsequent
processing steps and adheres well to objects boundaries. It groups pixels into perceptually meaningful
atomic regions, thus can enable feature computing on a meaningful image representation. In the
past decades, a large number of superpixel algorithms have been proposed. Quick shift [19] is a
mode-seeking based clustering algorithm, which has a relatively good boundary adherence. It first
initializes the segmentation using medoid shift [20], then moves each data point in the feature space
to the nearest neighbor that increases the Parzen density estimation [21]. Simple Linear Iterative
Clustering (SLIC) [22] adopts a k-means clustering approach with a distance metric that depends
on both spatial and intensity differences to efficiently generate superpixels. Felzenszwalb [23] is a
graph-based approach used for image segmentation. It performs an agglomerative clustering of pixels
as nodes on a graph such that each superpixel is the minimum spanning tree of the constituent pixels.

Although DeepLab v3+ has achieved good performance in semantic image segmentation, it still
has some shortcomings. One of the main problems is that it adopts DCNN for semantic segmentation,
which consists of strided pooling and convolution layers. They increase receptive field but aggregate
the context information while discarding the boundary information. However, semantic segmentation
needs the exact alignment of class maps and thus, needs the boundary information to be preserved.
To ttackle the challenging problem, this paper presents a novel method to refine the object boundaries
of the segmentation results output from DeepLab v3+, which unites the benefits of DeepLab v3+ with
the superpixel segmentation algorithm-quick shift [19]. The main methods are as follows: (i) Using
DeepLab v3+ to obtain the class-indexed score map of the same size of the input image; (ii) Segmenting
the input image into superpixels by quick shift; (iii) Inputing the output of these two modules into
the category voting module to refine the object boundary of the segmentation result. The proposed
method in this paper improves the semantic segmentation results both qualitatively and quantitatively,
especially on object boundaries. Experiments on the PASCAL VOC 2012 dataset verify the effectiveness
of the proposed method.
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The paper is organized as follows. Section 2 describes the proposed method in detail. Section 3
presents the experimental results of the proposed method on the PASCAL VOC 2012 dataset,
and comparisons with other methods. Section 4 discusses and analyses the experimental results.
Finally, conclusions are drawn in Section 5.

2. Methodology

In this section, a robust framework is proposed for semantic image segmentation. It captures the
class index score map by DeepLab v3+ and segments the input image into superpixels by quick shift.
The object boundary of the segmentation result is refined by a class voting module.

2.1. Motivation

(1) It is hard for DCNNs based semantic segmentation methods to produce semantic segmentation
results with accurate objects boundaries. There are two main reasons. First, the memory of GPU is
limited, so DCNNs should adopt strided pooling and convolution to reduce parameters. Second,
it is difficult to assign labels for pixels on objects boundaries because the cascaded feature maps
generated by DCNNs blur them. In order to precisely segment foreground objects from background,
DCNNs should have the following two properties. First, it should classify objects boundaries precisely.
Second, for pixels on objects boundaries, class score computed for the target class should be close to
class scores of other classes.

As shown in Figure 1, DCNN centers on the red and yellow points of the input image, respectively,
to extract features in their respective receptive fields. At the aeroplane’s boundaries, the image regions
corresponding to the aeroplane and the background pixels have a great overlap, resulting in features
extracted by DCNN are very similar and therefore difficult to classify pixels on aeroplane’s boundaries.

Figure 1. Two image areas processed by DCNNs.

The softmax loss function used for semantic segmentation is often simply formulated as:

loss = −log
exk

∑N
i=0 exi

(1)

where N is the total number of classes, and k is the target class. In the training iteration, DCNNs
minimize loss, i.e., maximize xk. In order to obtain objects boundaries accurately by interpolation,
DCNNs should consider not only class score of the target class but also class scores of other classes.
The loss function aforementioned only tries to maximize class score of the target class, while ignoring
class scores of other classes, so it is difficult for DCNNs to output a proper score for each class.

(2) In an image, a foreground object is often composed of a series of regions. Inside these regions,
its color, lightness and texture have little changes. DCNNs based semantic segmentation methods
directly classify every pixel in the image and have no idea that these regions belong to the same
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object. Figure 2 is a semantic segmentation result output by DeepLab v3+. From it, we can see that
the areas labeled with green color are segmented separately from the regions they should belong to,
which is incorrectly segmented. In order to tackle this problem, we employ a region-based method to
postprocess semantic segmentation results of DeepLab v3+.

