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Abstract: Physics of topological materials has attracted much attention from both physicists and
mathematicians recently. The index and the fermion number of Dirac fermions play an important role
in topological insulators and topological superconductors. A zero-energy mode exists when Dirac
fermions couple to objects with soliton-like structure such as kinks, vortices, monopoles, strings,
and branes. We discuss a system of Dirac fermions interacting with a vortex and a kink. This kind
of systems will be realized on the surface of topological insulators where Dirac fermions exist.
The fermion number is fractionalized and this is related to the presence of fermion zero-energy
excitation modes. A zero-energy mode can be regarded as a Majorana fermion mode when the
chemical potential vanishes. Our discussion includes the case where there is a half-flux quantum
vortex associated with a kink in a magnetic field in a bilayer superconductor. A normalizable wave
function of fermion zero-energy mode does not exist in the core of the half-flux quantum vortex.
The index of Dirac operator and the fermion number have additional contributions when a soliton
scalar field has a singularity.

Keywords: topological insulator; vortex, fractional quantization; Dirac Hamiltonian; layered
superconductor; index theorem; zero-energy mode; Majorana fermion; fractional fermion number

1. Introduction

Recently, topological materials have been attracted much attention in physics. New interesting
topological properties will emerge in the study of quantum systems from the viewpoint of topology.
In topological materials, Dirac fermions sometimes exist on the surface or in the bulk. The index
of Dirac operators plays an important role in the study of topological systems [1]. The Dirac index
is related to the η invariant introduced by Atiyah, Patodi, and Singer [2–5]. The η invariant has
also relation with the fermion number that can be fractional in a soliton–Dirac fermion system.
New low-lying excitation modes would appear when fermions interact with soliton-like objects such
as domain walls, vortices, kinks, and monopoles [6–9]. There also exist zero-energy bosonic modes on
solitons [9–11], and thus both bosonic and fermionic zero-energy modes will emerge in the presence of
solitons. These exotic quantum states carry fermionic quantum numbers that can be fractional [12–15].
The existence of Majorana zero modes has also been examined in doped topological materials [16,17].

We expect that the quantization depends on a topological structure. In superconductors,
the magnetic flux is quantized as integer times the unit quantum flux φ0. There are, however, exceptions
when superconductors have multi components or form some geometric structure. A fractional-flux
quantum vortex (FFQV) may exist in a multicomponent or multi-layer superconductor. In fact, an FFQV
has been observed in Nb thin film superconducting bilayers recently [18]. This may raise a question
about quantization.
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In this paper, we investigate zero-energy modes in a vortex–fermion system and a fractional
vortex–fermion system. The zero-energy mode is a Majorana fermion mode in a Dirac semi-metal
with vanishing chemical potential. The inclusion of non-zero chemical potential would change
the nature of excitation modes. If a bilayer system including superconductors and a topological
insulator is synthesized, the Dirac fermion on the surface of the topological insulator may cause
a zero-energy mode in a vortex. There are several superconductors that are suggested to be
a topological superconductor of Dirac electrons [19–21]. They are, for example, FeTe1−xSex [19] and
CaKFe4As4 [20,21]. In (Bi1−xSbx)2Te3, a surface Dirac electronic state is suggested to be realized.
A vortex–Dirac fermion system may be formulated on a surface of a junction of superconductors and
a topological insulator. Our discussion will include the case where there is a half-flux quantum vortex
(HFQV) that is associated with a kink in a bilayer superconductor in a magnetic field. A normalizable
single-valued or two-valued fermion zero-energy mode does not exist in the core of HFQV.

The index has been defined for Dirac operators. The index of a Dirac operator is closely related to
the fermion number and η invariant. The fermion number can be fractional in a Dirac system. The Dirac
index will have an additional contribution if a scalar field has a singularity like a vortex. The paper is
organized as follows. In Section 2, we examine fermion zero-energy modes in a vortex–Dirac fermion
system. We show that we can identify the fermion zero-energy mode as a Majorana mode when the
chemical potential µ = 0. In Section 3, we discuss the index of a Dirac operator and fractional fermion
number in a vortex–Dirac fermion system. We give a summary in the lase section.

