
symmetryS S

Article

On Spectral Properties of Doubly Stochastic Matrices

Mutti-Ur Rehman 1 , Jehad Alzabut 2,* , Javed Hussain Brohi 1 and Arfan Hyder 1

1 Department of Mathematics, Sukkur IBA University, Sukkur 65200, Pakistan;
mutti.rehman@iba-suk.edu.pk (M.-U.R.); javed.brohi@iba-suk.edu.pk (J.H.B.);
arfan.hyder@iba-suk.edu.pk (A.H.J.)

2 Department of Mathematics and General Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
* Correspondence: jalzabut@psu.edu.sa

Received: 7 February 2020; Accepted: 27 February 2020; Published: 2 March 2020
����������
�������

Abstract: The relationship among eigenvalues, singular values, and quadratic forms associated with
linear transforms of doubly stochastic matrices has remained an important topic since 1949. The main
objective of this article is to present some useful theorems, concerning the spectral properties of
doubly stochastic matrices. The computation of the bounds of structured singular values for a family
of doubly stochastic matrices is presented by using low-rank ordinary differential equations-based
techniques. The numerical computations illustrating the behavior of the method and the spectrum of
doubly stochastic matrices is then numerically analyzed.
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1. Introduction

A real stochastic matrix M is a matrix whose row sums or column sums are equal to 1. All the
entries of a real stochastic matrix are non-negative. A real symmetric matrix with non-negative entries
with row sums and column sums equal to 1 is called doubly stochastic matrix.

A list of n real numbers, i.e., 1, λ2, λ3, λ4, . . . , λn is s.d.s realizable if there exists a symmetric
doubly stochastic matrix M with its spectrum denoted by σ(M). Doubly stochastic matrix describes
the transitions corresponding to finite state symmetric Markov chains and this transition acts as a
special class of this family. Doubly stochastic matrices are the convex hull for transition matrices with
element set [1].

The inverse eigenvalue problems for non-negative doubly stochastic matrices have its origin in
work of [2–5]. For more details on inverse eigenvalue problems, we refer the reader to [6–10] and
references therein.

The non-negative matrix M has a real eigenvalue λ̂ such that λ̂ ≥ |λ̂i| for all i. The eigenvalues λ̂i
for all i are the eigenvalues of M other than λ̂. From the Perron–Frobenius theorem an eigenvector
corresponding to λ̂ is such that each of its entries are non-negative and sums to 1. For more details,
we refer to [11–13].

[14] showed that the eigenvector has the form x = 1√
n (1, 1, 1, ..., 1)t corresponding to eigenvalue

λ̂ for x ∈ Rn, where R denotes the real line. The spectrum of a doubly stochastic matrix is bounded
by 1, that is λi ≤ 1 for all i. Three important eigenvalue problems for doubly stochastic matrices are
considered in [14] whenever there is a possibility that eigenvalues can be placed in complex plane,
denoted by C. The first problem deals with necessary and sufficient conditions for n−tuples to be the
spectrum of a given doubly stochastic matrix. The second problem is about the fact that which real
numbers acts as the spectrum of the doubly stochastic matrix. The last problem deals with the study in
which set of n real numbers act as the spectrum of the symmetric doubly stochastic inverse eigenvalue
problems.
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The matrix M over a field F such that each row sum and column sum is λ̂, is called the
generalization of doubly stochastic matrices by means of Lie theory and algebra Ω(n) of set of
generalized doubly stochastic matrices studied in [15].

In the literature [6,7,10,14,15], much attention has been payed to study the eigenvalues or
eigen-spectrum of doubly stochastic matrices. According to the best of our knowledge, however,
the study of spectral properties, such as structured singular values for doubly stochastic matrices,
is utterly missing from the literature. The current paper deals with the study of the spectral properties,
such as singular values and structured singular values for a class of doubly stochastic matrices.
The main contribution is to fill this gap which reflects the novelty of our results presented in paper.

