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Abstract: Person re-identification is the task of matching pedestrian images across a network of
non-overlapping camera views. It poses aggregated challenges resulted from random human pose,
clutter from the background, illumination variations, and other factors. There has been a vast
number of studies in recent years with promising success. However, key challenges have not
been adequately addressed and continue to result in sub-optimal performance. Attention-based
person re-identification gains more popularity in identifying discriminatory features from person
images. Its potential in terms of extracting features common to a pair of person images across
the feature extraction pipeline has not been be fully exploited. In this paper, we propose a novel
attention-based Siamese network driven by a mutual-attention module decomposed into spatial and
channel components. The proposed mutual-attention module not only leads feature extraction to the
discriminative part of individual images, but also fuses mutual features symmetrically across pairs of
person images to get informative regions common to both input images. Our model simultaneously
learns feature embedding for discriminative cues and the similarity measure. The proposed
model is optimized with multi-task loss, namely classification and verification loss. It is further
optimized by a learnable mutual-attention module to facilitate an efficient and adaptive learning.
The proposed model is thoroughly evaluated on extensively used large-scale datasets, Market-1501
and Duke-MTMC-ReID. Our experimental results show competitive results with the state-of-the-art
works and the effectiveness of the mutual-attention module.

Keywords: person re-identification; mutual-attention; classification; verification

1. Introduction

Person re-identification task aims at making a correspondence between pedestrian images across
non-overlapping camera views captured at different times. It is a key task for surveillance systems and
applications involving human-computer interaction. It draws increasing attention in video surveillance
due to its greater role in applications like suspicious threat detection, person retrieval, and multi-camera
tracking. It saves a great deal of human labor on exhaustively searching for a target person in a large
crowd of people. A full-fledged person re-identification can be used in tracing crime perpetrators
and missing persons in a crowd with a target person fed to the system. Given an input image, called
the query image from one camera, the goal is to retrieve an image or sets of images from a different
camera, called the gallery set, based on the similarity to the query image. It became a problem of great
interest bearing great challenges due to the fact that the appearance of a person keeps on changing
across different camera views due to the aggregated effect of variations resulting from the change in
light, pose, occlusion, view point, and even in some cases a pedestrian undergoing an instantaneous
change such as a change of clothing, carrying bag, or putting on a cap. Some variations/situations not
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only pose a challenge in re-identifying, but can lead to misleading conclusions by the re-identification
system when two images of the same person look different (inter-class difference) or of different
persons looking the same (intra-class difference). Many classic methods approached these challenges
by using discriminative feature representation and the similarity measure as a method to judge the
degree of similarity among a pair of images. The expectation for a well performing re-identification
system is to return the best match for a given query image from the gallery set in the form of the degree
of similarity as quantified by the highest probability value for a gallery that has the same identity as the
query after the gallery set is sorted based on the similarity to the current query image. Deep learning
approaches achieve tremendous success in computer vision tasks including person re-identification.
Deep learning methods, particularly that of that of the deep Convolutional Neural Network (CNN),
have been the most competitive approaches applied to robust feature extraction with great success in
areas of computer vision such as object recognition [1,2], image and video classification [3–5], image
forgery identification [6], speech recognition [7], and semantic segmentation tasks [8], to mention
a few. Features learned by deep networks are automatically learned and are not easily understood
even by a human observer, nor can they be crafted and interpreted the way traditional features are
designed in a fixed and recurring deterministic algorithm. However, as deep learning models have
learnable features, they can be guided to attend to and learn features from more visually distinct and
informative regions within the feature maps of a given image. Such visual attention can be exploited
to detect regions of an image that are potentially important to better train the deep network. From
this point of view, learning the attention map is as essential as learning the features themselves to
focus on regions of interest with relevant features as demanded by the target. The attention map, being
produced from learned features, tends to give silent regions a stronger response. Numerous deep
neural network based on the attention scheme have been studied in an effort to solve a wide range of
visual representation in tasks like scene generatio [9], fine-grain recognition [10], and image captioning
[11]. Their usage ranges from learning discriminative regions of a given image to classifying different
objects and tracking objects by merging multiple attention types to leverage their joint potential.
Likewise, attention-based methods have recently been used for person re-identification problems
[12–14] with the intention of searching for the most responsive regions that play a role in identifying
pedestrians. However, many of these methods naively feed-forward pedestrian input images in a
sequence of layers to extract features without leveraging the feature dependency across input pairs to
emphasize correlated regions with high responses. For person re-identification, it was studied in some
literature [12–15] that feature representation that considers the interaction among a pair of images has
been shown to be effective. Given two images, for an attention map to learn the relevant features, it
needs to consider features that are common to both images. In this regard, an independent attention
map without considering cross-image attention may lead to sub-optimal performance in similarity
measurement. The attention method that can encode mutually discriminative regions and rescale
the features accordingly for efficient similarity computation is a natural choice. Some methods [16]
proposed the attention scheme that inferred the spatial attention from a single image to enhance the
learned feature. However, the feature learned and scene detected in the deep convolutional neural
network possess spatial and channel components [17]. In order to learn robust attention, decomposing
attention channel and spatial-wise and exploiting their relative merits are crucial to learn attention
distributed along spatial and channel dimensions and make comparable matching between pairs of
input. This is very crucial for learning a mutually robust feature. Motivated by these intuitions, we
propose a mutual-attention-based deep learning model that not only computes the attention map for
individual input images, but also uses an additional joint attention, called mutual-attention, to capture
cross-input attention. Our proposed novel mutual-attention map is learned from the self-attention
map computed from individual pairs of input images. Further, we follow a scheme that decomposes
attention from the feature map into spatial and channel components in order to lead the model to learn
features that are relevant and discriminative with respect to each input image across their channel
and spatial dimension. The mutual-attention map re-scales feature maps inferred from a pair of
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inputs, and the original feature maps are added back to consolidate the feature learned across layers.
As person re-identification is positioned as a person retrieval and ranking task, we design the model
as a classification and verification task to learn subtle intra-class variation and misleading inter-class
variation and exploit the complimentary advantage of the two tasks. The final person re-ID model
is based on an end-to-end trainable deep neural network with verification and classification loss.
Training results show that the model is capable of boosting co-dependent features across input pairs
and achieves competitive performance over widely used benchmark datasets. The rest of this paper
is organized as follows. Section 2 presents the related works. The proposed method is discussed in
Section 3. The loss function and similarity learning are detailed in Section 4. The experimental setting
and the discussion on the result are elaborated in Sections 5 and 6, respectively. Section 7 puts forth
the conclusions and future directions.