2. Fermion Zero-Energy Modes And Solitons

2.1. A Vortex-Dirac Fermion Model

When Dirac fermions couple to a soliton, there may appear localized fermion zero modes in
a soliton. Let us consider Dirac fermions in (1 + 2) dimensions where Dirac fermions interact with
a scalar field. The Lagrangian is given by [6]

L = −1
4

FµνFµν + ψ̄γµ(i∂µ − qAµ)ψ−
1
2

igφψ̄ψc +
1
2

ig∗φ∗ψ̄cψ, (1)

where ψ is a two-component spinor and q is the coupling to the gauge field. We use the notation
ψ̄ = ψ†γ0. Usually we choose q = e or q = 2e, where e is the electron charge. We will choose q = 2e
so that the index of the Dirac operator becomes an integer, as the Dirac index is the difference of the
dimensions of vector spaces. This will be described in Section 3. This is related to the property that
the magnetic flux is quantized as an integer times the quantum unit φ0 = h/2|e| = πh̄/|e|. Aµ is the
abelian gauge field and Fµν is the field strength given by Fµν = ∂µ Aν− ∂ν Aµ. ψc is the charge conjugate
spinor given as ψc = Cψ̄T where C is the charge conjugation matrix and T indicates the transposition.
g is the coupling constant. Dirac matrices are chosen as

γ0 = σ3, γ1 = iσ2, γ2 = −iσ1, (2)

and
C = iγ0γ2 = iσ2. (3)

We use the Minkowski metric (ηµν) = diag(1,−1,−1). For the representation

ψ =

(
ψ1

ψ2

)
, (4)

the interaction term is written as

Lint ≡ −
i
2

gφψ̄ψc +
i
2

gφ∗ψ̄cψ = igφψ∗1 ψ∗2 − igφ∗ψ2ψ1. (5)
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Lint indicates the pairing interaction between ψ1 and ψ2. Thus, L in Equation (1) represents
a superconductor model in (1 + 2) dimensions.

We assume that A0 = 0 and
Ai(x, y) = εij r̂j

1
2e

a(r), (6)

where r̂ = r/|r| with r = (x, y) and r = |r|. a(r) is a function of the radial variable r. The scalar field φ

corresponds to the gap function and we assume the form with the vorticity Q:

φ(r) = eiQθ f (r), (7)

where θ is the angle variable θ = tan−1(y/x) and f (r) is a function of r. In the conventional case
Q takes an integer value. In this paper we also consider the case where Q could take a non-integer
value [22]. We assume the asymptotic behaviors for f (r) and a(r) as follows,

f (r) → f∞ (r → ∞) (8)

→ f0r|Q| (r → 0) (9)

a(r) → −Q/r (r → ∞) (10)

→ 0 (r → 0). (11)

Here, f∞ and f0 are constants. We assume that g f (r) ≥ 0. Then the magnetic flux is given by

Φ = −
∫

d2xF12 =
∫

dxdyFxy =
π

e
Q, (12)

for Fxy = ∂x Ay − ∂y Ax, where we set Ax = A1 and Ay = A2. We use the unit h̄ = c = 1 in this paper.
Let us consider fermion zero-energy modes in this system. The equation of motion for ψ is

given by
i∂tψ = σj

(
−i∂j − qAj

)
− gφσ2ψ∗. (13)

The equation for the zero-energy mode is written as

σj(−i∂j − Aj)ψ− gφσ2ψ∗ = 0. (14)

We set Dj = ∂j − ieAj to obtain

D1 + iD2 = eiθ
(

∂r + i
1
r

∂θ − a(r)
)

, (15)

D1 − iD2 = e−iθ
(

∂r − i
1
r

∂θ − a(r)
)

, (16)

for x = r cos θ and y = r sin θ. A solution ψ is written in the form

ψ =

(
eBχ1

e−Bχ2

)
, (17)

where
B =

∫ r

0
dr′a(r′). (18)
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χ1 and χ2 should satisfy

eiθ
(

∂r +
i
r

∂θ

)
χ1 + g f eiQθχ∗1 = 0, (19)

e−iθ
(

∂r +
i
r

∂θ

)
χ2 − g f eiQθχ∗2 = 0. (20)

