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Abstract: In this paper, new sufficient conditions for oscillation of fourth-order neutral differential
equations are established. One objective of our paper is to further improve and complement some
well-known results which were published recently in the literature. Symmetry ideas are often invisible
in these studies, but they help us decide the right way to study them, and to show us the correct
direction for future developments. An example is given to illustrate the importance of our results.
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1. Introduction

Consider the fourth-order neutral differential equation of the form(
r (t)

(
N′′′u (t)

)α
)′

+ q (t) uβ (σ (t)) = 0, (1)

where t ≥ t0 and Nu (t) := u (t) + c (t) u (τ (t)). In this paper, we assume that

H1: α and β are quotients of odd positive integers and β ≥ α;
H2: r ∈ C1 ([t0, ∞)) , r (t) > 0, r′ (t) ≥ 0 and

∫ ∞ r−1/α (s)ds = ∞;
H3: c, q ∈ C ([t0, ∞)) , q (t) > 0, 0 ≤ c (t) < c0 < ∞ and q (t) is not identically zero for large t;
H4: τ ∈ C1 ([t0, ∞)) , σ ∈ C ([t0, ∞)) , τ′ (t) > 0, τ (t) ≤ t and limt→∞ τ (t) = limt→∞ σ (t) = ∞.

By a solution of (1), we mean a function u ∈ C3 ([ty, ∞)
)

, ty ≥ t0, which has the property
r (t) (N′′′u (t))α ∈ C1 ([ty, ∞)

)
, and satisfies (1) on [ty, ∞). We consider only those solutions u of (1)

which satisfy sup{|u (t)| : t ≥ T} > 0, for all T ≥ ty. A solution u of (1) is said to be non-oscillatory if
it is positive or negative, ultimately; otherwise, it is said to be oscillatory.

The qualitative study of the neutral delay differential equations has, besides its theoretical interest,
significant practical importance, see [1]. Lately, there has been a lot of research activities concerning
the oscillation of differential equations with a different order, see [1–24].

Next, we quickly audit some significant oscillation criteria got for higher-order equations which
can be viewed as an inspiration for this paper.

Theorem 1 (A. [23] (Theorem 2)). Every solution u of

N(n)
u (t) + q (t) u (σ (t)) = 0 (2)

Symmetry 2020, 12, 371; doi:10.3390/sym12030371 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-3850-1022
https://orcid.org/0000-0002-7251-9608
http://www.mdpi.com/2073-8994/12/3/371?type=check_update&version=1
http://dx.doi.org/10.3390/sym12030371
http://www.mdpi.com/journal/symmetry


Symmetry 2020, 12, 371 2 of 8

is oscillatory, if

lim inf
t→∞

∫ t

σ(t)
Q (s)ds >

(n− 1) 2(n−1)(n−2)

e
(3)

or

lim sup
t→∞

∫ t

σ(t)
Q (s)ds > (n− 1) 2(n−1)(n−2), σ′ (t) ≥ 0,

where Q (t) := σn−1 (t) (1− c (σ (t))) q (t).

Theorem 2 (B. [24] (Corollary 1)). If either

lim inf
t→∞

∫ t

σ(t)
Q (s)ds >

(n− 1)!
e

(4)

or

lim sup
t→∞

∫ t

σ(t)
Q (s)ds > (n− 1)!, σ (t) ≥ 0

holds, then (2) is oscillatory.

Theorem 3 (C. [22] (Corollary 2.16)). Equation (1) is oscillatory if(
σ−1 (t)

)′
≥ σ0 > 0, τ′ (t) ≥ τ0 > 0, τ−1 (σ (t)) < t

and

lim inf
t→∞

∫ t

τ−1(σ(t))

q̂ (s)
r (s)

(
sn−1

)α
ds >

(
1
σ0

+
cα

0
σ0τ0

)
((n− 1)!)α

e
, (5)

where q̂ (t) := min
{

q
(
σ−1 (t)

)
, q
(
σ−1 (τ (t))

)}
.

