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Abstract: This paper studies the in-plane free vibration of axially functionally graded (AFG) circular
arches with non-uniform cross-section. The geometric and material properties of circular arches
with regular polygon cross-section vary symmetrically about the mid-arc along the axial direction in
quadratic polynomial form. The governing differential equations of the motion are derived, and the
symmetric and anti-symmetric boundary conditions of the arches are developed for applying initial
and boundary value problems in the solution method. The computed results agree well with the
results of the finite element software ADINA. The effects of geometrical and material parameters on
the natural frequency and mode shape of AFG circular arches are investigated.

Keywords: free vibration; axially functionally graded (AFG) material; symmetric tapered arch;
symmetric and anti-symmetric boundary conditions; natural frequency; mode shape

1. Introduction

Using certain structural conditions such as boundary conditions makes it easier to analyze complex
structural systems. For symmetric structural analysis such as square plate, only a quarter section
of the structural body from the entire analysis area can be considered if the symmetry conditions
apply. This concept of analysis has been widely used in the finite element method. In this respect,
this study considers a novel structural analyzing method using the symmetry conditions of the
symmetric structures.

Arched member is one of the important units that are commonly used in engineering applications.
The functionally graded materials (FGMs) have become widely used for engineering purposes because
of their advantages over conventional materials [1]. The tapered members work distinctively from the
prismatic member because the tapered cross-section yields effective stress distributions and a strong
coupling between the stress resultants. Understanding the vibration behavior of structural systems
is essential to the design, construction, and maintenance of structures [2]. Considering the research
topics stated above, this paper focuses on the free vibration of tapered arch made of axially FGMs to
apply the symmetric conditions of the structures.

The following studies and their citations include mathematical models and historical reviews
related to topics of this paper. For functionally graded beams/columns, much study has been conducted:
Li [3] studied dynamic behaviors of the prismatic beam, including effects of the rotatory inertia and
shear deformation; Kukla and Rychlewska [4] investigated free vibrations of clamped beams made
of two different FGMs; Elishakoff et al. [5] studied the free vibration of columns with Duncan’s
mode shape by considering a fifth-order polynomial based on the Rayleigh-Ritz method; Rezaiee
and Masoodi [6] investigated exact natural frequencies of the tapered beam-columns; Huang and
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Li [7] investigated a novel approach for analyzing the free vibration of tapered beams; Shahba and
Rajasekaran [8] conducted the stability analysis of tapered beams where the governing equations for
free vibration were solved using the differential transform element method (DTEM); Rajasekaran [9]
studied the natural frequencies of Timoshenko beams using DTEM; and Akgoz and Civalek [10]
studied free vibrations of the tapered rectangular functionally graded microbeam based on the modified
couple stress theory. Chandran and Rajendran [11] and Ranganathan et al. [12] studied the buckling
of columns. On the other hand, Carrera et al. [13] investigated the Layer-Wise (LW) models for the
electro-mechanical analysis of shell-structures with applied symmetry boundary-conditions.

In particular, for functionally graded arches directly related to this study, very little research was
carried out. Malekzadeh et al. [14,15] studied free vibrations of the arch with temperature-dependent
properties which is more applicable to laterally functionally graded arch. For AFG arch, Rajasekaran [16]
investigated the free vibration of the parabolic arch using DTEM; Noori et al. [17] studied forced
vibrations of the parabolic arch using the complementary functions method combined with the Laplace
transform; and Lee and Lee [18] studied the free vibration of uniform circular AFG arch. Most of
previous works, however, have focused on the arches of conventional cross-section (e.g., circle and
rectangle) with homogenous properties in the axial direction. In contrast, the study of arches with
regular polygon cross-section and material inhomogeneity has not reported in literature.

This paper presents differential equations that govern the free vibration of a tapered AFG circular
arch with regular polygon cross-section including the rotatory inertia couple. To calculate natural
frequencies and mode shapes of the arch, the governing equations are solved numerically using the
boundary conditions, i.e., symmetric and anti-symmetric boundary conditions [19], at the mid-arc of
the arch as the initial and boundary value problems. For verification purpose, the predicted natural
frequencies are compared with those of the finite element software ADINA. Parametric studies on
natural frequencies of the arch are extensively discussed and the mode shapes are reported.

The following assumptions were made to formulate the mathematical models: AFG circular
arch is linear elastic, the shear deformation effect is negligible, the deformation is small, and the free
vibration is based on the harmonic motion. In addition, the variable functions of the taper and the
mechanical property of the arch are assumed to be a univariate quadratic polynomial.