When Q is an integer, there are |Q| normalizable solutions [6]. This is easily shown by using the
following Fourier decomposition:

χ1 = ei(Q−1)θ/2 ∑
`

ei`θχ1`, (21)

χ2 = ei(Q+1)θ/2 ∑
`

ei`θχ2`. (22)

We adopt that χ1` and χ2` are real. Then, we have the equations for χ1` as(
∂r −

(Q− 1)/2 + `

r

)
χ1` + g f χ1,−` = 0, (23)(

∂r −
(Q− 1)/2− `

r

)
χ1,−` + g f χ1` = 0. (24)

Similarly, the equations for χ2` are(
∂r +

(Q + 1)/2 + `

r

)
χ2` + g f χ2,−` = 0, (25)(

∂r +
(Q + 1)/2− `

r

)
χ2,−` + g f χ2` = 0. (26)

The following conditions should be satisfied so that χ1` and χ1,−` are regular at the origin,

− (Q− 1)/2 ≤ ` ≤ (Q− 1)/2. (27)

This indicates that Q ≥ 1 and the allowed values of ` are as follows. For Q = 1, we have ` = 0.
For Q = 2, ` = ±1/2. For Q = 3, ` takes −1, 0, 1, and so on. This is shown in Table 1. Therefore, there
are Q solutions for χ1. The condition for χ2 reads (Q + 1)/2 ≤ ` ≤ −(Q + 1)/2. Thus, Q should be
negative and ` is in the range

− (|Q| − 1)/2 ≤ ` ≤ (|Q| − 1)/2, Q ≤ −1. (28)

Therefore, χ2 vanishes when ` is in the range of Equation (27), and instead χ1 vanishes when Q
and ` satisfy Equation (28).

Table 1. Allowed values of ` for positive integers Q. ` takes half-integers when Q is an even integer.
m indicates a power of χ1` for small r ∼ 0.

Q ` m ≡ (Q − 1)/2 + `

1 0 0
2 −1/2, 1/2 0, 1
3 −1, 0, 1 0, 1, 2
4 −3/2, −1/2, 1/2, 3/2 0, 1, 2, 3
5 −2, −1, 0, 1, 2 0, 1, 2, 3, 4
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When ` is non-zero, a pair of χ1` and χ1,−` or χ2` and χ2,−` contribute to a gapless mode. When f
vanishes, χ1` is given by χ1` ' r(Q−1)/2+`. χ1` satisfies the second-order differential equation

∂2
r χ1` +

1−Q
r

∂rχ1`

(
Q2

4
−
(
`− 1

2

)2
)

1
r2 χ1` + g f ′(r)χ1,−` − (g f )2χ1` = 0. (29)

This is the second-order differential equation with a regular singular point [23,24] if f (r) is
a regular function. When r is large, we neglect 1/r term in the equation to have

χ1` ' χ1.−` ' exp
(
−
∫ r

0
g f (r′)dr′

)
. (30)

For small r, since f (r) → 0 as r → 0, the behavior of solutions is determined by the indicial
equation given by

k2 −Qk +
(

Q
2

)2
−
(
`− 1

2

)2
= 0. (31)

There are two solutions for this equation:

k1 =
Q− 1

2
+ `, k2 =

Q + 1
2
− `. (32)

As k1 − k2 ≥ 0 if and only if ` ≥ 1/2, χ1` exhibits the power behavior

χ1` ' r
Q−1

2 +`ϕ(r), (33)

for ` ≥ 1/2, where ϕ(r) is a non-singular function. The power (Q − 1)/2 + ` coincides with that
derived from Equation (23) in the limit f (r)→ 0.