The paper is arranged as follows: In Section 2 we provide definitions of symmetric stochastic
matrices, singular values and structured singular values. In Section 3 we give a detailed explanation
of the computation of singular values for symmetric doubly stochastic matrices. Section 4 of this
article contains the geometrical interpretation of eigenvalues and singular values of doubly stochastic
matrices. The computation of structured singular values for doubly stochastic matrices is addressed in
Section 5. Whereas the numerical experimentation is discussed in Section 6. Section 7 summarizes
the conclusions.

2. Preliminaries

Definition 1. The n−dimensional matrix M = (mij) is said to be a doubly stochastic matrix if

(i) mij ≥ 0, ∀i, j = 1 : n

(ii)
n

∑
i=1

mij = 1, j = 1 : n ;
n

∑
j=1

mij = 1, i = 1 : n.

Definition 2. The n−dimensional matrix M = (mij) is said to be symmetric doubly stochastic matrix if its
transpose is doubly stochastic matrix.

Definition 3. The singular values of a matrix M are the non-negative real numbers σi =
√

λi and σ1 ≥ σ2 ≥
. . . ≥ σn ≥ 0, ∀i = 1 : n.

Definition 4. The set of block diagonal matrices is denoted by B and is defined as:

B := {diag(δ1 I1, ..., δS IS; ∆1, ...∆F) : δi ∈ C(R), ∆j ∈ Cmj ,mj(Rmj ,mj) ∀i = 1 : S & ∀j = 1 : F}.

In the above definition S and F represent the number of repeated real or complex scalar blocks
and the number of full real or complex blocks respectively.

Definition 5. The structured singular value of M ∈ Cn,n with respect to set B is denoted by µB(M) and is
defined as:

µB(M) =

0, i f det(I −M∆) 6= 0, ∀∆ ∈ B
1

min∆{‖∆‖2 : det(I−M∆)=0, ∀ ∆∈B} otherwise.

3. Computing Singular Values of Doubly Stochastic Matrices

Theorem 1. Let D1, D2 be n−dimensional symmetric stochastic matrices with row and column sum equals to
1. Let {σi} and {σ̂i}, ∀i = 1 : n are singular values with {ui} and {vi}, ∀i = 1 : n as left and right singular
vectors respectively with ‖ui‖2 = 1 = ‖vi‖2 for {σi} and {ûi}, {v̂i} are the left and right singular vectors
respectively with ‖ûi‖2 = 1 = ‖v̂i‖2 for {σ̂i}. The leading singular vectors u1 and û2 are orthogonal to {ui}
and {vi} for all i = 2 : n, respectively. Let en = 1√

n (1, 1, 1, ..., 1)t be the singular vector corresponding to σ1

and σ̂1 then any vector ~η = {η1, η2, η3, ..., ηn} which is orthogonal to en is not a singular vector to σ1 and σ̂1.
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Proof. The result is proved by expanding and taking sum of all components of the singular value
problem of the form:

D~η = σ~η. (1)

In Equation (1), ~η is a singular vector corresponding to a singular value σ. The singular vector ~η
is not a singular vector corresponding to singular values σ1 and σ̂1.

We write

D~η =

d11 d12 . . . d1n
...

. . .
...

dn1 dn2 . . . dnn




η1

η2
...

ηn

 =


d11η1 + d12η2 + · · ·+ d1nηn

. . .

. . .

. . .
dn1η1 + dn2η2 + · · ·+ dnnηn

 .

Taking sum Sum of all components of D~η, we have

Sum(D~η) = Sum


d11η1 + d12η2 + · · ·+ d1nηn

. . .

. . .

. . .
dn1η1 + dn2η2 + · · ·+ dnnηn

 = η1Sum(di1) + . . . + ηnSum(din)

= η1(σ1) + . . . + η1(σ1), (2)

because D is a symmetric stochastic matrix with row and column sums equal to 1. Equation (2)
implies that,

Sum(D~η) = σ1(η1 + η2 + . . . + ηn),

= σ1Sum(~η). (3)

Now, by taking the sum Sum of righthand side of Equation (1) gives,

Sum(σ~η) = σSum(~η). (4)

From Equation (3) and (4), we have (σ − σ1)Sum(~η) = 0. In turn, this implies that σ 6= σ1

and Sum(~η) = 0, which proves that any vector ~η = {η1, η2, η3, ..., ηn} orthogonal to vector en =
1√
n (1, 1, 1, ..., 1)t which is not a singular vector corresponding to singular values σ1 and σ̂1.