2. Problem Formulation

2.1. Configuration of Symmetric Circular Arch

Figure 1a shows the configuration of a symmetric circular arch with radius r and subtended angle
α. The arch axis is defined as a planar structure in polar coordinates (r,θ). Both ends (i.e., the left
end a (θ = 0) and the right end b (θ = α)) are supported by hinged or clamped ends. Since the
shape of the arch is symmetrical, both hinged (H−H) and both clamped (C−C) end conditions are
considered in this study. Afterwards, the end condition of the arch is indicated by ′H−H′ and ′C−C′,
respectively, as described in parentheses. Figure 1b depicts the variable function of the taper and
the mechanical property of arch. The arch cross-section is tapered symmetrically about the mid-arc
c (θ = α/2). The cross-sectional shape is k(≥ 3)-sided regular polygon with a radial depth d defined
as a length measured from the centroid to the vertex. Here, k is the integer side number of the regular
polygon. At both ends, d is represented by da and db(= da), respectively, and at the mid-arc by dc.
Depth d varies symmetrically as a function of θ. As a result, changes of the area A and the moment of
inertia of plane area I are symmetric about the mid-arc. The arch is made of AFGM. The mechanical
properties of the Young’s modulus E and the mass density ρ vary with the polar coordinate θ along the
arch axis. At both ends, Young’s modulus and mass density are represented by (Ea,ρa) and (Eb,ρb),
respectively, and at the mid-arc by (Ec,ρc). It is noted that Eb = Ea and ρb = ρa. Consequently, the
changes in E and ρ are symmetric about the mid-arc. Thus, as described above, all configuration of the
arch is completely symmetric, including the arch curvilinear, the end condition, the variations of the
taper and mechanical property along the axis direction.
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Figure 1. Configuration of symmetric arch: (a) geometry and (b) variable functions of taper and
mechanical property of AFG arch.

When the AFG arch vibrates, the dynamic radial and tangential deflections (amplitudes) w and v
and the dynamic rotation ψ occur at (r,θ), and also dynamic stress resultants of the axial force N, the
shear force Q, and the bending moment M shown in Figure 1a occur at (r,θ).

The variable functions of E and ρ are now defined. The function of Young’s modulus E of AFGM is
arbitrary, such as linear [8,11,13], polynomial [3,5–7,12,18], exponential [4,7,16,17], and periodic [7,12]
functions previously reported in the literature. In this study, the function E is chosen as a quadratic
polynomial based on a single variable θ. It assumes that the function of ρ is the same as that of
E [3–10,18]. To define the quadratic polynomials of E and ρ, the modular ratio m of Ea to Ec (equal to
the density ratio of ρa to ρc) is introduced as:

m =
Ea

Ec

(
=

ρa

ρc

)
(1)

Using Equation (1), the E and ρ at (r,θ) are can be expressed in the quadratic polynomial form:

E = EcFE; ρ = ρcFE (2)

where FE = m1
(
θ2/α2

− θ/α
)
+ m and m1 = 4(m− 1). See FE function (m > 1) in Figure 1b.

Now defined is the variable function d of the tapered cross-section. The taper ratio n is introduced
as a ratio of da to dc, or

n =
da

dc
(3)

The variable function d can be expressed as an arbitrary function of θ. In this study, a quadratic
polynomial function is selected as:

d = dcFd (4)

where Fd = n1
(
θ2/α2

− θ/α
)
+ n, n1 = 4(n− 1) and d with 0 ≤ n < 1 is concave, d with n = 1 is

uniform, and d with n > 1 is convex. See Fd function with 0 ≤ n < 1 in Figure 1b.
Using the function d in Equation (4), the variable functions (A, I) for k-sided regular polygonal

cross-section at (r,θ) are obtained as:

A = c1d2 = c1d2
c F2

d; I = c2d4 = c2d4
c F4

d (5)

where constants c1 and c2 are given as [20]:

c1 = k sin
(
π
k

)
cos

(
π
k

)
; c2 =

k
12

sin
(
π
k

)
cos3

(
π
k

)[
3 + tan2

(
π
k

)]
(6)
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2.2. Governing Differential Equations

When the arch vibrates, the stresses resultants in axial force N, shear force Q and bending moment
M due to the dynamic deformations (w, v, ψ), as shown in Figure 1a, are subjected to the cross-section.
The arch element with mass occurs the radial and tangential inertia forces (Pr, Pt) and the rotatory
inertia couple T. Figure 2 shows a small arch element that is subjected to (N,Q,M) and (Pr,Pt,T). In
this study, free vibration assumes that each dynamic coordinate is a harmonic motion proportional to
sin(ωit). For example, Wθ,t = wθ sin(ωit), where wθ(= w) is the radial amplitude, ωi is the angular
frequency, i(= 1, 2, 3, · · ·) is the mode number and t is the time.
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Using equations
∑

Ft = 0,
∑

Fr = 0 and
∑

M = 0 based on the free body diagram shown in
Figure 2, equilibrium equations are established as follows:

dN
dθ

+ Q + rPt = 0 (7)

dV
dθ
−N + rPr = 0 (8)

1
r

dM
dθ
−Q− T = 0 (9)

The stress resultants (N, M) and the rotation ψ are given by the following equations [16,20]:

N =
EA
r

(
dv
dθ

+ w
)
−

M
r

=
c1d2

c Ec

r
F1

(
dv
dθ

+ w
)
−

M
r

(10)

M = −
EI
r2

(
d2w
dθ2 + w

)
= −

c2d4
c Ec

r2 F2

(
d2w
dθ2 + w

)
(11)

ψ =
1
r

(
dw
dθ
− v

)
(12)

where F1 and F2 are functions of θ defined as F1 = FEF2
d and F2 = FEF4

d.
The inertia forces (Pr, Pt, T) are given by the following equations [21]:

Pr = ρAω2
i w = c1d2

cρcω
2
i F1w (13)

Pt = ρAω2
i v = c1d2

cρcω
2
i F1v (14)
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T = ρIω2
i ψ =

c2d4
cρc

r
ω2

i F2

(
dw
dθ
− v

)
(15)