It’s easy to see that results in [24] improved results of [23], where (n− 1)! < (n− 1) 2(n−1)(n−2)

for n > 3. Using a different comparison approach Xing et al. [22], improved the results of [23,24].
In this paper, we obtain new oscillation criteria for fourth-order differential Equation (1) with

neutral delay by using the Riccati transformations. Our results improve the results in [22–24].
An example is given to illustrate the importance of our results.

2. Main Results

Here, we consider the following notations:

c1 (t) =
1

c (τ−1 (t))

(
1−

(
τ−1 (τ−1 (t)

))3

(τ−1 (t))3 c (τ−1 (τ−1 (t)))

)

and

c2 (t) =
1

c (τ−1 (t))

(
1−

(
τ−1 (τ−1 (t)

))
(τ−1 (t)) c (τ−1 (τ−1 (t)))

)
.

All functional inequalities are assumed to hold eventually, that is, they are assumed to be satisfied
for all t sufficiently large. We begin with the following auxiliary lemmas that can be found in [3,4,15],
respectively.

Lemma 1. Assume that u, v ≥ 0 and β is a positive real number. Then

(u + v)β ≤ 2β−1
(

uβ + vβ
)

, for β ≥ 1
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and
(u + v)β ≤ uβ + vβ, for β ≤ 1.

Lemma 2. If the function u satisfies u(i) (t) > 0, i = 0, 1, ..., n, and u(n+1) (t) < 0, then

u (t)
tN/n!

≥ u′ (t)
tn−1/ (n− 1)!

.

Lemma 3. Let u ∈ Cn ([t0, ∞) , (0, ∞)) . Assume that u(n) (t) is of fixed sign and not identically zero on
[t0, ∞) and that there exists a t1 ≥ t0 such that u(n−1) (t) u(n) (t) ≤ 0 for all t ≥ t1. If limt→∞ u (t) 6= 0,
then for every µ ∈ (0, 1) there exists tµ ≥ t1 such that

u (t) ≥ µ

(n− 1)!
tn−1

∣∣∣u(n−1) (t)
∣∣∣ for t ≥ tµ.

At studying the asymptotic properties of the positive solutions of (1), it is easy to verify—by [3]
(Lemma 2.2.1)—that the function Nu has the following two possible cases:

Lemma 4. Assume that u is an eventually positive solution of (1). Then, there exist two possible cases:

(S1) N(κ)
u (t) > 0 for κ = 0, 1, 2, 3,

(S2) N(κ)
u (t) > 0 for κ = 0, 1, 3, and N′′u (u) < 0,

for t ≥ t1, where t1 ≥ t0 is sufficiently large.

Lemma 5. If u is an eventually positive solution of (1) and(
τ−1

(
τ−1 (t)

))3
<
(

τ−1 (t)
)3

c
(

τ−1
(

τ−1 (t)
))

, (6)

then

u (t) ≥ 1
c (τ−1 (t))

(
Nu

(
τ−1 (t)

)
− 1

c (τ−1 (τ−1 (t)))
Nu

(
τ−1

(
τ−1 (t)

)))
. (7)

Moreover,(
r (t)

(
N′′′u (t)

)α
)′
≤ −q (t) cβ

1 (σ (t)) Nβ
u

(
τ−1 (σ (t))

)
, if Nu satisfies (S1) (8)

and

N′′u (t) ≤ −cβ/α
N Nβ/α

u (t)
∫ ∞

t

(
1

r ($)

∫ ∞

$
q (s)

(
τ−1 (σ (s))

s

)β

ds

)1/α

d$, if Nu satisfies (S2) . (9)

Proof. Let u be an eventually positive solution of (1) on [t0, ∞). From the definition of Nu (t),
we see that

c (t) u (τ (t)) = Nu (t)− u (t)

and so
c
(

τ−1 (t)
)

u (t) = Nu

(
τ−1 (t)

)
− u

(
τ−1 (t)

)
.