Theorem 2. Let D1, D2 be n− dimensional symmetric stochastic matrices with row and column sum equals to
1. Let σi and σ̂i be singular values corresponding to singular vectors as defined in Theorem 1. The matrix D̃ is
the matrix with D1 and D2 along the main diagonal. The singular values of D̃ do not contain original singular
values σ1 and σ̂1 appearing along the main diagonal of a matrix D̃1 with

D̃1 =

(
σ1 1
1 σ̂1

)
. (5)

The off diagonal of D̃1 contains the rank-1 matrices uvt and vut consisting of leading left and right singular
vectors corresponding to σ1 and σ̂1, respectively.

Proof. We prove the result by computing the singular vectors of the singular value problem of
the form:

D̃ui = σiui, ∀ i = 2 : n. (6)

In Equation (6), the set of vectors {ui} for all i = 2 : n. is the singular vectors corresponding
to singular values {σi} ∀ i = 2 : n. The vector (ui, 0)t for all i = 2 : n. acts as a singular vector
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corresponding to σi ∀i = 2 : n. The vector (0, ûi)
t acts as a singular vector corresponding to singular

value σ̂i ∀i = 2 : n. From above discussion it is clear that the vectors of the form (αiui, βiûi)
t for all

i = 2 : n. act as a singular vectors for matrix D̃ while the vectors (αi, βi)
t acts as singular vectors

corresponding to singular values σ1 and σ̂i of D̃1.

Theorem 3. Let D1, D2 be two symmetric doubly stochastic matrices. Let σi and σ̂i be leading singular values
corresponding to singular vectors u1 and û1, respectively.
Let

D̃ =

(
D1 + ρI 2ρu1vt

1
2ρv1ut

1 D2 + ρI

)
. (7)

with I is an identity matrix with the same dimension as of D1 and D2 and ρ is any constant. The singular values
of D̃ does not contains the leading singular values of D1 and D2. The leading singular values are contained in
D̃1 with

D̃1 =

(
3ρ + σ1 0

0 ρ− σ̂1

)
. (8)

Proof. We prove the result by computing singular values of singular value problem,

D̃~ui = (σi + ρ)ui, ∀ i = 2 : n. (9)

The singular values of D̃ are α, σ2 + ρ, σ3 + ρ, . . . , σn + ρ , β, σ̂2 + ρ, σ̂3 + ρ, . . . , σ̂n + ρ where
α, β ∈ {3ρ + σ1, ρ− σ̂1} which are the singular values of(

3ρ + σ1 0
0 ρ− σ̂1

)
.

Because {ui} ∀ i = 2 : n represent the singular vectors corresponding to singular values

{σi} ∀i = 2 : n. can be treated as

(
ui
0

)
∀i = 2 : m. Similarly for {σ̂i} ∀i = 2 : n. the singular vector(

0
ûi

)
holds true. This show that the singular vector corresponding to D̃ can be expressed as

(
αiui
βiûi

)

and finally the vectors

(
αi
βi

)
∀i = 2 : n. act as singular vectors to 3ρ + σ1 and ρ− σ̂.

Theorem 4. A two dimensional symmetric doubly stochastic matrix has singular values 1 and σ1 if and only if
0 ≤ σ1 ≤ 1.

Proof. To complete the prove its sufficient to see the fact that for 0 ≤ σ1 ≤ 1 the matrix(
1+σ1

2
1−σ1

2
1−σ1

2
1+σ1

2

)
,

is symmetric and doubly stochastic matrix.

Theorem 5. A three dimensional symmetric doubly matrix has singular values 1, σ1, µ1 if and only if 0 ≤
σ1 ≤ 1, 0 ≤ µ1 ≤ 1, σ1 + 3µ1 + 2 ≥ 0 and 3σ1 + µ1 + 2 ≥ 0.