From Equations (10) and (11), the first derivatives dN/dθ and dM/dθ can be obtained as:

dN
dθ

=
c1d2

c Ec

r

[
dF1

dθ

(
dv
dθ

+ w
)
+ F1

(
d2v
dθ2 +

dw
dθ

)]
+

c2d4
c Ec

r3

[
dF2

dθ

(
d2w
dθ2 + w

)
+ F2

(
d3w
dθ3 +

dw
dθ

)]
(16)

dM
dθ

= −
c2d4

c Ec

r2

[
dF2

dθ

(
d2w
dθ2 + w

)
+ F2

(
d3w
dθ3 +

dw
dθ

)]
(17)

Substituting Equations (15) and (17) into Equation (9) yields the shear force Q as:

Q =
1
r

dM
dθ
−RT = −

c2d4
c Ec

r3

[
dF2

dθ

(
d2w
dθ2 + w

)
+ F2

(
d3w
dθ3 +

dw
dθ

)]
−R

c2d4
cρc

r
ω2

i F2

(
dw
dθ
− v

)
(18)

where the rotatory inertia index R is defined as:

R = 0, if T is excluded (19a)

R = 1, if T is included (19b)

The first derivative dQ/dθ is obtained from Equation (18) as:

dQ
dθ = −

c2d4
c Ec

r3

[
d2F2
dθ2

(
d2w
dθ2 + w

)
+ 2 dF2

dθ

(
d3w
dθ3 + dw

dθ

)
+ F2

(
d4w
dθ4 + d2w

dθ2

)]
− R c2d4

cρc
r ω2

i

[ dF2
dθ

(
dw
dθ − v

)
+ F2

(
d2w
dθ2 −

dv
dθ

)] (20)

Substituting Equations (10), (11), (13), and (20) into Equation (8) yields:

d4w
dθ4 = −

2
F2

dF2
dθ

(
d3w
dθ3 + dw

dθ

)
−

1
F2

d2F2
dθ2

(
d2w
dθ2 + w

)
− 2 d2w

dθ2

−R ρc
Ec

r2ω2
i

[
1

F2

dF2
dθ

(
dw
dθ − v

)
+ d2w

dθ2 −
dv
dθ

]
−

c1r2

c2d2
c

F1
F2

(
dv
dθ + w

)
+

(
c1r4

c2d2
c

ρc
Ec
ω2

i
F1
F2
− 1

)
w

(21)

Combining Equations (7) and (9) with Equations (14)–(17) gives:

d2v
dθ2 = −

dw
dθ

+
c2d2

c
c1

ρc

Ec
ω2

i
F2

F1

(
dw
dθ
− v

)
−

1
F1

dF1

dθ

(
dv
dθ

+ w
)
−
ρc

Ec
r2ω2

i v (22)

To facilitate numerical analysis and get the most generalized results for this kind of problem, the
following system parameters are defined in non-dimensional forms:

δ =
w
r

(23)

δ =
w
r

(24)

µ =
dc

r
(25)

Ci = ωir
√
ρc

Ec
(26)

where (δ,λ) are the non-dimensional radial and tangential deflections, µ is the radial depth ratio,
and Ci is the frequency parameter.
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Using the system parameters of Equations (23)–(26), the differential equations in the dimensional
form, Equations (21) and (22), are transformed into the sixth order dimensionless differential
equations, or

d4δ
dθ4 = −

2
F2

dF2
dθ

(
d3δ
dθ3 +

dδ
dθ

)
−

1
F2

d2F2
dθ2

(
d2δ
dθ2 + δ

)
− 2 d2δ

dθ2

−RC2
i

[
1

F2

dF2
dθ

(
dδ
dθ − λ

)
+ d2δ

dθ2 −
dλ
dθ

]
−

c1
c2µ2

F1
F2

(
dλ
dθ + δ

)
+

(
c1

c2µ2 C2
i

F1
F2
− 1

)
δ

(27)

d2λ

dθ2 = −
dδ
dθ

+
c2µ2

c1
C2

i
F2

F1

(
dδ
dθ
− λ

)
−

1
F1

dF1

dθ

(
dλ
dθ

+ δ

)
−C2

i λ (28)

The first and second derivatives dF1/dθ, dF2/dθ and d2F2/dθ2 in above equations are numerically
approximated using a 5-point stencil [22] (see Appendix A) based on the function of θ previously
defined as F1 = FEF2

d and F2 = FEF4
d.

2.3. Boundary Conditions

Now consider the boundary conditions. At the hinged end (θ = 0 and θ = α), deflections
(w, v) and the bending moment M in Equation (11) are zero. Their dimensionless forms are defined as:

Hinged end (θ = 0 and θ = α): δ = 0; λ = 0;
d2δ

dθ2 = 0 (29)

At the clamped end (θ = 0 and θ = α), the deflections (w, v) and the rotation ψ in Equation (12)
are zero. Their non-dimensional forms are defined as:

Clamped end (θ = 0 and θ = α): δ = 0; λ = 0;
dδ
dθ

= 0 (30)

It is well-known that when the structural system is symmetric, the vibration mode is classified
into two types: the symmetric mode and anti-symmetric mode [19]. Their boundary conditions at the
mid-arc of the arch can be defined by the deflections (w, v) and the bending moment M characterized
in a symmetrical and anti-symmetrical manner. The symmetric and anti-symmetric mode shapes for
(w, v, M) can be depicted in fashions shown in Figure 3, in which an arrow indicates the positive sine
convention in each (w, v, M).
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𝑑𝜃2
(

