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Abstract: With the ever-growing technology development, high-tech products such as mobile
phones, computers, electromagnetic devices and smart devices are facing high design and production
modification requirements with relatively shorter life cycles. For instance, every forthcoming smart
phone goes out of production in a shorter period after its launch, followed by its next generation.
The design of high-tech products requires high investments in smart and automated manufacturing
technology to ensure higher production efficiency. For high-tech products with short life spans,
the manufacturing performance-quality variable is an important design parameter that affects system
reliability, production efficiency and manufacturing costs. Major performance-quality factors of a
manufacturing system which affect productivity and reliability of the manufacturing process are
discussed in this research. The study investigates an integrated smart production maintenance
model under stochastic manufacturing reliability for technology dependent demand and variable
production rate. The smart unit production cost is a function of manufacturing reliability and
controllable production rate, as a manufacturing system can be operated at different production
rates within designed limits µ ε [µmin, µmax]. Manufacturing reliability is increased through
investment in smart manufacturing technology and resources. The integrated smart production
maintenance model is formulated under general failure and repair time distributions and the optimal
production maintenance policy is investigated under specific failure and repair time distributions.
A mathematical model is developed to optimize the manufacturing quality-performance parameter,
variable production rate, per unit technology investment and production lot size. The total cost
function is optimized through the Khun–Tucker method. The mathematical model is also validated
with numerical analysis, comparative study, and sensitivity analysis for model key parameters.

Keywords: smart production system; performance-quality variable; manufacturing unreliability;
variable production rate; integrated smart production maintenance policy; technology-dependent
demand rate

1. Introduction

In today’s highly volatile and competitive economic situation, the demand rate of many products
is not constant, especially for high-tech consumer electronic products. The demand rate for high-tech
products is changing, as technology is evolving rapidly. High-tech products have some prominent
characteristics of extensive customization, progressing need of globalization, quicker response time and
shorter product life cycle. For high-tech products such as consumer electronics, personal computers,
digital cameras, video games and communication devices; component cost decreases with time due to
rapid technological innovation. Therefore, it is significantly practical for an organization to develop
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production inventory policies based on demand variability. The role of reliability and productivity
management is of high importance for industries in which capital cost and production equipment
cost is very high. For instance, in the semiconductor manufacturing industry, high capacity costs,
long capacity lead times, high obsolescence rates and high demand volatility is a big financial burden.
The production cost of a new semiconductor fab ranges from $1–$4 billion whereas the the price for
a single machine required to manufacture it costs $4–$5 million. The classic economic production
quantity (EPQ) models have been broadly studied for production inventory and replenishment policies
to address real life situations. In every manufacturing industry, two influential parameters on the
firm’s profits are manufacturing reliability and variable demand of the customers. However, existing
production inventory models implicitly assume the production process quality and production capacity
as always perfect. Whereas due to process deterioration, production system failures, machine repairs,
and unskilled lobar; uncertain production capacity is inevitable in real-life manufacturing systems.
The manufacturing process is a continuous operation for which performance-quality depends on
the design variable of the manufacturing system. The design variable of the production system,
also called a reliability parameter, depends on manufacturing process quality factors, for instance,
resource and technology limitations, work-ability, efficiency, and design complexities. Unreliable
manufacturing system faces random machine breakdowns and the production process is interrupted.
As a result of this, classical economic manufacturing quantity (EMQ) and economic production quantity
models fail to accomplish their goals effectively. Therefore, the uncertain production capacity and
unreliable production process are a significant restriction on optimum production inventory planning.
The rapid growth of information and technology has revolutionized production technologies with
time. The ever-growing product innovation urges the need for smart production inventory profit/loss
models with investment in automated smart manufacturing technology to investigate the trade-off
in process-quality improvements, productivity and system costs. A smart production system offers
more efficient joint human–machine work ability and productivity to produce complex products
at controllable rates. Additive manufacturing systems are vastly investigated in research where
more production control is handled through machines than human resources. A smart production
system, however, is intended for more productive human–machine interactions to expand production
management. The productivity of the smart production system is affected by interactions between
automated smart machine and skilled labor [1].

The main benefit of an automated smart production system is the control of production rate with
precise accuracy and flexibility. As, along with the reliability parameter (system design variable),
the flexibility parameter (design production rate) also affects the productivity of a manufacturing
system. The productivity (the mean output per unit of time) of a manufacturing system can be
influenced by improving the performance-quality/process-quality, or by varying the rate of processing
work done. Early works on production inventory control mainly focused on fixed production rate
system, whereas more recent research has analyzed production systems with flexible and controllable
production rates. Varying the production rate gives production managers flexibility in material
flow planning, avoiding shortages and inventory build-ups at bottlenecks. In this regard, Ref. [2]
investigated energy consumption and production costs under controllable production rates for an
automated production control system. The study suggests that smart production system offers better
production strategy with controllable production rate rather than conventional systems. This work is
further extended to the case of complex multi-item smart production system by [3]. The bio-drugs
industry is another example of high-tech products which require very high volumes of manufacturing
capacity. However, manufacturing capacity is always in shortage due to the lack of a specific technology
or process in the market [4]. Therefore, the rapid technology development leads to shorter product
life cycles, and also lead to higher obsolescence rates of produced goods and increased setup costs
for manufacturing equipment. The degree of external competition, competitive intensity of market,
and internal organizational factors require manufacturers to adopt a flexible strategy so they can
improvise to put their best foot ahead. Since the retail market environment changes continuously,
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the manufacturer’s production inventory strategy must be coordinated accordingly. Brand image
and manufacturing system productivity are two principal factors contributing to the growth of any
business. To compensate uncertain production capacity due to manufacturing unreliability, or lost
sales during the downtime period and inconvenience of delay shipments, the manufacturing system
considers a controllable production rate. This study examines an unreliable manufacturing system for
a technology varying demand rate, where the performance-quality of the manufacturing process is
enhanced with investment in advanced technology and varying production capacity. In this research
model, we jointly make strategic decisions on technology development for finished products as well
as their manufacturing process. Moreover, we develop an integrated smart production-maintenance
policy based on demand variability and manufacturing unreliability. In practice, this can be attained in
various ways, for instance, through labor training in advanced skills, specialized equipment acquisition,
and manufacturing procedural changes. Several benefits can be accomplished along with decreasing
the downtime cost, improved quality, and flexibility of the manufacturing system, lower costs in repair
and replacement activities, and efficient production capacity. Therefore, there is need to investigate
the technology capacity planning under specific operational conditions which involve reliability and
productivity aspects of manufacturing systems.

The remainder of this paper is categorized as follows: Section 2 provides a comprehensive
overview of the related literature; Section 3 addresses problem formulation; Section 4 develops
mathematical modeling of the proposed system; Section 5 illustrates the developed mathematical
model with numerical experiment and sensitivity analysis of model parameters; finally, Section 6
concludes the study and suggests some future extensions.

2. Literature Review

This section provides a broad overview of existing literature in research fields of this paper.
The study deals with several streams of research which include manufacturing unreliability, variable
demand rate, and variable production rate. Several research contributions are discussed in this paper as
given in Table 1. The first stream of research addresses the impact of variable production rates on unit
smart production cost of an unreliable manufacturing system. The present literature in this area only
studies the impact of change in production rates on unit smart production cost, and neglects the effect
of variable production rates on system production capacity and costs related to maintenance/handling
of manufacturing system in the case of abrupt changes. The second area of interest in this paper
is handling when there is an uncertain production capacity of the manufacturer because of system
unreliability and proposes an integrated smart production maintenance policy. The research in this
direction only considers variable production rates infrequently and also ignores the costs generated
with maintaining inventories. This study examines the impact of production rate on smart production,
process quality, maintenance and performance-quality up-gradation costs. Hence, we propose that the
performance quality of a manufacturing system defines the need of a required maintenance policy and
to attain higher productivity, reliability-based maintenance should be incorporated by managers in
production inventory planning problems. The next direction of this research studies the influence of
variable demand rate with unreliability in production planning, where a manufacturer with uncertain
production capacity has to fulfill the technology-dependent market demand. Accordingly, we study
the influence of demand variability, variable production rate, and technology investment in automated
smart production inventory policies.
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Table 1. Research contributions in the relevant fields of this paper.

Author(s) Manufacturing Repair Production Unit Production Technology Demand
Reliability Rate Rate Cost Development Rate

Chakraborty et al. [5] random random constant NA NA constant
Asghar et al. [6] stochastic stochastic variable (µ, λ) (µ, λ) constant
Marchi et al. [7] random NA variable (µ) NA constant
Sarkar et al. [3] random NA variable (µ) (λ) constant
Lopes, R. [8] random constant constant NA NA constant
Marchi et al. [9] imperfect constant variable (µ) NA constant
Chakraborty et al. [10] random random constant NA NA constant
Kang et al. [11] age dependent constant random NA NA constant
Bhunia et al. [12] flexible (product NA variable (µ) NA variable (selling price

quality based) + marketing cost)
Ouaret et al. [13] random constant flexible NA NA random
Bag et al. [14] variable NA constant constant NA fuzzy random
Aldurgam et al. [15] NA NA variable (µ) NA stochastic
Ouaret et al. [16] random constant variable NA NA random
Manna et al. [17] production rate NA variable (µ) NA advertisement

dependent dependent
Zhu et al. [18] NA NA constant (φ) NA (product reliability

+ warranty period)
Shah et al. [19] imperfect NA variable (λ, µ) NA time and effort

dependent
Khara et al. [20] imperfect NA constant (λ, T, φ) (λ, T) selling price + φ

dependent
Shah et al. [21] imperfect NA constant (λ, T) (λ, T) (φ, I(t), selling price)
Ethem Çanakoğlu, Taner Bilgiç. [22] NA NA NA NA fixed technology dependent

This study Stochastic Stochastic Variable (µ, λ) (λ) Technology
dependent dependent dependent

(λ) refers to manufacturing reliability. (µ, λ) refers to (production rate + manufacturing reliability) dependent. (φ) is used for product reliability. I(t) is used for product inventory
level. NA refers to not-applicable..
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2.1. Manufacturing Unreliability

As the manufacturing systems are evolving to be more sophisticated and complex,
the manufacturing process also observes disruptions due to reliability and quality factors.
Manufacturing reliability-based maintenance policy provides better guidance for production managers
to attain high standards of productivity and maintenance at their operating systems. Generally,
the type and amount of maintenance activities applied to production machines depend on the age
of components and production system technology. OPT (optimum production technology) and
maintenance policy for production systems play a vital role in production inventory planning and
control policies. The unreliable production system has been investigated in several existing inventory
models. The effect of process deterioration on the EMQ model is first discussed by [23]. Porteus [24]
investigated the relationship between lot size and quality for an imperfect production process. They
studied setup cost optimization and investment in process quality improvement. The study was
further extended by [25], with an arbitrary time distribution of the process. A one-machine one-part
type problem with machine failure is discussed in [26]. A multiple-machine one-part type problem
is investigated by [27], with the steady-state probability distribution of failures. The steady-state
distributions of the inventory level were further investigated in [28]. Where failure and repair
rate follows exponential distribution for a compound Poisson process. Boukas and Haurie [29]
extended the case where machine states are described for the Markov process with machine
age-dependent matrix generator with preventive maintenance possibility. The above-discussed
researches consider machine age-based failure and control policies, where machine reliability is
increased with preventive maintenance.