Let us examine the relation between the spinor ψ and the Majorana spinor. The zero-energy mode
with ` = 0 for a positive odd integer Q is given by

χ1`=0 = r(Q−1)/2 exp
(
−
∫ r

0
g f (ρ)dρ

)
, (34)

and χ2 = 0. From this solution the Majorana fermion is formulated as

ψM = ψ + ψc =

(
ξ

−ξ∗

)
, (35)

where
ξ = eBχ1`=0. (36)

Thus, the fermion zero-energy mode can be regarded as the Majorana mode. The same argument
applies for the zero-energy modes with ` 6= 0. The Majorana spinor is also made from ψ for ` 6= 0
since χ2` vanishes for Q > 0. Thus there can be |Q|Majorana modes in general.

When Q is a half-integer, m ≡ (Q− 1)/2 + ` must be also a half-integer so that the wave function
is a single-valued or two-valued function. For Q = 1/2, no value of ` is allowed. Thus there is no
normalizable and two-valued solution of the zero-energy modes for Q = 1/2. For Q = 3/2, we have
` = ±1/4 or m = 0, 1/2. It appears that there are [Q] single-valued solutions for positive Q where [Q]

indicates the integer part of Q (Gauss symbol). For half-integer Q, we must have

[Q] > m > −1
2

, 2m ∈ Z, 2Q ∈ Z. (37)
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For negative vorticity Q < 0, we replace Q by |Q|. In fact, in the case of half-flux vortex with
Q = 1/2 we have a solution

χ1 = h(r)e−iθ/4, (38)

and χ2 = 0. For this ansatz we obtain

h(r) = r−
1
4 exp

(
−
∫ r

0
dr′g f (r′)

)
. (39)

This solution has a singularity at r ∼ 0 but can be normalized. This solution, however, is not
accepted because χ1 is not a single-valued function. In the system with a half-flux quantum vortex,
a wave function should be a single-valued or two-valued function [25]. We show allowed values of `
and m in Table 2. There are 2[Q] = 2Q− 1 solutions for Q > 0 when including two-valued solutions.

Table 2. Allowed values of ` for positive odd half-integers Q. 2` takes half-integers in this case.

Q ` m ≡ (Q − 1)/2 + `

1
2 No solutions No solutions
3
2 − 1

4 , 1
4 0, 1

2
5
2 − 3

4 , − 1
4 , 1

4 , 3
4 0, 1

2 , 1, 3
2

7
2 − 5

4 , − 3
4 , − 1

4 , 1
4 , 3

4 , 5
4 0, 1

2 , 1, 3
2 , 2, 5

2

2.2. Effect of the Chemical Potential

We have discussed a Dirac semi-metal with vanishing chemical potential µ = 0 so far. In this
subsection we examine a Dirac metal by introducing the chemical potential. The wave function is a
sum of the positive and negative frequency parts:

ψ = e−iEt/h̄ψ+(r) + eiEt/h̄ψ−(r). (40)

The eigen-equation reads

[σj(pj − qAj)− µ]ψ+ − gφσ2ψ∗− = Eψ+, (41)

[σj(pj − qAj)− µ]ψ− − gφσ2ψ∗+ = −Eψ−. (42)

We put

ψ+ =

(
eBψ1

e−Biψ2

)
, ψ− =

(
eBχ1

e−Biχ2

)
. (43)

We neglect the magnetic field by assuming that the Ginzburg-Landau parameter κ is large,
the equations for ψ+ and ψ− are represented as

eiθ
(

∂r +
i
r

∂θ

)
ψ1 + gφχ∗1 = −(E + µ)ψ2, (44)

e−iθ
(

∂r −
i
r

∂θ

)
ψ2 + gφχ∗2 = (E + µ)ψ1, (45)

eiθ
(

∂r +
i
r

∂θ

)
χ1 + gφψ∗1 = (E− µ)χ2, (46)

e−iθ
(

∂r −
i
r

∂θ

)
χ2 + gφψ∗2 = −(E− µ)χ1. (47)

This set of equations is formally equivalent to the Bogoliubov-de Gennes equation used for
superconducting graphene with two valleys [26–28].
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We examine the zero-eigenvalue solution. For E = 0, we have a solution with χ1 = ψ1 and
χ2 = ψ2. Then, the equations read

eiθ
(

∂r +
i
r

∂θ

)
ψ1 + gφψ∗1 = −µψ2, (48)

e−iθ
(

∂r −
i
r

∂θ

)
ψ2 + gφψ∗2 = µψ1. (49)