Figure 2. An example of DeepLab v3+ incorrectly segmenting areas from regions they should belong
to. (In order to better demonstrate this phenomenon, we overlap the segmentation result of DeepLab
v3+ on the raw image).

2.2. Main Process

Framework of the proposed method is shown in Figure 3. It consists of the following three
modules: (a) DeepLab v3+, (b) superpixel segmentation-quick shift, and (c) Class Voting. In (a), we use
DeepLab v3+ to obtain a class-indexed score map for the input image. In this score map, each pixel in
the input image is marked with an index corresponding to its predicted class. In (b), we use quick shift
algorithm to segment the image into superpixels. It outputs the superpixel index of each pixel in the
image. Then, the outputs from (a) and (b) are fed into (c) to obtain the refined semantic segmentation
results for the input image.

Figure 3. Framework of the proposed method.

2.3. DeepLab v3+ Recap

2.3.1. Architecture

DeepLab v3+ [13] was proposed by Cheng et al. in 2018, which has achieved state-of-the-art
performance in PASCAL VOC 2012 dataset. As shown in Figure 4, DeepLab v3+ is a novel
Encoder-Decoder architecture which employs DeepLab v3 [12] as Encoder module and a simple
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yet effective Decoder module. It applies ResNet-101 as backbone, adopts atrous convolution in
deep layers to enlarge receptive field. After ResNet-101, an ASPP module is on the top of it to
aggregate the multi-scale contextual information. The Decoder concatenates the low-level features from
ResNet-101 with upsampled deep-level multi-scale features extracted from ASPP. Finally, it upsamples
the concatenated feature maps to produce the final semantic segmentation results.

Figure 4. Encoder-Decoder architecture of DeepLab v3+.

2.3.2. Training Details

We implement DeepLab v3+ with PyTorch and experiment it on PASCAL VOC 2012 dataset.
The implemented model using outputstride = 16 during training and evaluation, without using
multi-scale and left-right flipped inputs [13]. The dataset contains 20 foreground object classes and one
background class. It officially consists of 1,464 images in train set and 1449 images in val set. We also
augment the dataset with additional annotations provided by [24], resulting in a total of 10,582 training
images. These 10,582 images are used as the train_aug set to train the model following the training
strategy in DeepLab v3+ [13] and the val set for evaluation.

In DeepLab v3+, it preprocesses input images by resizing and cropping them to fixed size of
513× 513. When computing the value of mIOU, the annotated objects boundaries in ground-truths are
not taken into consideration. Thus, mIOU can not be used to evaluate whether the pixels on objects
boundaries are classified right or not. In order to evaluate the accuracy of the proposed method in
localizing objects boundaries, we compute the value of mIOU of the implemented DeepLab v3+ in
two steps. First, we follow the same training process as in [13] with fixed input image size of 513× 513.
Second, we recompute the value of mIOU with the model trained in the first step, but the inputs of the
model are images of arbitrary sizes and without preprocessing. At the same time, we labeled objects
boundaries in ground-truths as background when computing the value of mIOU. In the first step,
the model we implemented reaches the performance of 78.89% mIOU in the PASCAL VOC 2012 val set,
which is slightly higher than the result (78.85%) shown in [13]. This verifies that our implementation is
right. In the second step, the model achieves the performance of 68.34% mIOU in the PASCAL VOC
2012 val set, which is used for comparison with the proposed method in Section 3.

2.4. Quick Shift

Quick shift [19] is one of the most popular superpixel segmentation algorithms. Its principle is
based on an iterative mode-seeking that identifies modes in a set of data points. A mode is defined as
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the densest location in a certain feature space which is composed of all the data points. Given N data
points x1, x2, . . . , xN ∈ X ⊆ Rd, quick shift first computes Parzen density estimation [21]:

P(xi) =
1
N

N

∑
j=1

k
(

D
(
xi, xj

))
, xi, xj ∈ Rd (2)

where k(x) is the kernel function, which is usually an isotropic Gaussian window. D(xi, xj) is the
distance between data point xi and xj. Then, it moves the center of the kernel window to the nearest
neighbor of xi, in order to extend the search path to the next data point. At which there is an increasing
density P:

yi = arg min
j:P(xj)>P(xi)

D(xi, xj) (3)

When all the data points are connected with one another, a threshold is used to separate modes.
Different clusters of the data points can then be separated.