In working life, all manufacturing processes face machine failures and imperfect production
processes which cause production disruptions. In such a situation two production policies are
followed, for instance, a no-resumption policy (NR) where following machine repair, production is not
continued until all on-hand inventory is used. In another policy also called abort/resume policy (AR),
production is resumed immediately following machine repair, given that on-hand inventory is under
a minimum threshold value. No-resumption and abort/resume policies for inventory-maintenance
model is discussed by [30]. The model stated that the production lot size and safety stock for
classical inventory models without machine failures are smaller than with manufacturing unreliability.
Groenevelt et al. [31] further extended this work, where the failure rate is exponentially distributed
and repair time follows a general probability distribution. The repair and replacement policies are
investigated by [32] for an imperfect production system facing constant demand rate. The study
assumes that machine deterioration only affects the availability of production system with a limitation
to deterministic demand. An economic lot sizing problem with stochastic machine failures and
stochastic repair times is investigated in [33]. The work is further investigated to the case of imperfect
production system for an EMQ model by [34]. An imperfect multi-product manufacturing system with
variable demand is investigated by [35]. The study proposes an optimal production policy to reduce
the failure rate and energy consumption of the production system with an additional development cost.
Recently, Ref. [17] investigated an unreliable production system with variable demand rate. The study
examines defective rate as a function of tha production rate of a system. Our study proposes an
investment in automated smart production technology to improve system productivity and reliability.

2.2. Smart Production System

Determining the optimal production rate is a critical parameter in production planning for a
production manager. Today’s industrial world is facing an increasing tendency toward sustainability
which requires a higher level of productivity and efficiency for manufacturing organizations. In today’s
modern industry, manufacturing systems are designed to control/vary the production rate within fixed
limits to adjust the optimal level of productivity. Such systems are discussed in [36–39]. The study
by [40] stated that a faster production rate affects the process quality (imperfect production) and
performance quality (machine failure) of a manufacturing system which increases the number of
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lower quality products. Unreliable manufacturing systems with flexible production rates have been
investigated in the works of [41,42] where manufacturing unreliability and maintenance rates are
considered under the homogeneous Markov process. Many other researchers have considered a
uniform or variable production rate with constant unit production cost as mentioned in [43–46].
Further on, Giri et al. [47] considered manufacturing system failure and repair time distributions with
a variable production rate as the stress rate of the machine intensifies with the higher speeds of the
production process. An EPQ model with multiple productions runs under variable production rates is
investigated in [48]. The study states that the optimal production rate lies between the demand rate
and the highest possible production rate with a minimum per-unit production cost. The work of [49]
investigates the influence of production rate on machine failure and process scrap rates with overall
system effectiveness (OSE). This study investigates a machine with multiple quality states where the
optimal production rate is decided for each period.

Sarkar et al. [50] studied the influence of the variable production rate in a supply chain
management system with time-dependent holding cost. Moreover, a two-stage manufacturing system
is investigated under the impact of the variable production rate by [51]. The study infers that the
selection of variable production rates increases the smoothness of work-flow in a firm as it gives
flexibility in a work-in-process inventory at different working stages and hence improves the overall
production planning of the manufacturing system. The work by [52] has treated the production rate as
a dynamic variable for a two-echelon supply chain model. The study introduces a discrete investment
to improve production system reliability. For an automated smart production system, [2] investigated
energy consumption and production costs under controllable production rates. The study suggests
that the smart production system offers a better production strategy with a controllable production rate
compared to conventional systems. This work is further extended to the case of a complex multi-item
smart production system by [3]. These studies lack the ability to justify the system performance
with controllable production rates under demand variability and growing technology innovation for
setup cost reduction and quality improvement. Per unit production cost for vendor is considered as a
function of production rate and raw material cost. Many other works have considered a generalized
unit production cost function which depends on production rate, labor, and material cost. These works
include [53]. This work is extended to the case of unreliable manufacturing system by [3] where unit
production cost is considered as a function of production rate and reliability parameter. Recently,
Asghar et al. [6] developed an unreliable EPQ-based inventory model which considers production rate
as decision variable. The model considers the unit production cost as a function of production rate,
manufacturing reliability, and manufacturing yield. Furthermore, a two-echelon supply chain under
the influence of variable production rate is investigated in [54]. The continuous review inventory
model considers that the production cost per unit product changes with varying production rate for
multiple buyers. A lead time crashing cost is introduced in the supply chain system to reduce the lead
time for multiple buyers. The study lacks in consideration of variable production-oriented system
costs such as maintenance, production technology and repair.

2.3. Technology Dependent Demand

Demand rate is a critical factor which plays a very significant role in production inventory
planning. In classical EPQ and EMQ models, demand is considered as a constant parameter as
first introduced by [55]. This concept was further extended to the case of variable demand rate
by [56]. The incorporation of information technology (IT) in demand rate has been investigated
in terms of advertisement efforts with electronic media by [57,58]. The given studies focused on
the importance of IT in the control of demand of consumer goods in a market. Many researchers
have considered a deteriorating production system with deterministic demand rates in existing
literature as mentioned in [32,59]. An unreliable manufacturing system with random demand rate
is examined by [60] for a paper manufacturing process. In recent developments, researchers have
focused on multiple types of demand rates which are considered as a function of different influencing
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parameters, for instance, stock level, time variable, quality, shelf-life, innovation, and marketing
efforts. With the technological advancement and volatile development of resources, demand for
high-tech/smart products and electronics vary with time. Since the utility of high-tech items are
time and technology-dependent, their demand is more likely to be technology-dependent, as the
customers may be willing to buy more when the advance technology is available, and less when
the technological development is low. High-tech products face very volatile demand as they get
substituted rapidly with new technology, i.e., microchips, diodes, sensors, lenses, and electromagnetic
films. An integrated vendor-buyer inventory model for high-tech products is investigated by [61],
where technology dependent demand is a continuous and exponentially decreasing function of time.
A telecommunication-based supply chain study is discussed in [22]. The study optimizes the initial
investment in advance technology based on technology-based stochastic demand. Product-flexible and
product-dedicated-based technology for an uncertain demand is discussed by [62]. As the ultimate goal
of providing new technology-based products into the market is to ensure profit, so understanding the
demand gaps with evolving technology is very critical. Optimal production capacity and investment
in technology for high-tech consumer goods are important aspects of the gap in demand trajectories
from new-old high-tech product diffusion. In this regard, [63] studies the collaboration strategies
like vendor managed inventory (VMI) and jointly managed inventory (JMI). They also discussed a
collaborative planning, forecasting and replenishment model to downstream demand gaps.

All these papers have considered the time-varying concept of technology-based demand of
products. However, they lack in the understanding of optimal technology investment requires to keep
pace in the economy world while maintaining the individual firms production and inventory capacities.
The role of reliability and productivity management is of high importance for industries in which
capital cost and production equipment cost is high. For instance, in the semiconductor manufacturing
industry, high capacity costs, long capacity lead times, high obsolescence rates, and high demand
volatility is a big financial burden. As the production cost of a new semiconductor fab ranges from
$1–$4 billion whereas the the price for a single machine required to manufacture it costs $4–$5 million.
The bio-drugs industry is another example of high-tech products which require very high volumes of
manufacturing capacity. However, manufacturing capacity is always in shortage due to the lack of a
specific technology or process in the market [4]. Therefore, the rapid technology development leads to
shorter product life cycles, which also leads to the higher obsolescence rates of produced goods and
increased setup cost for manufacturing equipment.

2.4. Research Gap

Generally, the demand for high-tech products is considered very volatile and depends on
the growing acceleration of technology and digitalization. This study investigates the high-tech
capacity planning, integrated decisions planning related to manufacturing reliability and productivity.
Moreover, it is significantly practical for an organization to develop production inventory policies
based on demand variability. We consider a demand function where demand increases with the
investment of technology level. This type of demand is considered for consumer electronic products
such as cell phones, computers, high-tech products, smart watches, semiconductors, electronic chips,
etc. The next direction of this research studies the influence of variable demand rate with unreliability
in production planning, where a manufacturer with uncertain production capacity has to fulfill the
technology-dependent market demand. We have considered product technology-dependent demand
such as technology investment for products is less than α% of production technology development
investment χ, as shown in Figure 1. In existing inventory literature, it is always assumed that the
manufacturer produces the production lot and ships it to the buyers in single or multiple shipments
smoothly. Whereas in reality, the production system faces many disruptions and deteriorates during
long run production processes due to machine failures, and machine unavailability due to longer
repair times. In the context of integrated production inventory models, there is limited work related to
manufacturing reliability, performance-quality, uncertain production capacity, and demand variability.
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In this study, we have developed an integrated production maintenance model with a randomly failing
manufacturing system and the technology-dependent demand of market. Accordingly, this study
considers finding the joint optimal production inventory policy and maintenance strategy when the
manufacturer’s production capacity is uncertain. Integrated production inventory and replenishment
scheduling using stochastic optimal control techniques seem more useful from real-life manufacturing
situations. Hence, a stochastic optimal control approach is considered as a direct influence of these
uncertainties (i.e., machine availability and random repair time) involved in a manufacturing system.