𝑑2𝛿

𝑑𝜃2
+ 𝛿) − 2

𝑑2𝛿

𝑑𝜃2

− 𝑅𝐶𝑖
2 [

1

𝐹2

𝑑𝐹2

𝑑𝜃
(

𝑑𝛿

𝑑𝜃
− 𝜆) +

𝑑2𝛿

𝑑𝜃2
−

𝑑𝜆

𝑑𝜃
] −

𝑐1

𝑐2𝜇2

𝐹1

𝐹2
(

𝑑𝜆

𝑑𝜃
+ 𝛿)

+ (
𝑐1

𝑐2𝜇2
𝐶𝑖

2
𝐹1

𝐹2
− 1) 𝛿 

(27) 

𝑑2𝜆

𝑑𝜃2
 =  −

𝑑𝛿

𝑑𝜃
+

𝑐2𝜇2

𝑐1
𝐶𝑖

2
𝐹2

𝐹1
(

𝑑𝛿

𝑑𝜃
− 𝜆) −

1

𝐹1

𝑑𝐹1

𝑑𝜃
(

𝑑𝜆

𝑑𝜃
+ 𝛿) − 𝐶𝑖

2𝜆 (28) 
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In symmetric mode, arrow directions defining the directions of (w, v, M) in both ranges of θ < α/2
and θ > α/2 are the same, but in anti-symmetric mode, arrow directions are in the opposite direction.
From Figure 3, it is seen that at the mid-arc, i.e., = α/2, (dw/dθ,v,dM/dθ) are zero for the symmetric
mode and (w,dv/dθ, M) are zero for the anti-symmetric mode, respectively. Referring M in Equation
(11) and using system parameters in Equations (23) and (24), these relationships are defined in the
non-dimensional form as:

Symmetric mode :
dδ
dθ

= 0; λ = 0;
d3δ

dθ3 = 0 (31)

Anti− symmetric mode : δ = 0;
dλ
dθ

= 0;
d2δ

dθ2 = 0 (32)

Alternative boundary conditions that replace d3δ/dθ3 = 0 and d2δ/dθ2 = 0 in Equations (31)
and (32), respectively, derived from the bending moment M can also be derived from the shear force
Q (see Appendix B). To integrate the differential equations, the boundary conditions at the mid-arc
derived in above Equations (31) and (32) can be used to the integral start point as an initial value
problem and used to the integral end point as a boundary value problem (see Table 1 in Section 3).

Table 1. Integration intervals for Runge-Kutta method.

Integration Interval Initial Conditions
(Integration Starting with)

Boundary Conditions
(Integration Ending with)

[a,b]:
(0 ≤ θ ≤ α)

Equation (29) for H−H arch
Equation (30) for C−C arch

Equation (29) for H−H arch
Equation (30) for C−C arch

[a,c]:
(0 ≤ θ ≤ α/2)

Equation (29) for H−H arch
Equation (30) for C−C arch

Equation (31) for symmetric mode
Equation (32) for anti-sym. mode

[c,b]:
(α/2 ≤ θ ≤ α)

Equation (31) for symmetric mode
Equation (32) for anti-sym. mode

Equation (29) for H−H arch
Equation (30) for C−C arch

3. Numerical Methods and Validation

Based on the analysis above, three FORTRAN computer programs were coded to calculate
frequency parameters Ci and their mode shapes (δi,λi). The ‘hinged-hinged (H−H)’ and
‘clamped-clamped (C−C)’ end conditions are considered for a given set of the input parameters
(α, k, m, n, µ) and R (= 0 or 1). The trial eigenvalue method was used to calculate Ci, i.e., eigenvalue
in Equations (27) and (28). The Runge-Kutta method [22], one of the direct integral methods, was
used to calculate (δi,λi) and the determinant search method enhanced by Regula-Falsi method [22]
was used to compute Ci. Two lowest Ci of the symmetric and anti-symmetric frequencies, i.e., totally
four Ci, were calculated. Interested readers may refer to prior studies [18,20,23] dealing with this kind
of numerical method where the trial eigenvalue method using the direct integral method and the
determinant search method were described in detail.

Three integration intervals are applied to perform numerical integration on the differential
equations: Interval [a,b] with 0 ≤ θ ≤ α; interval [a,c] with 0 ≤ θ ≤ α/2; and interval [c,b] with
α/2 ≤ θ ≤ α, shown in Table 1. Here, the interval [a,b] is the classical interval commonly used
for free vibration analyses involving the arch structure. The intervals [a,c] and [c,b] are adopted in
this study, but not yet reported in the literature. In Table 1, the integration starting with the initial
conditions and the integration ending with the boundary conditions are tabulated in detail with the
boundary conditions in Equations (29)–(32). Note that the last boundary conditions in Equations (31)
and (32) can be replaced by the alternative boundary conditions presented in Appendix B.
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It is important to choose the suitable step size ∆θ in the Runge-Kutta scheme prior to integrating
differential equations. The ∆θ is calculated using the following equation for a given number of dividing
elements nd against the subtended angle α.

∆θ =
α
nd

(33)

The convergence analysis was performed on nd and the results are shown in Figure 4 where the
input arch parameters are presented. One can see that Ci solution with nd = 10 converges to a solution
with nd = 200 with a convergence rate of 99.99% (e.g., 0.89097/0.89100 = 0.9999), as shown in the first
symmetric frequency Cs,1. All computations were carried out on a PC for the two lowest symmetric
and anti-symmetric frequencies, i.e., four frequencies Ci, with nd = 50.
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The numerical results of Ci computed from the three integration intervals of [a,b], [a,c], and [c,b]
shown in Table 1 are compared in Table 2, where the input arch parameters are presented. In Table 2,
the classification of the predicted mode shapes (e.g., symmetric S1 and anti-symmetric A2, etc.) is
presented. All predictions Ci calculated in these three intervals are exactly the same as each other,
including symmetric and anti-symmetric mode distinctions. This comparison demonstrates that the
governing equations and numerical methods, particularly the boundary conditions of symmetric and
anti-symmetric in the mid-arc developed herein, are correct.