Repeating the same process, we obtain

u (t) =
1

c (τ−1 (t))

(
Nu

(
τ−1 (t)

)
−
(

Nu
(
τ−1 (τ−1 (t)

))
c (τ−1 (τ−1 (t)))

−
u
(
τ−1 (τ−1 (t)

))
c (τ−1 (τ−1 (t)))

))
,
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which yields

u (t) ≥
Nu
(
τ−1 (t)

)
c (τ−1 (t))

− 1
c (τ−1 (t))

Nu
(
τ−1 (τ−1 (t)

))
c (τ−1 (τ−1 (t)))

.

Thus, (7) holds.
Next, it follows from Lemma 4 that there exist two possible cases (S1) and (S2).
Let (S1) holds. Using Lemma 2, we get Nu (t) ≥ 1

3 tN′u (t) and hence the function t−3Nu (t) is
nonincreasing, which with the fact that τ−1 (t) ≤ τ−1 (τ−1 (t)

)
gives(

τ−1 (t)
)3

Nu

(
τ−1

(
τ−1 (t)

))
≤
(

τ−1
(

τ−1 (t)
))3

Nu

(
τ−1 (t)

)
. (10)

From (7) and (10), we get that

u (t) ≥
Nu
(
τ−1 (t)

)
c (τ−1 (t))

(
1−

(
τ−1 (τ−1 (t)

))3

(τ−1 (t))3 c (τ−1 (τ−1 (t)))

)
≥ c1 (t) Nu

(
τ−1 (t)

)
. (11)

From (1) and (11), we obtain(
r (t)

(
N′′′u (t)

)α
)′

+ q (t) cβ
1 (σ (t)) Nβ

u

(
τ−1 (σ (t))

)
≤ 0.

Thus, (8) holds.
In the case where (S2) satisfies, by using Lemma 2, we find that

Nu (t) ≥ tN′u (t) (12)

and hence
(
t−1Nu (t)

)′ ≤ 0. Therefore,

τ−1 (t) Nu

(
τ−1

(
τ−1 (t)

))
≤ τ−1

(
τ−1 (t)

)
Nu

(
τ−1 (t)

)
. (13)

From (7) and (13), we have

u (t) ≥ 1
c (τ−1 (t))

(
1−

(
τ−1 (τ−1 (t)

))
(τ−1 (t)) c (τ−1 (τ−1 (t)))

)
Nu

(
τ−1 (t)

)
= c2 (t) Nu

(
τ−1 (t)

)
,

which with (1) gives (
r (t)

(
N′′′u (t)

)α
)′
≤ −q (t) cβ

2 (σ (t)) Nβ
u

(
τ−1 (σ (t))

)
.

Integrating this inequality from t to $, we obtain

r ($)
(

N′′′u ($)
)α − r (t)

(
N′′′u (t)

)α ≤ −
∫ $

t
q (t) cβ

2 (σ (t)) Nβ
u

(
τ−1 (σ (t))

)
ds. (14)

From (12), we get that

Nu

(
τ−1 (σ (t))

)
≥ τ−1 (σ (t))

t
Nu (t) . (15)

Letting $→ ∞ in (14) and using (15), we obtain

r (t)
(

N′′′u (t)
)α ≥ cβ

2 (σ (t)) Nβ
u (t)

∫ ∞

t
q (s)

(
τ−1 (σ (s))

s

)β

ds.
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Integrating this inequality again from t to ∞, we get

N′′u (t) ≤ −cβ/α
2 Nβ/α

u (t)
∫ ∞

t

(
1

r ($)

∫ ∞

$
q (s)

(
τ−1 (σ (s))

s

)β

ds

)1/α

d$,

for all µ2 ∈ (0, 1). This completes the proof.