Figure 1. Technology dependent demand rate.

Moreover, an intelligent optimal production strategy is developed considering the failure of
manufacturing systems as a function of its system design parameter called reliability. The developed
model with OPT and maintenance policy suggests that reliability of manufacturing system is
increased with investments in smart production technology and resources. The increased reliability
of manufacturer leads to increase in mean time to failure of production system. The major goals
of this study is to decrease manufacturer downtime, increase productivity and manufacturing
performance-quality of the proposed integrated smart production maintenance model, which is
directly affected by the manufacturer reliability parameter.

3. Problem Statement, Notation, and Assumptions

This sections defines the problem statement, related notation and assumptions for the proposed
mathematical model.

3.1. Problem Statement

In this study, we consider an integrated production inventory model where manufacturer
production depends on its system design variable called reliability. In a manufacturing system,
the physical throughput (i.e., products) of an organization depends on a combination of
performance-quality factors. A manufacturing system performance quality is analyzed based on
its design variables, named as reliability and productivity. It is supposed that manufacturing reliability
can be increased with investment in advanced production technology, whereas manufacturing systems
with automated smart technology are considered more reliable. The manufacturing system failure
depends on its reliability parameter, moreover, manufacturing reliability within achievable limits [0, 1]
is assumed as an exponential function of time t as;

F(t) = e−λt (1)
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Again, F(t) = 1 − G(t) = 1 −
∫ t

0 g(y)dy, where G(t) and g(t) represents the probability
distribution and probability density functions (for detail see [34]), such that∫ ∞

0
g(t) dt = 1 (2)

Hence,

g(t) = −dG(t)
dt

= λe−λt (3)

For manufacturing reliability parameter λ in the achievable limits λ ε [λmin, λmax], we consider a
variable smart technology-development cost with smart technology investment χ, as

D[λ] = χe
ζλ
$ (4)

The constant ζ represents the difficulties in increasing reliability parameter due to limited
technological resources, manufacturing system complexities and $ is a scale parameter which shows
the effectiveness of advanced automated technology. When failure rate λ increases, i.e., the mean
time to failure decreases, consequently the reliability of manufacturing system decreases. As a result,
with an increase in the failure rate λ, smart technology-development cost D[λ] increases accordingly.
Hence D[λ] is large enough when λ reached to its maximum value, as shown in Figure 2.

Figure 2. Smart production technology development investment.

Productivity of an automated manufacturing system varies with operating conditions.
Any machine component failure directly affects the manufacturing system productivity, manufacturing
process quality, and manufacturing costs. While reliability is the productivity per unit time for a
manufacturing system, productivity is an operational concept in terms of service output per unit of
time. To improve the productivity of manufacturing system we consider a controllable manufacturing
system where production rate [µmin, µmax] can be varied to fulfill variable market demand. As it offers
flexibility in the production rate of an item, the unit production cost becomes a function of variable
production rate µ, manufacturing yield Yand manufacturing performance-quality variable λ, as shown
in Figure 3.
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C(µ, λ) = (r1 + r2λ) +
cµ + Yλ

µ
+ πµ (5)

The Equation (5) is a modified unit production cost as given in [64] and is based on the
following components.

1. The cost component (r1 + r2λ) is the cost of raw material which increases linearly with increasing
failure rate.

2. The cµ component represents the manufacturing costs, i.e., energy and lobar, and as the production
rate increases, the manufacturing cost is equally distributed over a large number of the produced
unit. Consequently the per unit manufacturing cost decreases with high production rates.

3. The next cost component is Yλ, which represents the manufacturing yield loss. As the failure rate
increases, the downtime increases and the overall costs of system increases. However, with higher
production rates, the unit yield loss cost decreases.

4. The last cost component is referred to as the tool/die cost, and it is directly proportional to
production rate.

Figure 3. Reliability and production rate dependent per unit production cost.

We consider an unreliable manufacturing system, which is subjected to random breakdowns.
Whenever a breakdown occurs, the machine is assumed to immediately be under repair and an
abort/resume inventory control policy is adopted. Under this inventory control policy, production of
the interrupted lot resumes immediately after the machine is fixed and restored.

3.2. Assumptions

Given are the assumptions considered to develop this model.

- An automated smart integrated production maintenance policy for an unreliable manufacturing
system is considered.

- The unreliability of a manufacturing system is modeled through a system performance-quality
parameter which follows a stochastic process as discussed in [33].

- The quality performance parameter of manufacturing system is expressed as a design variable,
where it is represented as λ = Total number o f f ailure

Total working hours , and manufacturing quality performance can
be increased through investment in advanced production technology and resources.

- During production up-time tµ system failure may occurs randomly, a single-machine and
single-product type environment is considered.

- Random failure rate and random repair rate is considered with generalized distributions.
- On manufacturing system failure, corrective repair is started immediately. After corrective repair,

manufacturing system is restored back to the same initial operational condition with an extra
cost Rsλ.
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- Upon manufacturing system breakdown, market demand is fulfilled from on-hand inventory,
accumulated during production up-time.

- The demand is technology dependent as (x[τ] = a + γeητ), where a is the potential market
demand, η is a shape parameter and it shows the effectiveness of product technology τ, whereas
γ is a scale parameter. Moreover τ per unit technology investment is a decision variable and
γ, η > 0.

- If the on-hand inventory is sufficient to met market demand, then new production cycle is started
after complete inventory consumption.

- Market demand is a variable parameter and depend on technology investment τ, where τ is a
decision variable.

- The production rate µ of smart manufacturing system is a controllable variable and can be varied
within given limits (µ ∈ [µmin , µmax]). Moreover, the variable production rate is always greater
than the variable demand rate as (µmin ≥ x[τ]).

- Unit smart production cost is a function of manufacturing quality performance parameter λ,
manufacturing yield Y and variable production rate µ.

- The raw material cost linearly depends on the manufacturing quality performance parameter
variable λ, i.e., (r1 + r2λ).

- As the manufacturing quality performance parameter decreases, the manufacturing yield loss
increases, such that higher downtime increases system costs.

- A shortage cost is considered for lost sales due to longer repair times.

4. Mathematical Model

The study investigated an integrated production maintenance model where the manufacturing
system starts production at (t = 0) at a controllable production rate (µ ε [µmin, µmax]), to produce a
lot size Q. The inventory piles up at the rate (µ ∗ tµ) until breakdown occurs. The on-hand inventory
is formulated with a governing differential equation at the initial condition I1(0) = 0 as;

dI1(t)
dt

= µ− x[τ] (0 ≤ t ≤ tµ) (6)

The on-hand inventory is formulated with a governing differential equation with the given
condition I1(tµ) = I2(tµ) as;

dI2(t)
dt

= −x[τ] (tµ ≤ t ≤ Z) (7)

The accumulated result of above equations gives,

I(t) =

(
(µ− x[τ])t 0 ≤ t ≤ tµ

µ ∗ z1 − x[τ]t tµ ≤ t ≤ Z

)
(8)

Let t denotes the time before a breakdown take place and tµ stands for the production up-time.
Since during production up-time tµ machine breakdown may occur randomly, if time to breakdown
is (t < tµ), then a random breakdown occurs during the production up-time; if (t ≥ tµ), then no
breakdowns happen during the production up-time. Therefore, the following two separate situations
should be examined.

4.1. Model 1: Random Production Rate Model with Breakdown

In the first case, production starts at (t = 0) but at some random time (t = z1) the manufacturing
system faces a break down before the completion of production at time (t = tµ). Therefore, inventory
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accumulates within interval [0, z1], and depletes in interval [z1, Z] with market demand rate x[τ].
Hence, the total inventory becomes,

∫ z1

0
(µ− x[τ])tdt +

∫ Z

z1

(µz1 − x[τ]t) dt. (9)

After breakdown at time (t = z1), the manufacturing system undergoes corrective repair but due
to the stochastic nature of repair rate, two additional inventory states may happen as given;

4.1.1. Case 1 ( Repair Time Lies within z1(µ−x[τ])
x[τ] )

If the expected time to repair manufacturing system is short enough that it extends within a
z1(µ−x[τ])

x[τ] as shown in Figure 4, then the production quantity becomes,

Figure 4. Case 1 (No shortages occur during stochastic machine repair time).

Q1 =
∫ Q

µ

0

(∫ z1(µ−x[τ])
x[τ]

0
µz1g (z2) dz2

)
g (z1) dz1. (10)

No shortages occur and expected inventory is equal to,

I1 =
∫ Q

µ

0

(∫ z1(µ−x[τ])
x[τ]

0

(
µz2

1(µ− x[τ])
2x[τ]

)
g (z2) dz2

)
g (z1) dz1. (11)

4.1.2. Case 2 (Repair Time Exceeds z1(µ−x[τ])
x[τ] )

If the expected time to repair manufacturing system exceeds z1(µ−x[τ])
x[τ] , see Figure 5, then the

production quantity becomes,

Q2 =
∫ Q

µ

0

( ∫ ∞

z1(µ−x[τ])
x[τ]

µz1g (z2) dz2

)
g (z1) dz1. (12)

Moreover the expected inventory is given as,

I2 =
∫ Q

µ

0

(∫ ∞

z1(µ−x[τ])
x[τ]

(
µz2

1(µ− x[τ])
2x[τ]

)
g (z2) dz2

)
g (z1) dz1. (13)
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Figure 5. Case 2 (Shortages occur due to longer repair time).

The inventory holding cost

The expected average inventory for Model-1 is given in Equation (14) where expected cumulative
inventory holding cost is hc I1.