2. Related Works

A number of classical and deep learning models have been proposed in the literature to solve
the person re-identification problem. In this section, we briefly present the literature of some of the
key works. Many of the existing methods for person re-identification focus on two key tasks: learning
robust feature extraction and learning the distance metric. Feature extraction from raw input falls
into one of two broad categories, namely hand-crafted and deep neural network learned features.
There is a good number of person re-identification works that are based on hand-crafted features and
some statistical method as the feature descriptor for the region of images. The most commonly used
feature descriptor for pedestrians includes color, texture, and histogram of color. Hand-crafted-based
methods are one of the classic approaches that handle feature extraction and the similarity measure as
independent tasks that do not complement one another. Some work attempted to exploit the merits of
handcrafted and deep neural network features to gain complementary advantages. The work in [18] is
a typical example of such a trend, where the entire convolutional network is jointly trained with the
feature extracted by CNN and hand-crafted methods. Such a fusion serves as a way to constrain and
regularize the feature extracted by CNN and compliment it with the hand-crafted feature. Although
handcrafted features showed notable success in the past, they remained the same in recent years
due to the huge success of deep learning methods. Deep learning led to a series of breakthroughs in
many computer vision and other tasks. They were capable of naturally and automatically integrating
low-, mid-, and high-level features from raw images in multiple layers with adjustable weights that
could be learned through a process known as back propagation. A comprehensive survey and its
detail can be found in [19–21]. They have increasingly obtained popularity in many areas such as
classification tasks for image [3,4] and video classification [5], translation [22], captioning [23,24] and
description generation for images [25], image recognition [1,2] and detection [26,27], and semantic
image segmentation [8]. Deep neural network architectures, particularly the deep Convolutional
Neural Network (CNN), have shown impressive success in many image classification tasks. Due to
the close relationship between classification and person re-ID, such success was easily extended to the
re-ID task in the works that followed in the subsequent years, and CNN has become a major building
unit of virtually all state-of-the-art re-ID models in the literature. The following sections present related
works for different methods.