We use the representation

ψ1 = ei(Q−1)θ/2 ∑
`

ei`θψ1`, (50)

ψ2 = ei(Q+1)θ/2 ∑
`

ei`θψ2`. (51)

The equations are given as(
∂r −

(Q− 1)/2 + `

r

)
ψ1` + g f ψ1,−` = −µψ2`, (52)(

∂r +
(Q + 1)/2 + `

r

)
ψ2` + g f ψ2,−` = µψ1`. (53)

In the limit f → 0, ψ1` and ψ2` are given by Bessel functions:

ψ1`(r)
∣∣

f→0 = J Q−1
2 +`

(|µ|r), (54)

ψ2`(r)
∣∣

f→0 = J Q+1
2 +`

(|µ|r). (55)

For ` = 0, the solution in the presence of g f is easily obtained as

ψ1`=0(r) = exp
(
−
∫ r

0
g f (r′)dr′

)
J Q−1

2
(|µ|r), (56)

ψ2`=0(r) = exp
(
−
∫ r

0
g f (r′)dr′

)
J Q+1

2
(|µ|r). (57)

In the limit r → 0, since f (r)→ 0, ψ1` and ψ2` approach Bessel functions shown above. For large
r, r → ∞, we may neglect 1/r terms so that we have

∂rψ1` + g f ψ1,−` ' −µψ2`, (58)

∂rψ2` + g f ψ2,−` ' µψ1`. (59)

As the equations for ψj` (j = 1, 2) are independent of `, we assume that ψj` = ψj,−`.
Then, the asymptotic behaviors for large r are

ψ1` ' cos(µr) exp
(
−
∫ r

0
g f (r′)dr′

)
, (60)

ψ2` ' sin(µr) exp
(
−
∫ r

0
g f (r′)dr′

)
, (61)

or we have

ψ1` ' sin(µr) exp
(
−
∫ r

0
g f (r′)dr′

)
, (62)

ψ2` ' − cos(µr) exp
(
−
∫ r

0
g f (r′)dr′

)
. (63)
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2.3. Dirac Fermions and Soliton Fields

Let us consider a model of Dirac fermions that couple with scalar fields. If scalar fields have
a soliton-like structure, a zero-energy mode would exist. We consider the following Lagrangian

L = −1
4

FµνFµν + ψ̄γµ(i∂µ − qAµ)ψ− gψ̄(σ2φ1 + σ1φ2)ψ, (64)

where φ1 and φ2 are real scalar fields. The interaction term is written as

Lint = igψ̄σ3Mψ, (65)

with

M =

(
0 φ

φ∗ 0

)
, (66)

where φ = φ1 + iφ2.
The equation for the zero-energy modes is

[σ1(−i∂1 − eA1) + σ2(−i∂2 − eA2)]ψ + gMψ = 0. (67)

We set the Fermi velocity vF = 1 for simplicity. In a similar way, the wave function is written in
the form

ψ =

(
eBχ1

e−Bχ2

)
, (68)

where
B =

∫ r

0
a(r′)dr′. (69)

The equation for (χ1, χ2) reads

eiθ
(

∂r +
i
r

∂θ

)
χ1 + gφ∗χ1 = 0, (70)

e−iθ
(

∂r −
i
r

∂θ

)
χ2 + gφχ2 = 0. (71)

The gap function is parametrized as

φ(r) = e−inθ |φ(r)| ≡ e−inθ f (r). (72)

We assume that g f (r) > 0.