Quick shift may be used for any feature space, but for the purpose of this paper we restrict it
to 5D feature space to use it for image segmentation. The 5D feature space is consisting of 3D RGB
color information and 2D location information. After computing the Parzen density estimation for
each image pixel, quick shift constructs a tree connecting each pixel to its nearest neighbor that has
higher density value. Then each pixel connects to its closest higher density pixel parent that achieves
the minimum distance. It generates a forest of pixels whose branches are labeled with a distance value.
This specifies a hierarchical segmentation of the image. Superpixels can be identified by applying a
threshold to cut the branches that is larger than it.

We apply quick shift to partition the input image into superpixels, as shown in Figure 5.

(a) (b)

Figure 5. Superpixel segmentations by quick shift. (a) shows raw image, (b) shows quick shift superpixels.

2.5. Class Voting

DeepLab v3+ outputs a class-indexed score map for the input image, each pixel of which is labeled
with an index corresponding to its predicted class. At the same time, superpixels of the image are
obtained by the quick shift algorithm. Each pixel in the image is labeled with a superpixel index. Then,
the total number of pixels belonging to each class in each superpixel are counted. Finally, the Class
Voting module votes on each superpixel to the class which contains the maximum number of pixels in
it. A pseudo-code implementation is shown in Algorithm 1.
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Algorithm 1 classVoting()

Input: classNum: number of classes; clusterNum: number of superpixels segmented by quick shift;

quickshi f t(W, H): output of quick shift; deeplabv3plus(W, H): output of DeepLab v3+;
Output: segment(W, H);

initial clusterStat(i, j) = 0, i = 0, . . . , clusterNum− 1, j = 0, . . . , classNum− 1
initial clusterVote(i) = 0, i = 0, . . . , clusterNum− 1
for i = 0 to W − 1 do

for j = 0 to H − 1 do
clusterStat(quickshi f t(i, j), deeplabv3plus(i, j))+ = 1

end for
end for
clusterVote(i) = max(clusterStat(i, j)), j = 0, . . . , classNum− 1
for i = 0 to W − 1 do

for j = 0 to H − 1 do
segment(i, j) = clusterVote(quickshi f t(i, j))

end for
end for
return segment(W, H);

3. Experiments and Results

3.1. Experimental Design

In order to evaluate the effectiveness of the proposed method, we have conducted the following
experiments: (I) The mIOU value of the proposed method against DeepLab v3+; (II) The superpixel
segmentation algorithm in module (b) of Figure 3 is replaced to demonstrate the superiority of quick
shift against them by SLIC and Felzenszwalb. The experiments are implemented on an NVIDIA GTX
TITAN Xp GPU with 12 GB of memory.

Based on PASCAL VOC 2012 dataset [9], we conducted a large number of experiments to evaluate
the performance of the method in terms of quality and quantity. The qualitative metric is an important
evidence of supporting our claims in an intuitive way. The quantitative metric is more convincing,
which is measured in terms of pixel intersection-over-union averaged(mIOU) across the 21 classes.
The definition of mIOU is as follows:

mIOU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(4)

where k + 1 is the number of classes (including background classes), pij indicates the number pixels in
class i that is classified as class j.

3.2. Qualitative Evaluation

We provide some exemplary results on PASCAL VOC 2012 val set in Figure 6. Note that the
details of the target edges in Figure 6d are significantly improved than Figure 6c, and the segmentation
results in Figure 6c often include parts of the background. In other words, the proposed method can
estimate more accurate objects boundaries than DeepLab v3+, even when the foreground objects are
very small. It can also match the ground-truth more consistently and segments foreground boundaries
more precisely with images that contain foreground objects in complex environments. The results
in Figure 6 implies the effectiveness of the proposed method in localizing objects boundaries when
conducing semantic segmentation tasks.



Symmetry 2020, 12, 427 8 of 11

(a) (b) (c) (d)

Figure 6. Visualized comparison between DeepLab v3+ and the proposed method on the PASCAL
VOC 2012 val set. (a) shows raw images, (b) shows the ground-truths, (c) shows segmentation results
delivered by DeepLab v3+, (d) shows the refined segmentation results obtained from the proposed
method. (For better visualization, we overlap segmentation results on raw images in (c,d).)