I1 =
∫ Q

µ

0

(∫ z1(µ−x[τ])
x[τ]

0

(
µz2

1(µ− x[τ])
2x[τ]

)
g (z2) dz2 +

∫ ∞

z1(µ−x[τ])
x[τ]

(
µz2

1(µ− x[τ])
2x[τ]

)
g (z2) dz2

)
g (z1) dz1. (14)

The smart production cost

The expected average production cost for Model-1 becomes,

C1(µ, λ) =
∫ Q

µ

0

(∫ z1(µ−x[τ])
x[τ]

0

(
cµ + Yλ

µ
+ r1 + µπ + r2λ

)
µz1g (z2) dz2 +

∫ ∞

z1(µ−x[τ])
x[τ]

(
cµ + Yλ

µ

+r1 + µπ + r2λ

)
µz1g (z2) dz2

)
g (z1) dz1. (15)

The shotage cost

The shortages during repair time are given as,

∫ Q
µ

0

(∫ ∞

z1(µ−x[τ])
x[τ]

(
z2x[τ]− z1(µ− x[τ])

)
g (z2) dz2

)
g (z1) dz1. (16)

The set up cost

The setup cost for proposed model consists of two components, a fixed cost component for
production, and a variable cost component which depends on the reliability parameter of the
manufacturing system. As the failure rate increases, the setup cost increases with a certain amount of
Rsλ required for system restoration.

S(1 + Rsλ). (17)
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The system repair cost

Every time manufacturing system faces a breakdown, a corrective repair is carried down which
results in a repair cost given as below,

Rr

∫ Q
µ

0

(∫ ∞

0
z2g (z2) dz2

)
g (z1) dz1). (18)

The total smart production inventory cost per cycle E[C1] for Model-1 gained through combining
the two cases consists of the setup cost, smart production technology development cost, variable
production costs, variable repair cost, variable restoration cost, inventory holding costs, and shortage
cost as given below;

E[C1(Q, µ, λ, τ)] = S(1 + Rsλ) + χe
ζλ
$ + Rr

∫ Q
µ

0

(∫ ∞

0
z2g (z2) dz2

)
g (z1) dz1) +

∫ Q
µ

0

(∫ z1(µ−x[τ])
x[τ]

0
µz1

(
cµ + Yλ

µ
+ r1 + µπ + r2λ

)
g (z2) dz2

)
g (z1) dz1 +

∫ Q
µ

0

( ∫ ∞

z1(µ−x[τ])
x[τ]

(
µz1

(
cµ + Yλ

µ
+ r1 + µπ + r2λ

))

g (z2) dz2

)
g (z1) dz1 + hc

∫ Q
µ

0

(∫ z1(µ−x[τ])
x[τ]

0

(
µz2

1(µ− x[τ])
2x[τ]

)
g (z2) dz2

)
g (z1) dz1 + hc

∫ Q
µ

0

( ∫ ∞

z1(µ−x[τ])
x[τ](

µz2
1(µ− x[τ])

2x[τ]

)
g (z2) dz2

)
g (z1) dz1 + Sc

∫ Q
µ

0

(∫ ∞

z1(µ−x[τ])
x[τ]

(
z2x[τ]− z1(µ− x[τ])

)
g (z2) dz2

)
g (z1)

dz1. (19)

The cycle length is defined as the time interval between two successive production runs. Hence,
the expected cycle length for Model-1 with stochastic failure and repair rate becomes,

E[Z1(Q, µ, λ, τ)] =
∫ Q

µ

0

( ∫ z1(µ−x[τ])
x[τ]

0

(
µz1

x[τ]

)
g(z2)dz2

)
g(z1)dz1 +

∫ Q
µ

0

( ∫ ∞

z1(µ−x[τ])
x[τ]

(z1 + z2)g (z2) dz2

)
g(z1)dz1. (20)

4.2. Model 2: Random Production Rate Model without Breakdown

In this case, the production time before a manufacturing system failure taking place is greater
than the production up-time, as (t ≥ tµ), so there is no breakdown taking place during production run.
Hence, the total smart production inventory costs per cycle E[C2] for Model-2 consists of setup costs,
smart production technology development cost, variable production cost, and inventory holding cost.

E[C2(Q, µ, λ, τ)] = S + χe
ζλ
$ + hc

∫ ∞

Q
µ

(
Q2(µ− x[τ])

2µx[τ]

)
g (z1) dz1 +

∫ ∞

Q
µ

(
Q
(

cµ + Yλ

µ
+ µπ

+(r1 + r2λ)

))
g (z1) dz1. (21)
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Similarly, the mean time length of production inventory cycle for the Model-2 is obtained as,

E[Z2(Q, µ, λ, τ)] =
∫ ∞

Q
µ

(
Q

x[τ]

)
g (z1) dz1. (22)

4.3. Integration of the EPQ Models with/without Failure

The expected total costs of smart manufacturing system per cycle is the sum of Model-1 and
Model-2 and is given as;

E[TC(Q, µ, λ, τ)] = S + RsλS + χe
ζλ
$ + Rr

∫ Q
µ

0

( ∫ ∞

0
z2g (z2) dz2

)
g (z1) dz1 +

∫ Q
µ

0

( ∫ z1(µ−x[τ])
x[τ]

0
µz1

(
cµ + Yλ

µ
+ r1 + µπ + r2λ

)
g (z2) dz2

)
g (z1) dz1 +

∫ Q
µ

0

( ∫ ∞

z1(µ−x[τ])
x[τ]

µz1

(
cµ + Yλ

µ
+ r1 + µπ + r2λ

)

g (z2) dz2

)
g (z1) dz1 +

∫ ∞

Q
µ

((
cµ + Yλ

µ
+ µπ + r1+ r2λ

)
Q

)
g (z1) dz1 + hc

∫ Q
µ

0

( ∫ z1(µ−x[τ])
x[τ]

0
µz2

1(
(µ− x[τ])

2x[τ]

)
g (z2) dz2

)
g (z1) dz1 + hc

∫ Q
µ

0

(∫ ∞

z1(µ−x[τ])
x[τ]

(
µz2

1(µ− x[τ]
)

2x[τ]

)
g (z2) dz2

)
g (z1) dz1 + hc

∫ ∞

Q
µ

(
Q2(µ− x[τ])

2µx[τ]

)
g (z1) dz1 + Sc

∫ Q
µ

0

(∫ ∞

z1(µ−x[τ])
x[τ]

(
z2x[τ]− z1(µ− x[τ])

)
g (z2) dz2

)
g (z1) dz1. (23)

Similarly the expected total cycle length of smart manufacturing system becomes,

E[Z(Q, µ, λ, τ)] =
∫ Q

µ

0

(∫ z1(µ−x[τ])
x[τ]

0

(
µz1

x[τ]

)
g (z2) dz2

)
g (z1) dz1 +

∫ ∞

Q
µ

(
Q

x[τ]

)
g (z1) dz1. (24)

Owing to assumptions of stochastic failure and stochastic repair time distributions, the cycle
length in the proposed model is a variable parameter. Therefore, the total expected cost per unit time
in the steady state is driven using the renewal reward theorem [65],

ETC[Q, µ, λ, τ] =
Ez1 [Ez2 [TC(Q, µ, λ, τ)]]

Ez1 [Ez2 [Z(Q, µ, λ, τ)]]
(25)

With exponential distribution functions of smart manufacturing system failure and repair time,
such that,

G(z1) = (1− e−λz1), G(z2) = (1− e−θz2). (26)

Thus using theses distributions given in Equation (26), the expected total cost derived in
Equationa (23) and expected total cycle length derived in Equation (24) becomes

E[TC(Q, µ, λ, τ)] = S + RsλS + χe
ζλ
$ +

Rr

θ
(1− e−

Qλ
µ ) + (cµ + Yλ + µ((r1 + r2λ) + µπ))

+

e−
Qλ
µ

(
e

Qλ
µ − 1

)
λ

+ Sc(λ (a + γeητ)2)
e

Q
(
− µθ

a+γeητ +θ−λ

)
µ − 1

θ (a(θ − λ) + γeητ(θ − λ)− µθ)
+ hc(

(µ− (a + γeητ))

λ2 (a + γeητ)

)
e−

Qλ
µ

(
µ

(
e

Qλ
µ − 1

)
−Qλ

)
(27)
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and E[Z(Q, µ, λ, τ)] becomes,

E[Z(Q, µ, λ, τ)] =
eQ
(
− θ

a+γeητ − λ
µ

)
(θλ (a + γeητ) ((θ − λ) (a + γeητ)− µθ))

(λ2 (a + γeητ)2 + µθ2 (µ− a− γeητ)

+µθλ (a + γeητ)) (28)

4.4. Solution Methodology

The study considers production lot size Q, production rate µ, reliability parameter λ, and per
unit technology investment τ for products to be four decision variables. The expected total cost
function is a non-linear constrained problem. Now, our objective is to minimize E[TC(Q, µ, λ, τ)]

under the constraints;

−Q ≤ 0, (29)

x[τ] < µ, (30)

µ ≤ µmax, (31)

λmin − λ ≤ 0, (32)

λ− λmax ≤ 0, (33)

−τ ≤ 0 (34)

The Kuhn–Tucker method is used to solve provided non-linear constrained mathematical problem
as KT Method is considered as an effective method to get global optimal solution [66,67]. Where, β1,
β2, β3, β4, β5, β6 are considered the Lagrange multipliers corresponding to given constraints. Below
given are KT conditions for optimal solution;

∂ETC[Q, µ, λ, τ]

∂Q
+ β1 = 0,

∂ETC[Q, µ, λ, τ]

∂µ
− β2 + β3 = 0, (35)

∂ETC[Q, µ, λ, τ]

∂λ
− β4 + β5 = 0,

∂ETC[Q, µ, λ, τ]

∂τ
+ β6 = 0. (36)

β1Q = 0, β6τ = 0, (37)

β2(x[τ]− µ) = 0, β3 (µmax − µ) = 0, (38)