2.1. Siamese-Based CNN Model

The Siamese-based model consists of two or more branches of CNN layers intended to learn
features and the similarity measure in parallel. The Siamese neural network was originally proposed
as a signature verification method in [28] where two sub-networks compared the distance between
previously stored signature feature vectors and a signature feature vector currently to be verified.
Some of the person re-ID work worthwhile to mention in this regard includes [29,30]. They proposed a
Siamese model to judge if a pair of images belongs to the same identity Siamese mode with CNN as its
core component, which has gained more popularity, and it was the choice of many researchers following
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the works in [29,30]. The architecture of Siamese model makes it a natural choice for person re-ID due
to the fact that person re-ID mostly involves pairwise comparison of images and the number of training
samples for each identity is mostly limited (usually two). Unlike the classification/identification-based
model [31], the Siamese model does not make full use of labels for the input. It rather uses a weak label
assigned to a pair of images indicating if the pair of images belongs to the same or a different identity.
Although the Siamese model commonly contains two branches taking pairs of input images, there is
research work that considered multiple branches like a triplet and a quadruplet network. The work
in [32] proposed a unified multi-scale triplet convolutional neural network consisting of triplet training
input, one deep, and two shallow tied layers that were optimized with the comparative similarity
loss function called the L2-norm. Similarity loss on the image triplet is aimed to give a higher score
to the pair of images from the same person than those from different persons. However, the triplet
network still does not adequately address the generalization ability and may not fully address the
problem of inter- and intra-class variation when the aim is to have smaller inter-class variation and
larger intra-class variation. To this end, the authors in [33] proposed a quadruplet network. However,
forming a quadruplet training sample for such a network can be quite overwhelming; the authors
proposed a threshold scheme to select positive and negative samples and minimize the effort in
generating training samples. The Siamese the model can benefit from hand-crafted and deeply learned
features that can complement each other. A Siamese-based deep neural network that co-learns color,
texture, and the metric for image similarity was proposed in [34]. The author used two branches of
a symmetric three layer sub-network that shared similar structures in the corresponding layers and
joined them by a bounded cosine function.

2.2. Patch-Based Method

Some works split an input image into several strips and extract local features from each strip.
In [30], the input image was split into three adjacent non-overlapping strips, and each part was fed
into two independent convolutional layers and a fully connected layer that merged them to produce
vectors of the images. The co-sine function was used to determine the degree of similarity. Such an
approach, however, cannot precisely address spatial misalignment. The work in [35] aimed to address
this issue by exploiting the shortest path algorithm between sets of local features between two images.
The architecture proposed in [36] followed a similar model, but was different in that the horizontal
patch-wise matching was included wherein the feature response across each patch was multiplied
by every other patch sample from the horizontal strip in other image feature map. This work was
subsequently improved in [37], where the author used the neighborhood difference between pixel
values of the feature of one image and the neighborhood location of another image feature. The author
asserted that such an approach added robustness to the positional difference in corresponding features
of the two input images. The work in [38] proposed very similar work and extended the work in [37]
by computing the pixel value difference around the neighborhood followed by the computation of the
correlation between feature vectors. Further, they used a wider search region along with an inexact
matching technique to overcome the challenges such as pose change. The authors argued that a wider
search and inexact match were crucial to overcoming the challenges such as pose caused by viewpoint
variation, illumination change, and partial occlusions.

2.3. Local/Global Feature and Scale Learning Methods

In [39], the importance of the scale and spatial importance of features was studied to determine
which scale (global and local regions) was proper for matching. A similar work in [40] proposed a
model with a global and local feature selection model constrained by the same class label and used the
cross-entropy classification loss function, which avoided the need to form image pairs for training and
increase the scalability of the model. The Deep pyramid feature Learning (DPFL) model proposed
in [41] asserted that the scale specific feature and multi-scale feature overcame appearance variation
across images taken at different scale. The model overcame problems such as the cross-scale feature
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learning discrepancy challenge by being guided by inter-level feature interaction and multi-scale
complementary feature selection. In [42], a similar work was proposed wherein two streams of the
convolutional neural network with a weighted objective were able to learn temporal traits like gait
and spatial information to form discriminative features. Human body parts play key role in forming
correspondence among the pair of image. The re-ID model that focuses on extracting features from
human body parts is one of the potential approaches expected to make the model resistant to pose
and changes in the spatial distribution of body parts across images views. In [43], a deep CNN
model used the part-aligned weighted feature extraction of regions in the image. Body part extraction
and representation were modeled as a joint operation. The features extracted were concatenated,
aggregated, and normalized before the overall score, and triplet based loss was computed. The work
in [11] proposed a CNN-based model having a sub-network that was capable of detecting, rotating,
normalizing, and relocating human body parts with affine transformation to a reasonable region. The
work in [39] proposed a triplet lose branch model based on utilizing both ranking and classification
and used cross-domain knowledge transfer by training the model with a bigger dataset and testing it
with a smaller dataset.