χ1(r) = ∑
`∈Z

ei`θu`(r), (73)

χ2(r) = ∑
`∈Z

ei`θw`(r), (74)

where ` takes all the integer values. We set w` = iv`, and then the equations for fermion zero-energy
modes with E = 0 read (

∂r −
`

r

)
u`(r) + g f (r)u`−n+1(r) = 0, (75)(

∂r +
`

r

)
v`(r) + g f (r)v`+n−1(r) = 0. (76)
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For the vorticity n = 1, we have(
∂r −

`

r

)
u`(r) + g f (r)u`(r) = 0, (77)(

∂r +
`

r

)
v`(r) + g f (r)v`(r) = 0. (78)

The solutions are written as

u` = a`r` exp
(
−
∫ r

0
g f (r′)dr′

)
, (79)

v` = b`r−` exp
(
−
∫ r

0
g f (r′)dr′

)
, (80)

where a` and b` are normalization constants. For ` = 0

u0(r) = v0(r) = exp
(
−
∫ r

0
g f (r′)dr′

)
. (81)

We must have u−` = v` when ` is replaced by −`. The normalizable wave function that is regular
at the origin is written as

χ1 = ∑
`≥0

ei`θa`r` exp
(
−
∫ r

0
g f (r′)dr′

)
, (82)

χ2 = i ∑
`≤0

ei`θa−`r−` exp
(
−
∫ r

0
g f (r′)dr′

)
. (83)

This indicates that χ2/i is the complex conjugate of χ1:

χ2 = iχ∗1 . (84)

When we neglect the magnetic field, ψ is given as

ψ =

(
χ1

iχ∗1

)
. (85)

By multiplying ψ by a phase factor eiπ/4, ψ is written in the form

ψ =

(
eiπ/4χ1

−e−iπ/4χ∗1

)
≡
(

ξ

−ξ∗

)
, (86)

where we set ξ = eiπ/4χ1. Therefore we have obtained the Majorana spinor satisfying

ψ = ψc. (87)

We reached the conclusion that the fermion zero-energy mode is represented by the
Majorana spinor.

3. Dirac Operator and Fractional Fermion Number

3.1. Index of the Dirac Operator

Let us consider the Dirac Hamiltonian given as

H = σj(−i∂j − qAj) + gM + σ3m, (88)
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where M is the matrix of the gap function in Equation (67) and the mass m is a constant. H is written as

H =

(
m D + g∆

D† + g∆∗ −m

)
, (89)

where
D = −i

∂

∂x
− qAx −

∂

∂y
+ iqAy. (90)

We put

��D∆ =

(
0 D + g∆

D† + g∆∗ 0

)
. (91)

As��D∆ anticommutes with σ3, we can define the index by

Ind(��D∆) := Tr�D∆ψ=0σ3. (92)

Here, the trace Tr is evaluated in the space Ker��D∆ = {ψ|��D∆ψ = 0}. This definition means

Ind(��D∆) = dimKerD†
∆ − dimKerD∆, (93)

where D∆ = D + g∆ and D†
∆ = D† + g∆∗. The index is represented as by introducing the cutoff:

Ind(��D∆) = lim
Λ→∞

Trσ3e−�D
2
∆/Λ2

. (94)

Then Ind(��D∆) is calculated as

Ind(��D∆) = lim
Λ→∞

∫ ddk
(2π)d tr〈k|σ3e−�D

2
∆/Λ2 |k〉

= lim
Λ→∞

∫ ddk
(2π)d

∫
ddxtre−ik·xe−�D

2
∆/Λ2

eik·x, (95)

where the tr indicates the trace operation with respect to 2× 2 matrices. We use the formula

e−ik·x f (∂µ)eik·xψ = f (∂µ + ikµ)ψ, (96)

for a function f , so that we have

Ind(��D∆) = lim
Λ→∞

∫ ddk
(2π)d

∫
ddxtr

(
σ3e−�D

2
∆/Λ2

∣∣∣
∂µ→∂µ+ikµ

)
. (97)

��D2
∆ is given as

��D2
∆ =

(
(D + g∆)(D† + g∆∗) 0

0 (D† + g∆∗)(D + g∆)

)
. (98)

The matrix elements are evaluated as

(D + g∆)(D† + g∆∗)
∣∣∣
∂µ→∂µ+ikµ

= k′2x + k′xg∆1 + g∆1k′x + ∆2
1 + k′2y − k′yg∆2 − g∆2k′y + ∆2

2

− q[∂x, Ay]− q[Ax, ∂y]− i[k′x, ∆2]− i[k′y, ∆1]

= (k′x + ∆1)
2 + (k′y − ∆2)