β4 (λ− λmax) = 0, β5 (λmin − λ) = 0, (39)

β1, β2, β3, β4, β5, β6 ≥ 0. (40)

The ETC[Q, µ, λ, τ] has the global optimal value at Q∗, µ∗, λ∗, τ∗, if all principle minors
(H1, H2, H3, H4) of Hessian matrix H should satisfy as (H1 > 0, H2 > 0 H3 > 0 H4 > 0). Where the
generated Hessian matrix for ETC[Q, µ, λ, τ]∗ is,
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H =



∂2ETC[Q,µ,λ,τ]
∂Q2

∂2ETC[Q,µ,λ,τ]
∂Q∂λ

∂2ETC[Q,µ,λ,τ]
∂Q∂µ

∂2ETC[Q,µ,λ,τ]
∂Q∂τ

∂2ETC[Q,µ,λ,τ]
∂λ∂Q

∂2ETC[Q,µ,λ,τ]
∂λ2

∂2ETC[Q,µ,λ,τ]
∂λ∂µ

∂2ETC[Q,µ,λ,τ]
∂λ∂τ

∂2ETC[Q,µ,λ,τ]
∂µ∂Q

∂2ETC[Q,µ,λ,τ]
∂µ∂λ

∂2ETC[Q,µ,λ,τ]
∂µ2

∂2ETC[Q,µ,λ,τ]
∂µ∂τ

∂2ETC[Q,µ,λ,τ]
∂τ∂Q

∂2ETC[Q,µ,λ,τ]
∂τ∂λ

∂2ETC[Q,µ,λ,τ]
∂τ∂µ

∂2ETC[Q,µ,λ,τ]
∂τ2


To prove the convexity of objective function, Appendix A is provided.

5. Numerical Experiment

The proposed model is examined with numerical analysis of model parameters. Furthermore,
sensitivity analysis of the key input parameters is also provided. The modified values of input data are
taken from [33,39] and are provided in Table 2.

Table 2. General input parameter values for proposed model.

r1 = 1 ($/unit) r2 = 0.3 ($/unit) S = 2000 ($/setup)
Y = 150 ($) cµ = 2500 ($) Rs = 0.0725
π = 0.0015 Rr = 500 ($/unit time) θ = 15 (repairs /unit time)

Sc = 5 ($/unit) ζ = 1.02 $ = 0.05
χ = 500 ($) a = 500 (units/unit time) γ = 0.5

η = 0.75 hc = 0.5 ($/unit/unit time)

The optimal results for decision variables of a developed integrated
smart production maintenance policy for an unreliable manufacturing
system are as follows, E[TC]∗ = 3289.5 ($/unit time), Q∗ = 2985.27 (units)
µ∗ = 1081.51 (units/unit time), τ∗ = 0.006 ($/unit), λ∗ = 5.54× 10−6.

Also, the Hessian matrix at optimal values of decision variables is a positive definite, as;

H =


0.00009 −0.69 0.0001 −0.0002
−0.69 7.8× 106 −0.62 2.04
0.0001 −0.63 0.0014 2.59× 10−7

−0.0002 2.04 2.6× 10−7 1.43


and all eigenvalues (7.8× 106, 1.44, 0.0013, 0.000085) of the matrix are positive.

5.1. Sensitivity Analysis

This section studies the implications of reliability parameter, production lot size, production rate,
and product technology investment on the integrated smart production maintenance model. To derive
general insights into model drivers, a sensitivity analysis is performed and several meaningful results
are drawn from the analysis that are given in subsequent discussions; see Table 3.

Production cost: As the per unit manufacturing cost cµ decreases, production rate µ also decreases
which eventually decreases the average expected total cost. For higher per unit production costs,
the production lot size becomes smaller in every manufacturing system to decrease the total production
cost. As the production lot size decreases, the reliability parameter also decreases because the
manufacturing system faces smaller working states. For unit production cost variations, the per
unit technology investment τ for products shows symmetrical behavior for both increment and
decrement approaches, and it shows that higher investment in technology is not optimal when the
production cost is minimal or already very high.

Raw material cost: As the raw material cost r1 decreases, the total expected cost decreases, which
is a common feature of production. The production lot and production rate increases with decreases
in raw material cost. The reliability parameter λ increases in a decreasing fashion with material cost
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reduction, because less valued products means less complex production processes, which reduces the
machine stress and eventually failure rate of such manufacturing systems decreases which does not
involve complex manufacturing processes. On the other hand, the technology investment cost increases
with decreases in raw material cost, which shows that products with less value in terms of materialistic
value have the potential for value increases with technology advancements. Because products with
less materialistic values are usually not use for technical and advanced technology-based goods.

Table 3. Sensitivity analysis for parameters related to manufacturing performance quality.

Parameter Change Q λ µ τ % Change in E[TC]
% (Units) (Failures/Unit Time) (Units/Unit Time) ($/Unit) ($/Unit/Unit Time)

cµ −20 3424.64 2.40× 10−8 0873.26 3.2× 10−10 −7.92
−10 3191.81 2.19× 10−7 0983.87 9.9× 10−16 −3.70
+10 2977.92 2.89× 10−7 1149.03 8.5× 10−16 +3.07
+20 2946.28 2.00× 10−8 1203.95 1.01× 10−14 +5.02

r1 −20 3060.56 8.88× 10−8 1075.18 1.2× 10−13 −2.78
−10 3060.64 7.85× 10−8 1075.15 1.2× 10−14 −1.54
+10 3061.87 8.30× 10−8 1074.71 2.2× 10−16 +1.20
+20 3145.10 1.10× 10−8 1027.73 8.7× 10−15 +2.77

r2 −20 3059.87 5.1× 10−8 1075.27 4.4× 10−14 −0.11
−10 3061.85 1.2× 10−7 1074.72 2.1× 10−13 −0.02
+10 3074.20 4.5× 10−8 1070.24 3.6× 10−16 +0.01
+20 3056.48 2.1× 10−9 1075.55 2.6× 10−10 +0.16

Y −20 3059.92 1.3× 10−7 1075.42 9.1× 10−14 −0.02
−10 3064.73 2.2× 10−8 1073.37 6.1× 10−15 −0.12
+10 3088.96 2.9× 10−8 1081.51 8.2× 10−14 +0.15
+20 inf inf inf inf inf

θ −20 3375.97 1.0× 10−8 0975.35 6.1× 10−14 +0.81
−10 3058.88 2.1× 10−8 1075.57 1.2× 10−13 +0.004
+10 3059.67 2.8× 10−8 1075.51 1.2× 10−10 −0.09
+20 3066.45 3.9× 10−8 1073.06 1.9× 10−14 −0.11

Rr −20 3058.21 4.0× 10−8 1075.61 1.4× 10−14 −0.01
−10 3059.87 2.8× 10−7 1075.43 7.2× 10−16 −0.01
+10 3058.48 5.4× 10−8 1075.59 6.3× 10−15 +0.01
+20 3062.35 4.0× 10−8 1074.54 1.6× 10−15 +0.01

π −20 2917.85 1.1× 10−7 1214.58 4.7× 10−13 −5.25
−10 2998.08 1.1× 10−7 1131.27 1.8× 10−13 −2.28
+10 3137.53 1.2× 10−8 1019.07 1.1× 10−13 +2.69
+20 3214.55 2.8× 10−7 0970.72 3.7× 10−16 +4.65

γ −20 3237.36 6.5× 10−9 1012.05 6.9× 10−13 −4.43
−10 3059.23 1.1× 10−7 1075.53 4.6× 10−15 −0.02
+10 3060.01 9.0× 10−7 1075.48 2.6× 10−15 +0.004
+20 3063.44 1.0× 10−7 1074.32 1.1× 10−17 +0.004

η −20 1916.47 6.5× 10−9 1161.88 0.33 +2.68
−10 3063.76 4.9× 10−8 1074.20 1.3× 10−15 +0.13
+10 3066.49 5.8× 10−8 1073.21 3.6× 10−16 −0.07
+20 inf inf inf inf inf

Sc −20 3060.39 8.2× 10−8 1075.25 3.1× 10−14 −0.03
−10 3059.60 3.1× 10−8 1075.47 3.3× 10−14 −0.03
+10 3060.02 4.0× 10−8 1075.38 1.5× 10−12 −0.07
+20 3062.40 4.5× 10−8 1074.52 1.6× 10−16 −0.07

χ −20 2993.77 8.9× 10−8 1079.94 1.8× 10−13 −0.51
−10 3084.50 4.5× 10−8 1056.75 1.9× 10−15 −0.25
+10 3093.58 3.3× 10−7 1072.82 1.2× 10−15 +0.24
+20 3126.98 4.1× 10−7 1070.26 1.4× 10−16 +0.48

ζ −20 3062.26 9.0× 10−8 1074.57 1.1× 10−15 −0.02
−10 3059.98 1.7× 10−7 1075.39 4.6× 10−18 −0.01
+10 inf inf inf inf inf
+20 inf inf inf inf inf

hc −20 3384.03 1.2× 10−8 1102.44 2.3× 10−13 −2.85
−10 3221.49 2.3× 10−8 1077.35 3.3× 10−15 −1.29
+10 2966.62 1.7× 10−8 1043.72 5.4× 10−15 +1.21
+20 2198.90 3.6× 10−5 1108.43 0.04 +3.13
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Table 3. Cont.