Proof. The proof is similar to the one in [15] and hence is omitted.
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4. Geometrical Interpretation of Spectrum

In this section, we present the geometrical interpretation of the spectrum of symmetric doubly
stochastic matrices. In particular, we discuss the geometry of the eigenspace and singular values and
left, right singular vectors of such a class of matrices.

Example 1. We take doubly stochastic matrices M1 and M2 taken from [16] as

M1 =

(
0.9 0.1
0.1 0.9

)
; M2 =

0.1 0.2 0.7
0.5 0.3 0.2
0.4 0.5 0.1

 .

The spectrum of M1, M2 is shown in Figure 1a,b of Example 1, respectively. The maximum
eigenvalue for both M1, M2 is 1 and lies exactly on the spectral circle. The Figure 1c,d show the
geometrical interpretation of the singular values and singular vectors obtained for M1, M2 of Example
1, respectively.

(a) (b)

(c) (d)

Figure 1. Geometrical interpretation of spectrum and singular values/vectors of Example 1. (a) and (b):
spectrum of M1, M2 of Example 1, respectively; (c) and (d): geometrical interpretation of the singular
values and singular vectors obtained for M1, M2 of Example 1, respectively.

Example 2. We take five dimensional doubly stochastic matrices M3, M4 from [17] as

M3 =


0 0 0 1 0
0 0 1

2 0 1
2

0 1
2

1
2 0 0

0 1
2 0 0 1

2
1 0 0 0 0

 ; M4 =


0 0 0 1 0
0 0 0.25 0 0.75
0 0.25 0.75 0 0
0 0.75 0 0 0.25
1 0 0 0 0

 .

The spectrum of M3, M3 is shown in Figure 2a,b of Example 2, respectively. The maximum
eigenvalue for both M3, M3 is 1 and lies exactly on the spectral circle. Figure 2c,d show the
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geometrical interpretation of the singular values and singular vectors obtained for M3, M4 of Example
2, respectively.

(a) (b)

(c) (d)

Figure 2. Geometrical interpretation of spectrum and singular values/vectors of Example 2. (a) and (b):
spectrum of M3, M3 of Example 2, respectively; (c) and (d): geometrical interpretation of the singular
values and singular vectors obtained for M3, M4 of Example 2, respectively

Example 3. We take eight and nine dimensional doubly stochastic matrices from [18]. The largest eigenvalue
corresponding to each matrix attains the maximum value 1. The spectrum is shown in Figure 3a,b of Example 3,
respectively. The Figure 3c,d show the geometrical interpretation of the singular values and singular vectors of
Example 3, respectively.
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(a) (b)

(c) (d)

Figure 3. Geometrical interpretation of spectrum and singular values/vectors of Example 3. (a) and
(b): spectrum of Example 3, respectively; (c) and (d): geometrical interpretation of the singular values
and singular vectors of Example 3, respectively

5. Computing Structured Singular Values

In this section, our aim is to discuss the spectral properties of doubly stochastic matrices based on
the computation of Structured Singular Values (SSV). For this purpose, we compute SSV for a class of
matrices as considered in Section 4. SSV is the straight forward generalization of the singular values
for the constant matrices. The computation of the exact value of SSV is NP-hard. For this reason,
one needs to approximate its bounds, i.e., lower and upper bounds.

From an application point of view, the computation of lower bounds of SSV gives sufficient
information about the instability of some feedback system while the upper bounds discuss the stability
of feedback system under consideration. The computation of the bounds of SSV presented in this
section is based on two powerful mathematical techniques: First technique is based on power method
for approximating spectrum [19]. The upper bound of SSV is computed by means of the balanced/AMI
technique [20] for computing the upper bound from [21]. The second technique [22] is based on the
low rank ODEs-based techniques in order to approximate the lower bounds of SSV. This technique
works on a two level algorithm, i.e., inner-outer algorithm. We give a brief description of inner-outer
algorithms in the subsequent subsections.