2 − q(∂x Ay − ∂y Ax)− (∂x∆2)− (∂y∆1), (99)
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where we set k′j = k j − i∂j − qAj for j = x and y. In two-space dimensions d = 2, this results in

Ind(��D∆) = lim
Λ→∞

1
4π

∫
d2xΛ2trσ3eF/Λ2

=
1

2π

∫
d2x

(
qFxy + ∂x∆2 + ∂y∆1

)
= Ind(��D) + Ind(∆)

=
e
π

Φ + Ind(∆), (100)

where Fxy = ∂x Ay − ∂y Ax and

F =

(
qFxy + ∂x∆2 + ∂y∆1 0

0 −qFxy − ∂x∆2 − ∂y∆1

)
. (101)

We defined
Ind(∆) =

1
2π

∫
d2x(∂x∆2 + ∂y∆1) = −

1
2π

∫
d2xrot~∆, (102)

for ~∆ = (∆1,−∆2). This formula indicates that the Dirac index becomes non-zero if a scalar
field is singular even when no magnetic field is applied. When ∆ = ∆1 + i∆2 is not singular in
two-space dimensions, the integral concerning the gap functions vanishes. In this case we have
Ind(��D∆) = Ind(��D):

Ind(��D∆) = Ind(��D) =
q

2π
=

e
π

Φ. (103)

When the vorticity is n = 1, Φ is given by the unit flux Φ = π/e = −φ0 where φ0 = π/|e| (h̄ = 1).
This leads to

Ind(��D∆) = 1. (104)

Then, we have
dimKerD†

∆ − dimKerD∆ = 1. (105)

In fact, for positive angular momentum `, we have a zero-energy normalizable solution ψ

satisfying D†
∆ψ = 0 for the Hamiltonian H with m = 0, and a solution for D∆ψ = 0 is not normalizable

due to a singularity at the origin. As the solution of D†
∆ψ = 0 is also an eigenstate of σ3, this zero-mode

can be regarded as a Majorana fermion.

3.2. Fractional Fermion Number

Let us consider the fermion number defined by

N =
∫

d2x : ψ†(r)ψ(r) :=
1
2

∫
d2x[ψ†(r), ψ(r)], (106)

for r = (x, y) where : · · · : indicates the normal ordering. N is related to the eta invariant defined as

ηH(s) = ∑
λ

sign(λ)|λ|−s, (107)

where λ’s are eigenvalues of H. The fermion number N is given as [29]

N = −1
2

ηH(0). (108)

There is the relation between η�D and Ind(��D) [29,30]:

η�D(0) = −Ind(��D). (109)
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This is generalized to
η�D∆

(0) = −Ind(��D∆). (110)

Then the fermion number in the massless limit is

N =
q

4π
Φ =

e
2π

Φ. (111)

When the flux Φ is −n times the unit flux quantum, we have the fractional fermion number

N =
1
2

n. (112)

When m is finite, N is given by

N =
q

4π

m
|m|Φ = − q

8π

m
|m|

∫
d2xεijFij. (113)

N is written as
N =

∫
d2xj0. (114)

by introducing the fermion current jµ. This suggests that the additional effective action is formulated as

∆S = sign(m)
q2

16π
εµνσ

∫
d3xFµν Aσ, (115)

because of δS/δAµ = −q〈ψ̄γµψ〉 = −q〈jµ〉 for the action S. Therefore the Chern–Simons term is
induced in a Dirac–vortex system. This may be realized on the surface of a junction of a superconductor
and a topological insulator.

3.3. Fractional Vortex and Dirac Index

Let us turn to the case of fractional-flux quantum vortex, that is, the fractional vorticity Q,
especially the case of half-flux quantum vortex. The index Ind(��D) equals Q for Φ = −Qφ0:

Ind(��D) = Q. (116)

Ind(��D) should be an integer since the index is only the difference of dimensions of vector spaces.
Ind(��D∆) has a contribution from the gap function because the phase of ∆ has a singularity on the
kink [31]. The half-flux quantum vortex exists associated with the kink in the phase space, where the
kink is a one-dimensional object. We here give a comment on the kink in a multiband superconductor.
The kink state may be unstable because of the energy cost when the field changes rapidly. In other
words, the superconducting current flows between the layer, which may cause a force to the magnetic
flux vortex. This may bring about a new effect on the zero modes in the vortex. We, however, neglect
this effect in this paper.