For validation purposes, the predicted natural frequencies fi in Hz were compared to those obtained
from the finite element software ADINA (Table 3). The input arch parameters in the dimensional form
are: r = 1 m, α = π/3, k = 4 (square), da = 0.06 m, dc = 0.05 m and R = 1. The AFGM is
graded from the pure aluminum Al

(
Ea = 70 GPa, ρa = 2700kg/m3

)
at the ends a and b and the

pure zirconia ZrO2
(
Ec = 140 GPa, ρc = 5400kg/m3

)
at the mid-arc c. From these arch parameters in

the dimensional form, the dimensionless parameters are computed as m = 0.5, n = 1.2 and µ = 0.05.
Based on the predicted Ci value, fi is obtained from Equation (26) as:

fi =
ωi
2π

=
Ci

2πr

√
Ec

ρc
= 810.38Ci Hz (34)
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Table 2. Comparison of Ci by integration interval.

Integration Interval i
Frequency Parameter Ci *

H−H C−C

[a,b]:
(0 ≤ θ ≤ α)

1 0.72811 0.90140

2 0.89097 1.08712

3 1.73489 2.27468

4 2.91955 3.16173

[a,c]:
(0 ≤ θ ≤ α/2)

1 0.72811 (A1) ** 0.90140 (S1)

2 0.89097 (S1) 1.08712 (A1)

3 1.73489 (S2) 2.27468 (S2)

4 2.91955 (A2) 3.16173 (A2)

[c,b]:
(α/2 ≤ θ ≤ α)

1 0.72811 (A1) 0.90140 (S1)

2 0.89097 (S1) 1.08712 (A1)

3 1.73489 (S2) 2.27468 (S2)

4 2.91955 (A2) 3.16173 (A2)

* α = π/3, k = 4, m = 0.5, n = 1.2, µ = 0.05 and R = 1. ** Letters S and A represent symmetric and
anti-symmetric modes. Subscripts 1 and 2 indicate the first and second modes.

Table 3. Comparison of natural frequencies fi between ADINA and this study.

End Condition Data Source
Natural Frequency fi * in Hz

i = 1 i = 2 i = 3 i = 4

H−H
ADINA 585.1 712.4 1391.4 2329.0

This study 590.1 (A1) 722.0 (S1) 1405.9 (S2) 2365.9 (A2)

C−C
ADINA 722.7 893.4 1869.7 2534.1

This study 730.5 (S1) 881.0 (A1) 1843.4 (S2) 2562.2 (A2)

* See text for arch parameters.

The predicted fi shown in Table 3 are very consistent with the results of ADINA within a 2% error.
This comparison serves to verify theories, particularly the symmetric and anti-symmetric boundary
conditions at the mid-arc, and numerical methods developed in this study.

4. Numerical Analysis and Discussion

Parametric studies of the frequency parameter Ci and its mode shape was carried out and the
results are discussed extensively. Hereafter, all numerical calculations were performed using the
integration interval of [a,c]. The classification of mode shape is shown in parentheses as (S) for
symmetric and (A) for anti-symmetric mode in Tables and Figures.

A selected analysis was performed to analyze effect of rotatory inertia (R) on Ci. Representative
results are listed in Table 4 in which the following conclusions are drawn: (1) Ci is always lower with
rotatory inertia (R = 1) than without rotatory inertia (R = 0) as intuitive based on the conventional
arch analysis; (2) the frequency reduction is magnified by a higher mode i and larger depth ratio µ;
and (3) the rotatory inertia decreases the frequency by 1% or less for i = 1 , 2 and by 2% or less for
i = 3, 4, respectively.



Symmetry 2020, 12, 417 10 of 15

Table 4. Effect of rotatory inertia on Ci.

End
Condition

µ R
Frequency Parameter Ci *

i = 1 i = 2 i = 3 i = 4

H−H
0.03

0 0.44048 0.81092 1.15103 1.84466

1 0.43935 0.80927 1.14529 1.82369

0.05
0 0.73329 0.89268 1.76529 2.98741

1 0.72811 0.89097 1.73489 2.91955

C−C
0.03

0 0.65921 0.82199 1.44350 2.27462

1 0.65723 0.82087 1.43409 2.24758

0.05
0 0.90356 1.09609 2.31865 3.17333

1 0.90140 1.08712 2.27468 3.16173

* α = π/3, k = 4, m = 0.5 and n = 1.2.

Table 5 shows the effect of side number k on Ci. The Ci with larger k becomes larger and converges
to Ci with k = ∞ (circular cross-section). This is because the area A and the second moment of plan
area I with smaller k are smaller, even though the radial depths d are the same.

Table 5. Effect of side number k on Ci.

End Condition k
Frequency Parameter Ci *

i = 1 i = 2 i = 3 i = 4

H−H

3 0.63196 0.87780 1.52518 2.58210

4 0.72811 0.89097 1.73489 2.91955

5 0.78128 0.89662 1.85213 3.06196

∞ 0.88782 0.90629 2.08779 3.18601

C−C

3 0.87755 0.94428 1.99110 3.04311

4 0.90140 1.08712 2.27468 3.16173

5 0.91474 1.16592 2.43141 3.18379

∞ 0.94248 1.32339 2.74430 3.20598

* α = π/3, m = 0.5, n = 1.2, µ = 0.05 and R = 1.