2.4. Attention-Based Methods

Attention-based re-identification has gained growing popularity in recent years. In [44], the paper
proposed a network called the harmonious attention convolutional neural network with feature
representation and an attention mechanism focusing on soft pixel and hard regions. The author in [17]
proposed a multi-branch attention framework to identify discriminative whole body and local parts of
person images by leveraging an encoder-decoder style network. They used an inter- and intra-attention
map inferred from local body parts and inter-attention inferred from global image. However, their
framework required extensive training for each local and global intra-attention branch. The model
may inherit error on detection as it employed joint detection-based body part estimation. The work
in [15] proposed a CNN-based mode that used a differentiable gate function that served as a smooth
switch and attention to select the extracted pattern in the feature map based on the Euclidean distance
computed along the dimension of summarized features. In [45], the authors proposed a model based
on a human semantic parsing scheme to use local cues belonging to different body parts. They used
these cues for human body parts and performed the element-wise product with the feature pulled
from the global image to pay attention to body regions. In [46], the authors proposed a co-attention
model to learn the relative representation of input pairs and used an iterative recurrence comparator
to learn similarity. This work was similar to ours in that the model learned features from input
pairs and concurrently detected the most distinct pattern from the pair of images, then fused them
in similarity learning. However, the significance of attention for features in the spatial and channel
dimension was not explicitly considered. Our proposed mutual-attention-based model leverages
feature correspondence across input pairs by fusing their respective self-attention map to boost feature
points that have higher activation across the pairs and facilitate end-to-end learning with codependent
features, as well as aides the subsequent similarity computation.

3. Proposed Method

This section presents the proposed architecture for person re-identification, which is comprised
of the identification and verification branch for person re-ID aided by our novel cross-input
(mutual-attention).

3.1. Model Architecture

Person re-ID models need to be robust to identity a probe person in the gallery set. It also needs
to be robust in capturing pairwise differences among the pair of images. We follow this line and
formulate person re-identification as a joint classification and verification problem. In the classification
mode, the model leverages the label for the input and learns the feature in a supervised manner to
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classify each input person to one of the unique classes. The verification mode aims to learn the feature
embedding space by comparing the feature from the pair of input person images, pull images of the
same identity close, and push the images of different identities further away in the embedding space.
The verification task considers the limited relationship among the dataset, while the classification task
does not explicitly consider the similarity measure between samples in the dataset. Hence, formulating
the model from the two tasks enables the model to leverage the complimentary advantage of the two
tasks and address the person re-ID objective.

We adopted the popular CNN ResNet-50 architecture up to Stage 4 as the backbone to extract the
feature as it has shown good performance in a wide range of computer vision tasks. The base ResNet-50
was built with five blocks, each block having batch normalization, ReLU, and a downsampling layer
that progressively reduces the feature map size by half form the previous block. The design of
the ResNet-50 is shown in Figure 1. We used a Siamese model with two shared branches as the
feature extraction pipeline. At Layer 4 and Layer 3, we computed the self-attention map for each
branch based on the spatial and the channel attention from the feature map produced by the two
layers. Following this, the cross-input mutual-attention was computed from the self-attention map
of each branch. The mutual-attention map then re-scaled the feature map of each branch in such a
way that feature activation at different spatial and channel locations across the two branches were
re-emphasized and highlighted by the mutual-attention map. This served as a mechanism to boost
the features that were mutually relevant across the two feature maps and improve the similarity
computation for the verification part of the model. To consolidate the feature from the original feature
map, we added the original feature to the newly computed feature map by our mutual-attention
map. The design of the overall architecture is illustrated in Figure 2. All inputs were re-sized to
256 × 188. Given the pair of inputs, the proposed model simultaneously predicted the class of each
input and computed the similarity score between the input pairs. The model had two ImageNet
pre-trained CNN branches. The parameters were shared among the two branches to minimize the
model complexity and training effort. The entire model was jointly optimized with the weighted loss
from the classification and verification part of the model. In the following sections, we discuss the
self-attention and mutual-attention map.

CNN Res-1 Res-4Res-3Res-2

256 x 128 x 3 64 x 128 x 64 256 x 64 x 32 512 x 32 x 16 1024 x 16 x 8 2048 x 8 x 4

Figure 1. Basic ResNet-50 model with the corresponding dimensions across layers for a given input
dimension. We use high-level feature maps from Layer 3 (Res-3) and Layer 4 (Res-4) to compute our
mutual-attention layer.