Parameter Change Q λ µ τ % Change in E[TC]
% (Units) (Failures/Unit Time) (Units/Unit Time) ($/Unit) ($/Unit/Unit Time)

S −20 2809.52 4.5× 10−7 1094.69 2.1× 10−14 −1.87
−10 2939.03 7.9× 10−8 1084.00 1.1× 10−13 −0.95
+10 3213.57 4.6× 10−8 1061.55 8.5× 10−15 +0.97
+20 3356.06 1.8× 10−8 1043.57 3.2× 10−14 +1.93

Rs −20 3067.79 3.6× 10−8 1072.58 1.4× 10−14 −0.07
−10 3093.14 2.4× 10−8 1063.56 5.6× 10−14 −0.18
+10 3062.60 5.7× 10−8 1074.45 1.5× 10−14 +0.003
+20 3195.18 1.1× 10−8 1016.47 2.4× 10−16 +0.53

Raw material yield loss cost: As r2 cost is linearly dependent on manufacturing reliability,
the decrease in the value of this cost means, the yield loss has less contribution to production system
total costs, so it leads to higher value of reliability parameter. As the yield loss cost increases to
decreases the failure rate, so reduction in this cost linearly increase the failure rate. Also, production
lot size decreases with increases in manufacturing unreliability to decrease the total expected cost
of the system. The decrease in raw material yield loss value decreases the total expected cost of
system, as it reduces the material loss value. The per unit technology investment for raw material
yield loss cost shows quite a unique trend, as with the increases in the yield loss cost value, reliability
parameter decreases, the optimal investment decreases, and in the opposite case when yield lost cost
increases, the production lot increases but the optimal investment decreases to reduce total expected
cost, and especially with a 20% increase in yield loss cost, the production lot increases in a decreasing
fashion due to lower the value of the manufacturing reliability parameter. Manufacturing yield loss
cost: As the value of the manufacturing yield loss Y decreases, the total expected cost decreases due
to increased reliability and decreased failure rate. With the decrease in manufacturing yield loss,
as the manufacturing system faces less downtime, production rate increases in a decreasing fashion.
The investment in product technology increases as the production rate and reliability parameter
increases with decrease in manufacturing yield loss. However, with an increase of 20%, the model
shows an infeasible solution for high-tech production.

Number of repairs: As the θ decreases the mean time to repair increases. The less number of
repairs per unit time, the higher downtime. The expected total cost of system increases with decrease
in repair rate due to higher downtime and less productivity costs.

Repair cost: The change in repair cost Rr have a greater effect on production lot size. The decrease
in corrective repair cost of manufacturing system decreases the total expected cost of the system,
which decreases the production rate and increases the production lot size to optimize the total cost
of system. Product technology investment is also sensitive to a higher manufacturing system repair
cost, as it suggests a decreases for investment amount. With the increase in repair cost, the reliability
parameter value increases to adjust the production technology development cost to avoid higher costs
of maintenance. A 20% increase in corrective maintenance costs suggest a lower value of the reliability
parameter to maintain the total optimal cost of manufacturing system.

Demand parameters: As the value of η reduces, the effectiveness of technology reduces, which
optimizes the total cost required per unit investment, and overall the production quantity increases.
The decreases in g also decreases production rate, which decreases the reliability parameter of
manufacturing system. This parameter scales down the technology-based demand part, and as this
value decreases, the effect of required investment increases to increase demand. As the demand increases
with the reduction of scale down parameter, the production quantity increases and consequently the
total expected cost increases. The scale down parameter is very sensitive to increments, as until a
10% increase, the total cost decreases despite the reduction in required investment and reliability
parameter. Therefore, a decrease of 20% or more in per unit technology investment for products
should be considered to reduce total expected cost for an unreliable manufacturing system. Smart
production technology development cost: The production technology development investment χ is



Symmetry 2020, 12, 388 20 of 33

when (λ = λmin), so as the system becomes more unreliable, the required investment in smart technology
to increase its productivity, and reliability increases. In the case of this model, the change in investment
shows quite diverse impacts because of the communal influence of different model parameters. As the
required production technology investment decreases, it shows a more reliable system, so the failure
rate decreases, which also decreases the total expected cost of the system. At this point the production
lot size and production rate also increases to maintain the total expected cost at an optimal level. On the
other hand, when the required technology investment increases, the reliability parameter increases
to adjust the smart technology development cost at an optimal level. With increases in failure rate,
the production rate of the model decreases, which increases the per unit smart production cost and hence
the total expected cost of system increases. A 20% or more increase in smart production technology
cost suggests less per unit technology investments for products to maintain the total expected cost,
as for manufacturing systems where the cost for technological modification is very high, the changes in
product technology leads to higher system costs.

ζ is the scale-up parameter for manufacturing reliability parameter; as the value of ζ decreases
the, the required smart technology cost decreases and the total expected cost of system also decreases.
The decreases in ζ increases the production lot size and production rate, but suggests a lower technology
investment value for products. The higher values of ζ shows an infeasible solution for the proposed
unreliable manufacturing system due to the implication of higher unreliability costs. $ is the scale down
parameter of the manufacturing reliability parameter, and as the value of $ decreases, the required smart
technology cost increases, and the total expected cost of system increases. As the decrease in $ increases,
the total expected cost of system, the production lot size, and production rate increases accordingly to
adjust the optimal total expected cost of the system. The model suggests that a 10% increase in value of
$ leads to an infeasible solution, as at a 10% decrease, the reliability parameter decreases significantly to
adjust the development cost, which accordingly leads to higher reliability costs.

Shortage cost: As the shortage per unit cost decreases, the total expected cost decreases.
Here with the decrease in shortage cost, the production lot size increases, which is opposite to
deterministic demand models. The reason behind this is the technology investment-dependent
demand. The model suggests products for which the shortage cost is less, and such products generally
are not high-tech/electronic products, so with less shortage cost, the model optimizes production cost
with a decrease in technology investment which directly increases production quantity. Surprisingly,
the changes in shortage cost show symmetric behavior for the total cost of the system due to a change
in product technology investment. The increase in shortage cost decreases the total cost of the system
with a reduction in smart production technology investment.

Inventory holding cost: The expected total model cost increases with an increase in inventory
holding cost. To minimize the total cost in such a situation, the model increases the production rate
with decreasing production quantity to reduce the total expected production cost. With the increase in
unit holding cost, the reliability parameter is insensitive, whereas,the product technology investment
reduces with increased inventory holding cost; this is also to compensate higher inventory costs for
expensive high-tech products. So for high-tech products, the increase in inventory holding costs
suggests a reduction in technology-investment for products.

OPT vs per unit technological investment: Table 4. provides a comprehensive overview of unit
cost per product, technological investment per item, manufacturing reliability, and reliability parameter
of the production system. Along with the per-unit manufacturing cost cµ, the tool/die cost π is another
influential part of the production system affecting per unit production costs as it increases directly with
a higher production rate µ. With an increase of 20% in π, the model results highest C(µ, λ) = $5.32.
The second highest unit production cost of $5.17 results due to a 20% increase in raw material cost.
Also, for an unreliable manufacturing system, the study suggests the lowest technological investment
per product with an increase in the technology scaling factor γ. The study infers the importance of
performance quality parameter ζ for per-unit technological investment for products τ, as even ab 10%
increase in ζ gives unfeasible results for the proposed unreliable production model.
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Table 4. Sensitivity analysis for parameters related to manufacturing reliability F(t) and product
technology (τ).

Parameter % Manu f acturing λ C(µ, λ) τ % Change in E[TC]
Change Reliability (%) (Rate) ($/Unit/Unit Time) ($/Unit) ($/Unit/Unit Time)

cµ −20 100 2.40× 10−8 4.60 3.2× 10−10 −7.92
−10 99 2.19× 10−7 4.70 9.9× 10−16 −3.70
+10 99 2.89× 10−7 5.09 8.5× 10−16 +3.07
+20 100 2.00× 10−8 5.20 1.01× 10−14 +5.02

r1 −20 99 8.88× 10−8 4.75 1.2× 10−13 −2.78
−10 99 7.85× 10−8 4.80 1.2× 10−14 −1.54
+10 100 8.30× 10−8 5.01 2.2× 10−16 +1.20
+20 100 1.10× 10−8 5.17 8.7× 10−15 +2.77

r2 −20 100 5.1× 10−8 4.90 4.4× 10−14 −0.11
−10 99 1.2× 10−7 4.93 2.1× 10−13 −0.02
+10 99 4.5× 10−8 4.90 3.6× 10−16 +0.01
+20 100 2.1× 10−9 4.93 2.6× 10−10 +0.16

Y −20 99 1.3× 10−7 4.93 9.1× 10−14 −0.02
−10 99 2.2× 10−8 4.94 6.1× 10−15 −0.12
+10 100 2.9× 10−8 4.94 8.2× 10−14 +0.15
+20 inf inf inf inf inf

θ −20 100 1.0× 10−8 5.03 6.1× 10−14 +0.81
−10 99 2.1× 10−8 4.94 1.2× 10−13 +0.004
+10 100 2.8× 10−8 4.93 1.2× 10−10 −0.09
+20 100 3.9× 10−8 4.94 1.9× 10−14 −0.11

Rr −20 100 4.0× 10−8 4.94 1.4× 10−14 −0.01
−10 99 2.8× 10−7 4.94 7.2× 10−16 −0.01
+10 100 5.4× 10−8 4.94 6.3× 10−15 +0.01
+20 100 4.0× 10−8 4.94 1.6× 10−15 +0.01

γ −20 100 6.5× 10−9 5.00 6.9× 10−13 −4.43
−10 99 1.1× 10−7 4.94 4.6× 10−15 −0.02
+10 99 9.0× 10−7 4.94 2.6× 10−15 +0.004
+20 99 1.0× 10−7 4.94 1.1× 10−17 +0.004

η −20 99 6.5× 10−9 4.89 0.33 +2.68
−10 100 4.9× 10−8 4.93 1.3× 10−15 +0.13
+10 100 5.8× 10−8 4.94 3.6× 10−16 −0.07
+20 inf inf inf inf inf

Sc −20 99 8.2× 10−8 4.94 3.1× 10−14 −0.03
−10 100 3.1× 10−8 4.94 3.3× 10−14 −0.03
+10 100 4.0× 10−8 4.94 1.5× 10−12 −0.07
+20 100 4.5× 10−8 4.94 1.6× 10−16 −0.07

χ −20 99 8.9× 10−8 4.94 1.8× 10−13 −0.51
−10 99 4.5× 10−8 4.95 1.9× 10−15 −0.25
+10 99 3.3× 10−7 4.94 1.2× 10−15 +0.24
+20 99 4.1× 10−7 4.94 1.4× 10−16 +0.48

ζ −20 99 9.0× 10−8 4.93 1.1× 10−15 −0.02
−10 99 1.7× 10−7 4.93 4.6× 10−18 −0.01
+10 inf inf inf inf inf
+20 inf inf inf inf inf

hc −20 100 1.2× 10−8 4.92 2.3× 10−13 −2.85
−10 100 2.3× 10−8 4.94 3.3× 10−15 −1.29
+10 100 1.7× 10−8 4.96 5.4× 10−15 +1.21
+20 99 3.6× 10−5 4.91 0.04 +3.13

π −20 99 1.1× 10−7 4.52 4.7× 10−13 −5.25
−10 99 1.1× 10−7 4.75 1.8× 10−13 −2.28
+10 99 1.2× 10−8 5.13 1.1× 10−13 +2.69
+20 99 2.8× 10−7 5.32 3.7× 10−16 +4.65
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Table 4. Cont.