The numerical results with the rotatory inertia index R = 1 of the parametric analysis are shown
in the frequencies curves of Figures 5–9. The considered system parameters of the end condition (H−H
and C−C), subtended angle α, integer side number k(≥ 3), modular (also density) ratio m, taper ratio
n, and radial depth ratio µ are given in the respective figure. The numerical results are represented for
the four lowest Ci, i.e., two symmetric and two anti-symmetric modes. In addition, in Figures 5–9, the
frequency curves from lower mode number i to higher i are presented from bottom to top.

Figure 5 shows Ci versus m curves. It is observed that Ci increases as m increases except for the
second anti-symmetric frequency CA,2 of C−C arch. The increasing and decreasing rates of Ci to m is
very moderate, not sensitive, so that the effect of m on Ci is very minor, especially negligible in the
domain of m > 0.5.



Symmetry 2020, 12, 417 11 of 15

Symmetry 2020, 12, x FOR PEER REVIEW 10 of 15 

 

1 0.90140 1.08712 2.27468 3.16173 

* 𝛼 =  𝜋 3⁄ , 𝑘 =  4, 𝑚 =  0.5 and 𝑛 =  1.2 

Table 5 shows the effect of side number 𝑘 on 𝐶𝑖 . The 𝐶𝑖  with larger 𝑘 becomes larger and 

converges to 𝐶𝑖  with 𝑘 =  ∞ (circular cross-section). This is because the area 𝐴 and the second 

moment of plan area 𝐼 with smaller 𝑘 are smaller, even though the radial depths 𝑑 are the same. 

Table 5. Effect of side number 𝑘 on 𝐶𝑖 . 

End Condition 𝒌 
Frequency Parameter 𝑪𝒊 * 

𝒊 =  𝟏 𝒊 =  𝟐 𝒊 =  𝟑 𝒊 =  𝟒 

H − H 

3 0.63196 0.87780 1.52518 2.58210 

4 0.72811 0.89097 1.73489 2.91955 

5 0.78128 0.89662 1.85213 3.06196 

∞ 0.88782 0.90629 2.08779 3.18601 

C − C 

3 0.87755 0.94428 1.99110 3.04311 

4 0.90140 1.08712 2.27468 3.16173 

5 0.91474 1.16592 2.43141 3.18379 

∞ 0.94248 1.32339 2.74430 3.20598 

* 𝛼 =  𝜋 3⁄ , 𝑚 =  0.5, 𝑛 =  1.2, 𝜇 =  0.05 and 𝑅 =  1 

The numerical results with the rotatory inertia index 𝑅 =  1 of the parametric analysis are 

shown in the frequencies curves of Figures 5–9. The considered system parameters of the end 

condition ( H − H  and C − C ), subtended angle 𝛼 , integer side number 𝑘(≥ 3),  modular (also 

density) ratio 𝑚 , taper ratio 𝑛, and radial depth ratio 𝜇  are given in the respective figure. The 

numerical results are represented for the four lowest 𝐶𝑖, i.e., two symmetric and two anti-symmetric 

modes. In addition, in Figures 5–9, the frequency curves from lower mode number 𝑖 to higher 𝑖 are 

presented from bottom to top. 

Figure 5 shows 𝐶𝑖 versus 𝑚 curves. It is observed that 𝐶𝑖 increases as 𝑚 increases except for 

the second anti-symmetric frequency 𝐶𝐴,2 of C − C arch. The increasing and decreasing rates of 𝐶𝑖 

to 𝑚 is very moderate, not sensitive, so that the effect of 𝑚 on 𝐶𝑖 is very minor, especially negligible 

in the domain of 𝑚 >  0.5. 

  

Figure 5. Frequency parameter 𝐶𝑖 versus modular ratio 𝑚 curves. 
Figure 5. Frequency parameter Ci versus modular ratio m curves.

Symmetry 2020, 12, x FOR PEER REVIEW 11 of 15 

 

Figure 6 shows frequency curves for 𝐶𝑖 versus 𝑛, where 𝐶𝑖 generally increases as 𝑛 increases 

for about 𝑛 >  0.5. However, for some of the frequency curves, 𝐶𝑖 decreases and reaches a lowest 

coordinates (𝑛, 𝐶𝑖) and increases as 𝑛 increases for 𝑛 <  0.5. The frequency curves in the symmetric 

and anti-symmetric mode intersect each other at the coordinates marked ▲. This implies that at a 

single taper ratio 𝑛, there exists a double eigenvalue 𝐶𝑖  (i.e., the symmetric and anti-symmetric 

frequency parameters 𝐶𝑖) . For example,, double eigenvalues 𝐶𝑖  exist at coordinates of 

(2.51,0.94391)  for H − H  arch and (0.700,0.83486)  for C − C  arch marked ▲. At this cross-

coordinate, a mode transition occurs, which changes the mode shape from symmetric to anti-

symmetric mode, and vice versa [18]. For example, in Figure 6a of H − H  arch, in the domain 

immediately preceding (2.51,0.94391), denoted by ▲, 𝐶1 is anti-symmetric and 𝐶2 is symmetric, 

whereas in the domain immediately behind it, the mode shape order is reversed. Particularly, 𝐶𝑖 

values, approaching to 0 at 𝑛 =  0.215 marked by ■, demonstrate that the arch with 𝑛 <  0.215 is 

unstable and buckles due to its self-weight without external loads or excitations. It is also observed 

in this figure that as the value of 𝑛 increases, the frequencies for C-C arches are generally higher 

than those for H-H arches. 