We adopt that the gap function is given as

∆(r) = ∆0(r)e−iφ(θ), (117)

where φ(θ) has a step-function-like singularity,

φ(θ) =
1
2

θ + πH(θ), (118)
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near the origin −π < θ < π. H(θ) indicates the Heaviside step function. We assume
∆0(r) = ∆∞ tanh(r/ξ). Then, we calculate∫

dxdy
(
∂x∆2 + ∂y∆1

)
= −

∫
dxdy∆0(r)

(
cos φ · φ′(θ)∂xθ + sin φ · φ′(θ)∂yθ

)
= −

∫ R

0
dr
∫ π

−π
dθ∆0(r)φ′(θ) (− cos φ sin θ + sin φ cos θ)

= −π∆∞ sin φ(0)ξ ln cosh(R/ξ)). (119)

We take the cutoff R so that ln cosh(R/ξ) ' 1 and φ(0) = π/2.
As ξ ' 1/∆∞(= h̄vF/∆∞, we have∫

dxdy
(
∂x∆2 + ∂y∆1

)
= −π. (120)

This indicates
Ind(��D∆) = Ind(��D) + Ind(∆) = Q− 1

2
. (121)

Thus, Ind(��D∆) becomes an integer with the contribution from the kink for the half-flux vortex.

3.4. Fermion Number and Kinks

The existence of a fermion zero-energy mode is related to the fractional fermion number. Let us
examine the (1 + 2)-dimensional model of Dirac fermions that couples to a scalar field with kink
structure. The Lagrangian is given as

L = −1
4

FµνFµν + ψ̄γµ(i∂µ − qAµ)ψ− ψ̄(m + γ1φ1)ψ, (122)

where φ1 is a real scalar field. We assume that φ1 represents a kink solution with the
asymptotic behavior,

φ1(x)→ v as x → ∞, (123)

φ1(x)→ −v as x → −∞. (124)

The kink is a one-dimensional object depending on one variable and is situated outside the region
where the vortex exists. Then the fermion number is a sum of two contributions from vortex and kink:

N = Ind(��D) + Nkink. (125)

Nkink is given by the Goldstone–Wilczek formula:

Nkink = −
1

2π

(
tan−1

(
φ1(∞)

m

)
− tan−1

(
φ1(−∞)

m

))
. (126)

Then, in the limit m→ 0 for v > 0, we have

N = sign(m)
[ q

4π
Φ− 1

2

]
= −sign

(
1
2

Q +
1
2

)
, (127)

where the flux is given as Φ = −Qφ0. For v < 0,

N = −sign
(

1
2

Q− 1
2

)
, (128)
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4. Summary

We have investigated fermion zero-energy modes and the index of the Dirac operator in
vortex–Dirac fermion systems in (1 + 2) dimensions. Dirac fermions play an important role in
many electron systems such as topological insulators, topological superconductors, graphene [32–34],
and also Kondo systems [35–37]. A vortex–Dirac fermion system may be realized on the surface
of a topological insulator in a junction of superconductors and topological insulators. We have
shown that a fermion zero-energy mode exists in a vortex–fermion system and in a soliton–fermion
system. The zero-energy modes are described by Majorana fermions in a Dirac semi-metal (µ = 0).
The quasi-particle energy level εn = (n + 1/2)h̄ω0 in the vortex core of conventional superconductors
shifts to εn = nh̄ω0 in Dirac superconductors. We have also shown that there is no fermion zero mode
in a vortex with fractional vorticity less than unity, as wave function has a singularity at the origin or
becomes a multi-valued function. There is a contribution to the index of a Dirac operator when the
scalar field has a soliton-like structure with singularity. Last, we give a comment that we neglected
the non-equilibrium dynamics that are caused by the superconducting current flow between the layer
brought about by the kink in a superconducting bilayer.
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