Parameter % Manu f acturing λ C(µ, λ) τ % Change in E[TC]
Change Reliability (%) (Rate) ($/Unit/Unit Time) ($/Unit) ($/Unit/Unit Time)

S −20 99 4.5× 10−7 4.92 2.1× 10−14 −1.87
−10 100 7.9× 10−8 4.93 1.1× 10−13 −0.95
+10 100 4.6× 10−8 4.95 8.5× 10−15 +0.97
+20 100 1.8× 10−8 4.96 3.2× 10−14 +1.93

Rs −20 100 3.6× 10−8 4.93 1.4× 10−14 −0.07
−10 100 2.4× 10−8 4.94 5.6× 10−14 −0.18
+10 100 5.7× 10−8 4.94 1.5× 10−14 +0.003
+20 100 1.1× 10−8 4.99 2.4× 10−16 +0.53

5.1.1. Comparative Study

As shown in Figure 6, as the production lot size increases, the total expected cost of the system
decreases to an optimal value where the total cost is at a minimum; this is because the unit smart
production cost is equally distributed over the optimal production lot size Q.

Figure 6. Impact of production lot size Q on Expected total cost E[TC(Q, µ, λ, τ)].

The graph shows that E[TC(Q, µ, λ, τ)] is not monotonically decreasing in Q, as there exists an
optimal production lot size Q, after which the total expected costs starts to increase with an increase
in production quantity. Figure 7 depicts the effect of controllable production rate µ on the expected
total cost of smart manufacturing system E[TC(Q, µ, λ, τ)]. With the increase in production rate,
the expected total cost decreases to a certain limit, after which it starts to increase again. This analysis
can be justified with the help of Figure 3, where when the production rate of smart manufacturing
system increases the unit production cost decreases. consequently, the total cost of the system decreases
until optimal production rate µ = 1081.5.

Figure 7. Impact of controllable production rate µ on expected total cost E[TC(Q, µ, λ, τ)].
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As shown in Figure 8, the expected total cost E[TC(Q, µ, λ, τ)] monotonically increases with
manufacturing unreliability. As the failure rate of smart manufacturing system increases, the total cost
increases due to productivity loss and extra costs incurred due to repair and idle time.

Figure 8. Impact of manufacturing reliability parameter λ on expected total cost E[TC(Q, µ, λ, τ)].

Figure 9 presents the effects of technology investment in finished goods, although the technology
increases the demand rate but it also increases the total cost, especially in the case of unreliable
manufacturing system, the investment are extra costly for system. So, a trade-off should be considered
between smart production technology investment and product technology investment.

Figure 9. Impact of high-tech investment per unit τ on Expected total cost E[TC(Q, µ, λ, τ)].

Figure 10 illustrates the joint effects of production lot size and controllable production rate on
the expected total cost of system, as the production lot size increases the total cost E[TC(Q, µ, λ, τ)] of
the system decreases, whereas in the case of controllable production rate, the cost of the unreliable
manufacturing system decreases to a optimal limit after which the expected total cost E[TC(Q, µ, λ, τ)]

starts to increase. On the whole, at production lot size 2900–3000 and production rate 1000–1100, we
see a minimum E[TC(Q, µ, λ, τ)] cost for the system which gives the optimal values of lot size and
production rate as (Q = 2985.27, µ = 1081.51).

Figure 11 presents the joint effects of manufacturing reliability parameter and controllable
production rate on expected total cost of system; as the manufacturing reliability parameter increases
the total cost of the system increases as a result of additional maintenance, restoration costs, and lower
productivity, whereas in the case of controllable production rate, the cost of an unreliable manufacturing
system decreases to a optimal limit after which the total cost starts to increase.
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Figure 10. Change in expected total cost E[TC(Q, µ, λ, τ)] with varying µ and Q.

Figure 11. Change in expected total cost E[TC(Q, µ, λ, τ)] with varying µ and λ.

On the whole, at manufacturing reliability parameter within limit (0,< 0.01) and production rate
1000–1100, we see a minimum total cost for the system which gives the optimal values of reliability
parameter and production rate as (λ =< 0.01, µ = 1081.51).

Figure 12 presents the joint effects of manufacturing reliability parameter and high-tech
investment per unit on the expected total cost of system, as the manufacturing reliability parameter
increases the total cost of the system increases as a result of additional system cost, production
technology development and reduced productivity, moreover in the case of technology investment per
unit, the cost of unreliable manufacturing system increases linearly. On the whole, at manufacturing
reliability parameter within limit (0,< 0.01) and product technology investment less than 0.01, the total
cost for the system stays minimum which gives optimal values of reliability parameter and technology
investment per unit as (λ =< 0.01, τ =< 0.01).

Figure 12. Change in expected total cost E[TC(Q, µ, λ, τ)] with varying τ and λ.
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Figure 13 presents the joint effects of controllable production rate and high-tech investment per
unit on expected total cost of system; as the production rate increases the total cost of the system
decreases to a optimal limit after which it increases due to higher per unit production cost. Moreover,
in the case of technology investment per unit, the cost of unreliable manufacturing system increases
linearly. On the whole, at variable production rate within limit (1000–1100) and product technology
investment less than 0.01, the total cost for the system stays minimum which gives optimal values of
production rate and technology investment per unit as (µ = 1081.51, τ =< 0.01).

Figure 13. Change in expected total cost E[TC(Q, µ, λ, τ)] with varying τ and µ.

Figure 14 presents the joint effects of production lot size and high-tech investment per unit on
expected total cost of system, andas the production lot size increases, the total cost of the system
decreases to a optimal limit. Moreover, in the case of technology investment per unit, the cost of
unreliable manufacturing system increases linearly. On the whole, at production lot size within limit
(1000–4500) and product technology investment less than 0.01, the total cost for the system remains at
a minimum which gives the optimal values of production rate and technology investment per unit as
(Q = 2985.27, τ =< 0.01).

Figure 14. Change in expected total cost E[TC(Q, µ, λ, τ)] with varying τ and Q.

Figure 15 presents the joint effects of production lot size and manufacturing reliability parameter
on expected total cost of system, as the production lot size increases the total cost of the system
decreases to a optimal limit, moreover in the case of reliability parameter, the cost of unreliable
manufacturing system increases linearly. On the whole, at production lot size within limit (1000–4500)
and reliability parameter value less than 0.01, the total cost for the system stays minimum which gives
optimal values of production rate and reliability parameter as (Q = 2985.27, λ =< 0.01).
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5.1.2. Managerial Insights

Some recommendations are provided for the industrial mangers as follows:

• The major insight for the industrial management is to assess uncertain production capacity for
automated smart production planning. In a real world production environment, productivity
and manufacturing efficiency is compromised generally because of an unreliable and limited
production capacity system. Therefore, we provide comprehensive details for the influence of the
reliability parameter on production rates and production capacity for optimal production planning.

• As the study is considered for a smart production inventory model, random breakdowns and
random repair time is considered, therefore a production manager can easily do the calculations
for optimal production quantity and optimal controllable production rates based on random
system breakdowns in production planning.

• The unreliable manufacturing system provides optimum values for all decision variables, and if
the manufacturing unit is producing smart products, for example high-tech products/electronic
products, then our model provides the insight to choose investment options based on
manufacturing system reliability.

Figure 15. Change in expected total cost E[TC(Q, µ, λ, τ)] with varying λ and Q.

6. Conclusions

This manuscript proposed a novel intelligent production maintenance model under stochastic
manufacturing reliability for technology dependent demand and variable production rate. The study
has extended a basic production inventory model with practical and realistic assumptions as follows:

- Rather than fixed designed production rates, the model considers a controllable production
rate-based automated smart manufacturing system which reduces the per unit production cost.
Along with the production rate µ, the per unit production cost also depends on the manufacturing
reliability and productivity parameter λ.

- The manufacturing system productivity and reliability can be increased with an investment in
advanced technology, and the smart production technology investment D[λ] is not a constant
parameter. Rather, it depends on the failure rate of manufacturing system.

- Concerning product innovation and ever-changing technology advancements, much existing
research is considering the approach of remanufacturing and recycling used products to gain two
important industrial goals:
(1) To increase the economic viability for manufacturers and reduce material waste [68,69];
(2) To consider sustainable production concerning environmental impacts [70,71].
The problem that all these researchers lack in answering these questions is what are the economical
and environmental implications of these growing technological implications on production
systems and production efficiency, as production setup and technological development costs are
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the biggest parts of any production system. Moreover, issues regarding production reliability are
currently one of the most important parameters for maintaining an adequate level of access to
high-tech products. However, no existing research has considered the influence of smart product
innovation and production reliability on manufacturing policies. Therefore, this study investigates
the need for considering technological improvement/advancements in the production process
and corresponding costs for product innovation. This study outperforms the work of [6] as it
considers the demand variability for technology innovation for an unreliable production system,
and limits the per-unit technology investment for products τ as (< α% ) of the smart production
technology development investment (χ).