Theorem 4. Let σ (t) ≤ τ (t) and (6) hold. If there exist positive functions θ, ρ ∈ C1 ([t0, ∞)) such that

∫ ∞

t0

Ψ (s)− 2α

(α + 1)α+1
r
(
τ−1 (σ (t))

)
(θ′ (t))α+1(

µ1θ (t) (τ−1 (σ (t)))′ (σ (t))′ (τ−1 (σ (t)))2
)α

ds = ∞ (16)

and ∫ ∞

t0

(
Φ (s)− (ρ′ (s))2

4ρ (s)

)
ds = ∞, (17)

for some µ1 ∈ (0, 1) and every M1, M2 > 0, where

Ψ (t) := Mβ−α
1 θ (t) q (t) cβ

1 (σ (t))

and

Φ (t) := cβ/α
2 ρ (t) M(β−α)/α

2

∫ ∞

t

(
1

r ($)

∫ ∞

$
q (s)

(
τ−1 (σ (s))

s

)β

ds

)1/α

d$,

then (1) is oscillatory.

Proof. Let u be a non-oscillatory solution of (1) on [t0, ∞). Without loss of generality, we can assume
that u is eventually positive. It follows from Lemma 4 that there exist two possible cases (S1) and (S2).
Let (S1) holds. From Lemma 5, we arrive at (8). Next, we define a function ω by

ω (t) := θ (t)
r (t) (N′′′u (t))α

Nα
u (τ−1 (σ (t)))

> 0.

Differentiating and using (8), we obtain

ω′ (t) ≤ θ′ (t)
θ (t)

ω (t)− θ (t) q (t) cβ
1 (σ (t)) Nβ−α

u

(
τ−1 (σ (t))

)
−αθ (t)

r (t) (N′′′u (t))α (
τ−1 (σ (t))

)′
(σ (t))′ N′u

(
τ−1 (σ (t))

)
Nα+1

u (τ−1 (σ (t)))
. (18)

Recalling that r (t) (N′′′u (t))α is decreasing, we get

r
(

τ−1 (σ (t))
) (

N′′′u

(
τ−1 (σ (t))

))α
≥ r (t)

(
N′′′u (t)

)α .

This yields (
N′′′u

(
τ−1 (σ (t))

))α
≥ r (t)

r (τ−1 (σ (t)))
(

N′′′u (t)
)α . (19)

It follows from Lemma 3 that

N′u
(

τ−1 (σ (t))
)
≥ µ1

2

(
τ−1 (σ (t))

)2
N′′′u

(
τ−1 (σ (t))

)
, (20)
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for all µ1 ∈ (0, 1) and every sufficiently large t. Thus, by (18)–(20), we get

ω′ (t) ≤ θ′ (t)
θ (t)

ω (t)− θ (t) q (t) cβ
N (σ (t)) Nβ−α

u

(
τ−1 (σ (t))

)
−αθ (t)

µ1

2

(
r (t)

r (τ−1 (σ (t)))

)1/α r (t) (N′′′u (t))α+1 (
τ−1 (σ (t))

)′
(σ (t))′

(
τ−1 (σ (t))

)2

Nα+1
u (τ−1 (σ (t)))

.

Hence,

ω′ (t) ≤ θ′ (t)
θ (t)

ω (t)− θ (t) q (t) cβ
N (σ (t)) Nβ−α

u

(
τ−1 (σ (t))

)
−α

µ1

2

(
r (t)

r (τ−1 (σ (t)))

)1/α
(
τ−1 (σ (t))

)′
(σ (t))′

(
τ−1 (σ (t))

)2

(rθ)1/α (t)
ω

α+1
α (t) .