  

Figure 6. Frequency parameter 𝐶𝑖 versus taper ratio 𝑛 curves. 

Figure 7 shows the frequency curves for 𝐶𝑖 versus 𝜇, where 𝐶𝑖 increases as 𝜇 increases. The 

frequency curves of symmetric and anti-symmetric mode intersect each other at the coordinates 

marked ▲ as previously described in Figure 6. The frequencies for C-C arch are generally higher 

than those for H-H arches, when the value of 𝜇 are higher. 

Figure 6. Frequency parameter Ci versus taper ratio n curves.Symmetry 2020, 12, x FOR PEER REVIEW 12 of 15 

 

  

Figure 7. Frequency parameter 𝐶𝑖 versus radial depth ratio 𝜇 curves. 

Figure 8 shows 𝐶𝑖  versus 𝛼 curves. The 𝐶𝑖  decreases as 𝛼 increases and the smaller 𝛼, the 

steeper the rate of decrease. The frequency curves of symmetric and anti-symmetric mode intersect 

each other at the coordinates marked example ▲ as previously described in Figure 6. 

  

Figure 8. Frequency parameter 𝐶𝑖 versus subtended angle 𝛼 curves. 

Figure 9 shows typical examples of the mode shapes, in which the mode shapes are classified 

into symmetric and anti-symmetric mode. The deflections (𝛿, 𝜆) were initially calculated separately, 

but combined in a vector quantity, resulting in a deformed axis (i.e., a mode shape). In these mode 

shapes, the characteristics of the symmetric and anti-symmetric mode shapes are well depicted, 

which is represented in the conceptual diagram in Figure 3. This kind of mode shape describes the 

relative amplitude and the locations of maximum amplitude and nodal point, which is one of the 

most important data for monitoring the soundness of the arch in service. 

Figure 7. Frequency parameter Ci versus radial depth ratio µ curves.



Symmetry 2020, 12, 417 12 of 15

Symmetry 2020, 12, x FOR PEER REVIEW 12 of 15 

 

  

Figure 7. Frequency parameter 𝐶𝑖 versus radial depth ratio 𝜇 curves. 

Figure 8 shows 𝐶𝑖  versus 𝛼 curves. The 𝐶𝑖  decreases as 𝛼 increases and the smaller 𝛼, the 

steeper the rate of decrease. The frequency curves of symmetric and anti-symmetric mode intersect 

each other at the coordinates marked example ▲ as previously described in Figure 6. 

  

Figure 8. Frequency parameter 𝐶𝑖 versus subtended angle 𝛼 curves. 

Figure 9 shows typical examples of the mode shapes, in which the mode shapes are classified 

into symmetric and anti-symmetric mode. The deflections (𝛿, 𝜆) were initially calculated separately, 

but combined in a vector quantity, resulting in a deformed axis (i.e., a mode shape). In these mode 

shapes, the characteristics of the symmetric and anti-symmetric mode shapes are well depicted, 

which is represented in the conceptual diagram in Figure 3. This kind of mode shape describes the 

relative amplitude and the locations of maximum amplitude and nodal point, which is one of the 

most important data for monitoring the soundness of the arch in service. 

Figure 8. Frequency parameter Ci versus subtended angle α curves.Symmetry 2020, 12, x FOR PEER REVIEW 13 of 15 

 

 

Figure 9. Example of mode shapes for 𝛼 =  𝜋 3⁄ , 𝑘 =  4, 𝑚 =  0.5, 𝑛 =  1.2, 𝜇 =  0.05 and 𝑅 =  1. 

5. Concluding Remarks 

This study focused on the free vibration of the symmetric tapered circular arch made of AFGMs. 

Based on the dynamic equilibrium equations for an arch element, the sixth order ordinary differential 

equations governing the free vibration of such arch were derived. In particular, the symmetric and 

anti-symmetric boundary conditions at the mid-arc of the arch, not yet covered in the literature, are 

derived. For mathematical formulation, the quadratic polynomials are chosen as both taper and 

mechanical property functions. The trial eigenvalue method was used to solve these differential 

equations: the direct integral method of the Runge-Kutta method was used to compute the mode 

shapes, and the determinant search method enhanced by the Regula-Falsi method was used to 

compute the eigenvalues, i.e., natural frequencies. In particular, to adopt the boundary conditions, 

three integration intervals (the main concern of this study) were used: (a) from the left end (𝜃 =  0) 

to the right end (𝜃 =  𝛼), (b) from the left end (𝜃 =  0) to the mid-arc (𝜃 =  𝛼/2), and (c) from the 

mid-arc (𝜃 =  𝛼/2) to the right end (𝜃 =  𝛼). The frequencies predicted in this study are in good 

agreement with those from the finite element software ADINA. The two lowest frequencies of the 

symmetric and anti-symmetric frequencies (i.e., totally four frequencies) were calculated. Based on 

the numerical experiments of this study, parametric studies on the frequencies and mode shapes are 

extensively discussed. 

Author Contributions: J.K.L. proposed the idea, derived the governing equations, and drafted the paper; B.K.L. 

coded the computer programs, obtained the calculations, and assisted the writing of the paper. 