- Due to the stochastic nature of breakdowns and repair times, the study extended the production
inventory model to an integrated smart production maintenance model. The study infers the
importance of performance quality parameter ζ for per-unit technological investment for products
τ, as even a 10% increase in ζ gives infeasible results for the proposed unreliable production model.

The manufacturing reliability depends on the system failure rate, and the system reliability is
considered a decision variable. To increase the manufacturing reliability, an investment in smart
production technology is made which based on raw material yield loss cost, manufacturing yield loss
cost, tool/die cost for manufacturing machinery, per unit smart production cost based on reliability,
and controllable production rates. As the time to failure and time to repair follows exponential
distributions, the cycle length is a random parameter, so an abort/resume policy is considered.
The mathematical problem was solved through Kuhn–Tucker considering reliability and productivity
constraints. The model shows the practical implications of unreliable manufacturing system for
industrial managers. Based on random failure rate and random repair rate, the managers get
the information for optimal production quantity and optimal production rate. A more practical
consideration is the variable demand which depends on the technology investment, as with the
technology revolution, demand for high-tech products is increasing as compared to conventional
consumer products; for this reason, the model provides better insight into investment in products as
well as smart production technology. Some future extensions could be the consideration of automation
policies for manufacturing systems. Also, the study does not consider the energy costs and carbon
emissions associated with investments in new technology, which could be a genuine limitation of this
research. Energy costs are considered as the biggest cost component in the production for complex
and highly automated production systems. Asghar et al. [6] showed that energy consumption
for an unreliable production system is a variable factor for different production states and specific
energy consumption costs for an automated flexible production system can be reduced with improved
manufacturing reliability. The study can be further extended to the concept [34] of imperfect production
process for an unreliable manufacturing system as the production of defectives is an inevitable
phenomena. Furthermore, considerations of deteriorating products is also an important extension
of this work, and a good study in this direction is performed by [68]. One should consider that raw
material and finished product deterioration is a more realistic but difficult issue, as the majority of
production materials faces deterioration due to handling, storage, and lifetime limitations. Including
carbon emissions cost in the production system is yet another extension of this paper, and to make
the manufacturing process green and clean, such a study is done by [71]. This way one can analyze
the economic and environmental implications of high-tech investment in manufacturing policies and
product innovations. Another important and more current field of technological advancements that
should be considered is modern e-commerce business practices for variable product demands. In this
regard, the works of [72,73] provide a better understanding for offline and online business strategies.
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Abbreviations

The following abbreviations are used in this paper.

EOQ Economic ordering quantity
EPQ Economic production quantity
EMQ Economic manufacturing quantity
OPT Optimum production technology
AR Abort/Resume
NR No-resumption
OSE Overall system effectiveness
VMI Vendor managed inventory
JMI Jointly managed inventory
IT Information technology
Decision variables
τ Technology investment for high-techs products ($/unit)
λ The manufacturing quality performance parameter, where λ ε [λmin, λmax]

Q Production quantity (units)
µ Variable rate of smart production, where µ ε [µmin, µmax] (units/unit time)
Model Parameters
Z Time horizon (years)
S Manufacturing setup cost ($/setup)
x[τ] Technology dependent demand rate (units/unit time)
C(µ, λ) Unit smart production cost, a function of manufacturing quality performance parameter and varia-

ble production rate ($/unit/unit time)
r1 Raw material cost ($/unit)
r2 Raw material increment cost due to low manufacturing quality performance parameter ($/unit)
Y Unit manufacturing yield loss cost due to low manufacturing quality performance parameter

($/unit/unit time)
π Tool/die cost ($/unit)
hc Inventory carrying cost ($/unit/unit time)
Rr System repair cost ($/unit/unit time)
D[λ] Manufacturing technology development cost ($)
χ Advanced manufacturing technology investment ($)
$ Manufacturing quality performance scale parameter (non-negative)
ζ Manufacturing quality performance constant (non-negative)
Rs System restoration cost ($/setup)
Sc Shortage cost ($/unit/unit time)
z1 Stochastic variable indicating manufacturing system failure time (non-negative)
θ Stochastic repair rate (number of repairs/unit time)
z2 Stochastic variable indicating repair time upon manufacturing system breakdown (non-negative)
g(z1) Probability density function of manufacturing system failure time z1
G(z1) Cumulative density function of manufacturing system failure time z1
g(z2) Probability density function of manufacturing system repair time z2

G(z2) Cumulative density function of manufacturing system repair time z2

E[C1] Expected total cost of system with high manufacturing quality performance variable ($/cycle)
E[C2] Expected total cost of system with low manufacturing quality performance variable ($/cycle)
E[Z1] Expected cycle length with high quality performance variable (time)
E[Z2] Expected cycle length with low quality performance variable (time)
E[Z] Expected cycle length of manufacturing system (time)
E[TC1] Expected total cost per unit of time with high manufacturing quality performance variable ($)
E[TC2] Expected total cost per unit of time with low manufacturing quality performance variable ($)
E[TC] Expected total cost per unit time of manufacturing system ($)
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Appendix A

The ETC[Q, µ, λ, τ] provided in Equation (25) is a non-linear complex constrained problem with
constraints (29) for which unconstrained Lagrange function is provided as,

(
S + RsλS + χe

ζλ
$ +

Rr

θ
(1− e−

Qλ
µ ) + (cµ + Yλ + µ((r1 + r2λ) + µπ)) +

e−
Qλ
µ

(
e

Qλ
µ − 1

)
λ

+ Sc(λ

(a + γeητ)2)
e

Q
(
− µθ

a+γeητ +θ−λ

)
µ − 1

θ (a(θ − λ) + γeητ(θ − λ)− µθ)
+ hc

(
(µ− (a + γeητ))

λ2 (a + γeητ)

)
e−

Qλ
µ

(
µ

(
e

Qλ
µ − 1

)
−Qλ

)

+β1Q− β2(x[τ]− µ) + β3 (µmax − µ)− β4 (λ− λmax) + β5 (λmin − λ) + β6τ

)
/eQ

(
− θ

a+γeητ − λ
µ

)

1
(θλ (a + γeητ) ((θ − λ) (a + γeητ)− µθ))

(λ2 (a + γeητ)2 + µθ2 (µ− a− γeητ) + µθλ (a + γeητ)). (A1)

The necessary conditions for global optimal values of decision variables (Q∗, µ∗, λ∗, τ∗) are
given as;

∂ETC[Q, µ, λ, τ]

∂Q
= 0 (A2)

∂ETC[Q, µ, λ, τ]

∂λ
= 0 (A3)

∂ETC[Q, µ, λ, τ]

∂µ
= 0 (A4)

∂ETC[Q, µ, λ, τ]

∂τ
= 0 (A5)

Moreover, the Equation (A1) achieves a global minimum only when the following equation for
the second derivative of expected total cost ETC[Q, µ, λ, τ] with respect to each decision variable is
greater than zero.

∂2ETC[Q, µ, λ, τ]

∂Q2 > 0 (A6)

∂2ETC[Q, µ, λ, τ]

∂λ2 > 0 (A7)

∂2ETC[Q, µ, λ, τ]

∂µ2 > 0 (A8)

∂2ETC[Q, µ, λ, τ]

∂τ2 > 0 (A9)

The other KT conditions are given in Equations (29)–(40).

Proposition A1. The ETC[Q, µ, λ, τ] provided in Equation (A1) has the global optimal value at Q∗, µ∗, λ∗,
and τ∗, if all principle minors of Hessian matrix satisfy (H1, H2, H3, H4) > 0.

Proof. The convexity of objective function Equation (A1) is proved below;

If, a1,1 = ∂2ETC[Q,µ,λ,τ]
∂Q2 , a1,2 = ∂2ETC[Q,µ,λ,τ]

∂Q∂λ , a1,3 = ∂2ETC[Q,µ,λ,τ]
∂Q∂µ , a1,4 = ∂2ETC[Q,µ,λ,τ]

∂Q∂τ

a2,1 = ∂2ETC[Q,µ,λ,τ]
∂λ∂Q , a2,2 = ∂2ETC[Q,µ,λ,τ]

∂λ2 , a2,3 = ∂2ETC[Q,µ,λ,τ]
∂lambda∂µ , a2,4 = ∂2ETC[Q,µ,λ,τ]

∂λ∂τ
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a3,1 = ∂2ETC[Q,µ,λ,τ]
∂µ∂Q , a3,2 = ∂2ETC[Q,µ,λ,τ]

∂µ∂λ , a3,3 = ∂2ETC[Q,µ,λ,τ]
∂µ2 , a3,4 = ∂2ETC[Q,µ,λ,τ]

∂µ∂τ

a4,1 = ∂2ETC[Q,µ,λ,τ]
∂τ∂Q , a4,2 = ∂2ETC[Q,µ,λ,τ]

∂τ∂λ , a4,3 = ∂2ETC[Q,µ,λ,τ]
∂τ∂µ , a4,4 = ∂2ETC[Q,µ,λ,τ]

∂τ2

Then, for Q∗, µ∗, λ∗, τ∗, the Hessian matrix of Equation (A1) can be expressed as;

H =


a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4


Moreover, the first four principle minors are given as;

H1 =

(
∂2ETC[Q, µ, λ, τ]

∂Q2

)
= +0.0009 > 0

H2 =

(
a1,1 a1,2

a2,1 a2,2

)
=

(
0.00009 −0.69
−0.69 7.8× 106

)
= +734.925 > 0

H3 =

 a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 =

 0.00009 −0.69 0.0001
−0.69 7.8× 106

0.0001 −0.63 0.0014

 = +0.930446 > 0

H4 =


a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

 =


0.00009 −0.69 0.0001 −0.0002
−0.69 7.8× 106 −0.62 2.04
0.0001 −0.63 0.0014 2.59× 10−7

−0.0002 2.04 2.6× 10−7 1.43

 = +1.33576 > 0

Hence the expected cost is strictly convex and achieves optimal minimum value at Q∗ = 2985.27,
µ∗ = 1081.51, λ∗ = 5.54× 10−6, and τ∗ = 0.006.
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