5.1. Inner-Algorithm

The inner-algorithm is used to solve the minimization problem addressed in Equation (5).
For this purpose, one needs to construct and then solve a gradient system of ordinary differential
equations associated with the optimization problem. The construction of system of ODEs involves the
approximation of the local extremizers of structured spectral values sets [22]. Following Theorem 6
helps us to approximate the local extremizer of structured spectral vale sets

Theorem 6. [22]. For a perturbation ∆ ∈ B with the block diagonal structure

∆ = {diag(δ1 I1, . . . δs′ Is′ , δs′+1 Is′+1, . . . δS IS; ∆1, . . . , ∆F},
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with ‖∆‖2 = 1, acts as a local extremizer of structured spectral value set. For a simple smallest eigenvalue
λ = |λ|eιθ , θ ∈ R of matrix valued function (I − εM∆) with the right and left eigenvetors x and y scaled as
S = eιθy∗x and let z = M∗y. The non-degeneracy conditions

z∗k xk 6= 0, ∀ = 1 : S
′

Re(z∗k xk) 6= 0, ∀ = 1 : S
′
+ 1 : S

and ||zs+h||.||xs+h|| 6= 0, ∀h = 1 : F,

hold. Then the magnitude of each complex scalar δi ∀ i = 1 : s appears to be exactly equal to 1 while each full
block possesses a unit 2-norm.

Proof. For proof we refer to [22].
The system of ordinary differential equations corresponding to a perturbation ∆ ∈ B is to

approximate an extremizer of smallest eigenvalue in magnitude, i.e., λ = |λ|εiθ which is obtained as,

δ̇i = νi(x∗i zi − Re(x∗i zi δ̄i)δi); i = 1 : s
′

δ̇l = sign(Re(z∗l xl)Ψ(−1,1)(δl); l = s
′
+ 1 : s

∆̇j = νj(zs+jx∗s+j − Re〈∆j; zs+jx∗s+j〉); j = 1 : F,

where δi ∈ C, ∀ i = 1 : s
′
, δl ∈ R for l = s

′
+ 1 and Ψ(−1,1) is a characteristic function. For further

discussion on the construction of system of ordinary differential equations in above equations, we refer
to [22].

5.2. Outer-Algorithm

The main aim of the outer-algorithm is to vary a small positive parameter ε > 0 known as the
perturbation level. To vary perturbation level a fast Newton’s iteration was used in [22]. The quantity
1/ε provides the approximation of lower bound to SSV.

The fast Newton’s iteration to solve a problem is

|λ(ε)| = 1 , ε > 0 . (10)

To solve Equation (10), we compute the derivative

d
dε

(|λ(ε)|) .

To compute d
dε (|λ(ε)|), one need following Theorem 7

Theorem 7. [22]. Let ∆ ∈ B be the matrix valued function and let x and y as a function of ε > 0 are right
and left eigenvectors of the perturbed matrix (εM∆). Consider the scaling of vectors x and y accordingly to
Theorem 6. Let z = M∗y and consider that the non-degenracy conditions as discussed in Theorem 6 holds true,
then it yields that

d
dε

(|λ(ε)|) = 1
|y(ε∗)x(ε)|

(
s

∑
i=1
|zi(ε)

∗xi(ε)|+
F

∑
j=1
||zs+j(ε)||.||ys+j(ε)||

)
> 0 . (11)

For the proof of the above statement, we refer to [22].

6. Numerical Experimentation

The aim of this section is to present numerical eperimentations for lower bounds of SSV for a class
of doubly stochastic matrices obtained in Section 4. The numerical experimentations show that the
obtained lower bounds with the help of algorithm [22] are either tighter or equal to one approximated
with MATLAB function mussv.



Symmetry 2020, 12, 369 9 of 11

Example 4. We consider a three dimensional real doubly stochastic valued matrix M2 taken from [16]

M2 =

0.1000 0.2000 0.7000
0.5000 0.3000 0.2000
0.4000 0.5000 0.1000

 .