Since N′u (t) > 0, there exist a t2 ≥ t1 and a constant M > 0 such that

Nu (t) > M, (21)

for all t ≥ t2. Using the inequality

Uw−Vw(β+1)/β ≤ ββ

(β + 1)β+1
Uβ+1

Vβ
, V > 0,

with

U =
θ′ (t)
θ (t)

, V = α
µ1

2

(
r (t)

r (τ−1 (σ (t)))

)1/α
(
τ−1 (σ (t))

)′
(σ (t))′

(
τ−1 (σ (t))

)2

(rθ)1/α (t)

and w = ω, we get

ω′ (t) ≤ −Ψ (t) +
2α

(α + 1)α+1
r
(
τ−1 (σ (t))

)
(θ′ (t))α+1(

µ1θ (t) (τ−1 (σ (t)))′ (σ (t))′ (τ−1 (σ (t)))2
)α .

This implies that

∫ t

t1

Ψ (s)− 2α

(α + 1)α+1
r
(
τ−1 (σ (t))

)
(θ′ (t))α+1(

µ1θ (t) (τ−1 (σ (t)))′ (σ (t))′ (τ−1 (σ (t)))2
)α

ds ≤ ω (t1) ,

which contradicts (16).
On the other hand, let (S2) holds. Using Lemma 5, we get that (9) holds. Now, we define

w (t) = ρ (t)
N′u (t)
Nu (t)

.

Then w (t) > 0 for t ≥ t1. By differentiating w and using (9), we find

w′ (t) =
ρ′ (t)
ρ (t)

w (t) + ρ (t)
N′′u (t)
Nu (t)

− ρ (t)
(

N′u (t)
Nu (t)

)2

≤ ρ′ (t)
ρ (t)

w (t)− 1
ρ (t)

w2 (t)

−cβ/α
2 ρ (t) Nβ/α−1

u (t)
∫ ∞

t

(
1

r ($)

∫ ∞

$
q (s)

(
τ−1 (σ (s))

s

)β

ds

)1/α

d$.
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Thus, we obtain

w′ (t) ≤ −Φ (t) +
ρ′ (t)
ρ (t)

w (t)− 1
ρ (t)

w2 (t)

and so

w′ (t) ≤ −Φ (t) +
(ρ′ (t))2

4ρ (t)
.

Then, we get ∫ t

t1

(
Φ (s)− (ρ′ (t))2

4ρ (t)

)
ds ≤ w (t1) ,

which contradicts (17). This completes the proof.

Example 1. Consider the equation

(u (t) + c0u (δt))(4) +
q0

t4 u (λt) = 0, (22)

where t ≥ 1, q0 > 0, δ ∈
(

c−1/3
0 , 1

)
and λ ∈ (0, δ) . We note that r (t) = 1, c (t) = c0, τ (t) = δt, σ (t) = λt

and q (t) = q0/t4. Thus, it’s easy to see that (6) is satisfied. Moreover, we have

c1 (t) =
1
c0

(
1− 1

δ3c0

)
, c2 (t) =

1
c0

(
1− 1

δc0

)
, Ψ (t) =

c1q0

t

and
Φ (t) =

c2λq0

6δt
.

Thus, (16) and (17) become

∫ ∞

t0

(
c1 (t) q0

s
− 9δ4

2λ4
1
s

)
ds =

(
c1 (t) q0 −

9δ4

2λ4

)
(+∞)

and ∫ ∞

t0

(
Φ (s)− (ρ′ (s))2

4ρ (s)

)
ds =

(
c2λ

6δ
q0 −

1
4

)
(+∞) ,

respectively. Hence, from Theorem 4, we conclude that (22) is oscillatory if

q0
1
c0

(
1− 1

δ3c0

)
>

9δ4

2λ4 (23)

and

q0
1
c0

(
1− 1

δc0

)
>

3δ

2λ
. (24)

In particular case that c0 = 16, δ = 1/2 and λ = 1/3, Condition (23) yields q0 > 41.14. Whereas, the
criterion obtained from the results of [22] is q0 > 4850.4. Hence, our results improve the results in [22].
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