3.3. Quantitative Evaluation

For the quantitative evaluation of the proposed method, four groups of experiments conducted:
(1) DeepLab v3+, (2) DeepLab v3+ + SLIC , (3) DeepLab v3+ + Felzenszwalb, and (4) DeepLab v3+ +
quick shift. To simplify ablation study, all methods are trained on VOC 2012 train and tested on VOC
2012 val. Table 1 lists the quantitative results of all the compared methods. The best one is highlighted
in bold. As shown in Table 1, the proposed method achieves higher performance than the others.
To be specific, our proposed method outperforms DeepLab v3+ by 1.26% in the PASCAL VOC 2012
val set. The superpixel segmentation algorithm-quick shift- is superior to SLIC and Felzenszwalb by
1.85% and 0.8%, respectively.
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Table 1. Performance on the PASCAL VOC 2012 val set.

Serial Number Method mIOU

1 DeepLab v3+ 68.34%
2 DeepLab v3+ + SLIC 67.94%
3 DeepLab v3+ + Felzenszwalb 68.65%
4 DeepLab v3+ + quick shift(ours) 69.20%

4. Discussion

4.1. Why Quick Shift Superior to SLIC and Felzenszwalb

When partitioning an image into superpixels, SLIC evenly distribute seed points in the image.
Thus, regions that belong to same object are often force to be divided into different superpixels,
which causes misclassification. As shown in Figure 7, it incorrectly segments the background of sky as
one part of the airplane on its boundaries. We label the wrongly segmented superpixels in Figure 7
with red circles.

(a) (b) (c)

Figure 7. Image segmented using SLIC. (a) shows the raw image, (b) shows applying SLIC on
segmentation results from DeepLab v3+, (c) shows outputs from Class Voting module in Figure 3 by
using SLIC as the superpixel segmentation algorithm. (In order to better explain the question, we
overlap the segmentation result of the target object on the raw image in (b,c).)

Felzenszwalb often oversegments images. As shown in Figure 8, Felzenszwalb partitions the
image into more than thousands of superpixels. In extreme cases, the number of superpixels it produces
is equal to the number of pixels in the image, which makes no improvement over segmentation results
from DeepLab v3+.

(a) (b) (c)

Figure 8. Image segmented using Felzenszwalb. (a) shows applying Felzenszwalb on the raw image,
(b) shows outputs from Class Voting module in Figure 3 by using Felzenszwalb as the superpixel
segmentation algorithm, (c) shows segmentation results from DeepLab v3+. (In order to better explain
the question, we overlap the segmentation result of the target object on the raw image in (b,c)).

Compared with SLIC and Felzenszwalb, quick shift automatically finds the proper number of
clusters and merges similar superpixels, which makes it achieving the best performance.

4.2. The Influence of Parameter σ on Segmentation Results

In Equation (2), we use Gaussian function (as shown in Equation (5)) as the kernel function.
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P(x) =
1

2πσ2N

N

∑
i=0

e
−‖x−xi‖

2

2σ2 (5)

σ is the width of Gaussian kernel. Smaller σ causes the density estimate of pixel xi only calculating
local information, which leads to oversegmentation. Larger σ smooths the density of each location,
which leads to fewer clusters. As shown in Table 2, we have experimented different value of σ on the
PASCAL VOC 2012 train set, and found that 5 is the experimentally optimal one.

Table 2. mIOU with different σ on the PASCAL VOC 2012 train set.

σ mIOU

3 78.07%
5 78.21%
7 77.85%
9 76.98%

5. Conclusions

DCNNs with deep feature representation of the images are driving significant advances in
semantic segmentation. Nonetheless, its drawback is susceptible to interference from segmenting
objects boundaries. Therefore, we propose a novel semantic segmentation algorithm with DCNNs
and quick shift. Compared with DeepLab v3+, the proposed method can localize accurate objects
boundaries, which is meaningful in practical applications, such as object recognition, automatic drive,
etc. Even though the proposed method works very well in most cases, it is still fails since the boundary
of the object is difficult to distinguish from the surrounding background in a dark environment.
In the future work, we will investigate the interplay of DCNNs and superpxiel algorithms to tackle
this problem.
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