We take block uncertainties B = diag{δ1 I1, δ2 I1, δ3 I1 : δ1, δ3 ∈ C, δ2 ∈ R}. The admissible perturbation
E is approximated as

E =

1.0000 + 0.0000i 0 0
0 1.0000 0
0 0 1.0000 + 0.0000i

 ,

with ‖E‖2 = 1. The lower bound of SSV by using algorithm [22] is obtained as 1 which is equal to the lower
bound approximated by mussv function.

Moreover, by using mussv function, the admissible perturbation ∇ is obtained as

∇ =

1.0000 0 0
0 1.0000 0
0 0 1.0000

 ,

such that ‖∇‖2 = 1. The mussv function approximates the same lower and upper bounds of SSV, i.e., 1.

Example 5. We consider a five dimensional real doubly stochastic valued matrix M3 taken from [17]

M3 =


0 0 0 1.0000 0
0 0 0.5000 0 0.5000
0 0.5000 0.5000 0 0
0 0.5000 0 0 0.5000

1.0000 0 0 0 0

 .

We take block uncertainties B = diag{δ1 I1, δ2 I1, δ3 I1, δ4 I1, δ5 I1 : δ1, δ3, δ5 ∈ C, δ2, δ4 ∈ R}.
The admissible perturbation E is approximated as

E =


1.0000 + 0.0000i 0 0 0 0

0 1.0000 0 0 0
0 0 1.0000 + 0.0000i 0 0
0 0 0 1.0000 0
0 0 0 0 1.0000 + 0.0000i

 ,

with ‖E‖2 = 1. The lower bound of SSV by using algorithm [22] is obtained as 1 which is same as the upper
bound approximated by mussv function.

Moreover, by using mussv function, the admissible perturbation ∇ is obtained as

∇ =


0 0 0 0 0
0 1.2361 0 0 0
0 0 1.2361 0 0
0 0 0 0 0
0 0 0 0 0

 ,

such that ‖∇‖2 = 1.2361 The mussv function approximates the lower bounds as 0.8090 and upper bound
1 for SSV.
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Example 6. We consider a five dimensional real doubly stochastic valued matrix M4 taken from [17]

M4 =


0 0 0 1.0000 0
0 0 0.2500 0 0.7500
0 0.2500 0.7500 0 0
0 0.7500 0 0 0.2500

1.0000 0 0 0 0

 .

We take block uncertainties B = diag{∆1, δ1 I1, δ2 I1, δ3 I1 : ∆1 ∈ C2,2, δ1, δ3 ∈ R, δ2 ∈ C}.
The admissible perturbation E is approximated as

E =


0.5000 0.5000 0 0 0
0.5000 0.5000 0 0 0

0 0 1.0000 0 0
0 0 0 1.0000 + 0.0000i 0
0 0 0 0 1.0000

 ,

with ‖E‖2 = 1. The lower bound of SSV by using algorithm [22] is obtained as 1.
Moreover, by using mussv function, the admissible perturbation ∇ is obtained as

∇ =


0.6631 0.6028 0 0 0
0.6028 0.5480 0 0 0

0 0 1.2111 0 0
0 0 0 1.2111 0
0 0 0 0 0

 ,

such that ‖∇‖2 = 1.2111 The mussv function approximates the lower bounds as 0.8257 and upper bound
1 for SSV.

7. Conclusions

In this article, we presented some useful theorems concerning the spectral properties such
as singular values and structured singular values for a class of doubly stochastic matrices.
We used low-rank ordinary differential equations-based techniques and MATLAB function mussv
to approximate bounds of structured singular values corresponding to doubly stochastic matrices.
The numerical experimentations show the behavior of singular values and structured singular values
which agree with the fact that the largest value of each singular value and structured singular value
for doubly stochastic matrix is bounded above by 1. The obtained results for singular values and
structured singular values agree with the results obtained for eigenvalues of doubly stochastic matrices,
that is:

• The doubly stochastic matrix has an eigenvalue 1.
• The absolute value of any eigenvalue corresponding to a doubly stochastic matrix is less than or

equal to 1. The results achieved in this study for structured singular values of doubly stochastic
matrices could lead the way to discuss the stability and instability analysis of:

• Stochastic optimal control systems.
• Linear feedback systems in control.
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