Funding: This research was funded by the 2019 Research Fund of the University of Seoul. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

The first and second derivatives of a function 𝑓(𝑥)  of a real variable at a point 𝑥  can be 

approximated using a 5-point stencil as follows [22]. 

𝑓′(𝑥)  =  
−𝑓(𝑥 + 2ℎ) + 8𝑓(𝑥 + ℎ) − 8𝑓(𝑥 − ℎ) + 𝑓(𝑥 − 2ℎ)

12ℎ
 (A1) 

𝑓′′(𝑥)  =  
−𝑓(𝑥 + 2ℎ) + 16𝑓(𝑥 + ℎ) − 30𝑓(𝑥) + 16𝑓(𝑥 − ℎ) − 𝑓(𝑥 − 2ℎ)

12ℎ2
 (A2) 

Figure 9. Example of mode shapes for α = π/3, k = 4, m = 0.5, n = 1.2, µ = 0.05 and R = 1.

Figure 6 shows frequency curves for Ci versus n, where Ci generally increases as n increases
for about n > 0.5. However, for some of the frequency curves, Ci decreases and reaches a lowest
coordinates (n, Ci) and increases as n increases for n < 0.5. The frequency curves in the symmetric and
anti-symmetric mode intersect each other at the coordinates marked . This implies that at a single
taper ratio n, there exists a double eigenvalue Ci (i.e., the symmetric and anti-symmetric frequency
parameters Ci). For example, double eigenvalues Ci exist at coordinates of (2.51, 0.94391) for H−H
arch and (0.700, 0.83486) for C−C arch marked N. At this cross-coordinate, a mode transition occurs,
which changes the mode shape from symmetric to anti-symmetric mode, and vice versa [18]. For
example, in Figure 6a of H−H arch, in the domain immediately preceding (2.51, 0.94391), denoted
by N, C1 is anti-symmetric and C2 is symmetric, whereas in the domain immediately behind it, the
mode shape order is reversed. Particularly, Ci values, approaching to 0 at n = 0.215 marked by
�, demonstrate that the arch with n < 0.215 is unstable and buckles due to its self-weight without
external loads or excitations. It is also observed in this figure that as the value of n increases, the
frequencies for C-C arches are generally higher than those for H-H arches.
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Figure 7 shows the frequency curves for Ci versus µ, where Ci increases as µ increases. The
frequency curves of symmetric and anti-symmetric mode intersect each other at the coordinates marked
N as previously described in Figure 6. The frequencies for C-C arch are generally higher than those for
H-H arches, when the value of µ are higher.

Figure 8 shows Ci versus α curves. The Ci decreases as α increases and the smaller α, the steeper
the rate of decrease. The frequency curves of symmetric and anti-symmetric mode intersect each other
at the coordinates marked example N as previously described in Figure 6.

Figure 9 shows typical examples of the mode shapes, in which the mode shapes are classified
into symmetric and anti-symmetric mode. The deflections (δ,λ) were initially calculated separately,
but combined in a vector quantity, resulting in a deformed axis (i.e., a mode shape). In these mode
shapes, the characteristics of the symmetric and anti-symmetric mode shapes are well depicted, which
is represented in the conceptual diagram in Figure 3. This kind of mode shape describes the relative
amplitude and the locations of maximum amplitude and nodal point, which is one of the most
important data for monitoring the soundness of the arch in service.

5. Concluding Remarks

This study focused on the free vibration of the symmetric tapered circular arch made of AFGMs.
Based on the dynamic equilibrium equations for an arch element, the sixth order ordinary differential
equations governing the free vibration of such arch were derived. In particular, the symmetric and
anti-symmetric boundary conditions at the mid-arc of the arch, not yet covered in the literature, are
derived. For mathematical formulation, the quadratic polynomials are chosen as both taper and
mechanical property functions. The trial eigenvalue method was used to solve these differential
equations: the direct integral method of the Runge-Kutta method was used to compute the mode
shapes, and the determinant search method enhanced by the Regula-Falsi method was used to compute
the eigenvalues, i.e., natural frequencies. In particular, to adopt the boundary conditions, three
integration intervals (the main concern of this study) were used: (a) from the left end (θ = 0) to
the right end (θ = α), (b) from the left end (θ = 0) to the mid-arc (θ = α/2), and (c) from the
mid-arc (θ = α/2) to the right end (θ = α). The frequencies predicted in this study are in good
agreement with those from the finite element software ADINA. The two lowest frequencies of the
symmetric and anti-symmetric frequencies (i.e., totally four frequencies) were calculated. Based on
the numerical experiments of this study, parametric studies on the frequencies and mode shapes are
extensively discussed.
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coded the computer programs, obtained the calculations, and assisted the writing of the paper. All authors have
read and agreed to the published version of the manuscript.
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Appendix A

The first and second derivatives of a function f (x) of a real variable at a point x can be approximated
using a 5-point stencil as follows [22].

f ′(x) =
− f (x + 2h) + 8 f (x + h) − 8 f (x− h) + f (x− 2h)

12h
(A1)

f ′′ (x) =
− f (x + 2h) + 16 f (x + h) − 30 f (x) + 16 f (x− h) − f (x− 2h)

12h2 (A2)

where h is the spacing between points in the one-dimensional grid. Note that the central difference
stencils with a point of 3-, 7-, 9-, etc., as well as a 5-point stencil adopted in this study are also available.
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Appendix B

For the mode shape with respect to Q shown in Figure A1, the boundary conditions at the mid-arc
can be obtained as:
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