3.2. Self- and Mutual-Attention

The spatial attention layer for feature maps across channels aimed to emphasize the spatial
importance of each feature stacked across the depth of the feature map. The global average pooling
appended at the penultimate layer of the model neglected the relative importance of spatial features
irrespective of their location. Certain features, which might add robustness to the model, were
compromised by the global average pooling operation. Moreover, features from non-corresponding
spatial locations in the feature maps played some role in emphasizing discriminative patterns. In this
regards, considering channel attention, which was computed from the spatial location of the same
feature map, could complement the spatial attention in leveraging the importance of the feature across
both the spatial and channel dimension.
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Figure 2. Architecture of the proposed deep mutual attention learning model. One mutual attention
layer (shown with a red dotted line) is shown here for brevity, but the mutual-attention layer is inserted
for both Layer 3 and Layer 4 of the model. CNN refers to ResNet-50 up to Layer 2. For each pair, the
verification parts compute the similarity, and the identity (class) of each image is predicted by the
identification part.(Best viewed in colour).

3.3. Self-Attention Map

A convolutional network that used C number of filters convolved though the input or feature
map and yielded H XW X C feature maps where each feature map was presumed to detect a certain
pattern across the spatial dimension. Hence, feature detection by the convolutional operation could be
perceived as involving spatial and channel components. Following this intuition, we designed a novel
mutual-attention map to infer mutually significant visual patterns from two input images or feature
maps. The spatial significance of the spatial feature in the feature map was encoded to form the spatial
attention map. Such a map took the form of a single-channel spatial map H x W x1 where each location
in the spatial map was the summary (mean) of all corresponding locations across all feature maps
along the channel. Given feature map f of C channels, the value of the spatial attention SPA(i,j) was
computed as the mean of all feature points at the corresponding spatial location across the channel C:

SPA(i,j) =
1
C

c

∑
c=1

fc(i, j) (1)

where f(i,j) is the activation value of spatial point (i,j) on the channel c and SPA(i,j) represents the value
of the spatial attention score at (i,j). These summarized spatial positions represented their aggregated
significance through the depth of the feature maps and encoded the spatial relation among activation
maps. During training, the network emphasized the spatial points with a higher activation value,
and the proportional gradient flows through them during back propagation. While the spatial attention
maps encoded the importance of the corresponding spatial point across the depth, the relevance of
some non-corresponding locations within the same feature map or different feature maps across the
channel direction might be overlooked in the process. Channel-wise features serve as the encoder of
the feature for different semantic attributed generated by filters and are stacked as different feature
maps. Hence, incorporating the channel-wise attention map along with the spatial attention map
enabled the model to further infer co-related feature importance along the channel dimension of the
pair of inputs. To incorporate this merit, the channel attention map, which was computed from a given
feature map, was employed. Concretely, given feature map f of width W, height H, and channels C,
average pooling was applied to each feature map fi to get channel feature Qi ∈ <1x1xC:

Qi = AP( fi, WI) (2)

where AP is the average pooling and W is the parameter for average pooling. The channel-wise
attention map CAi ∈ <1x1xC was obtained by applying one convolutional layer.
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CAi = f (Qi, Wi) (3)

where f is the convolutional operation, Ci is the feature map at the ith channel, and W is the
parameter of the convolutional operator. The semantic attributes aggregated at different features
were exclusively exploited by the channel-wise attention map besides the spatial attention map.
The final Self-Attention map (SA) was obtained by combining spatial and channel attention. The
spatial and channel-wise attentions were combined by multiplying them and passing the result through
a 1 × 1 convolutional operation:

SA = f ((SPA ∗ CAk), W)) (4)

where f is the convolutional operation and W the corresponding parameters. The self-attention map
computed from the spatial and channel attention fairly encoded the importance of different activations
at the same spatial locations and also benefited from activation from different activations along the
channel. With the learned weight being proportional to the mean of activations along the channel and
across the spatial dimension, the spatial and channel relationships were captured, and they were used
to compute the mutual-attention between two input images in a versatile way. The following section
presents mutual attention map.

3.4. Mutual Attention Layer

When comparing visual similarity or variation for the learned feature map of a pair of input
images, discriminative and salient patterns needed to have more attention paid to them. While the
visually discriminative part in each input was relevant, patterns that were common across the two
feature maps played an important role in giving a better comparison of the learned features. Inspired
by this intuition, we modeled a mutual-attention map with the goal of making an effective local
feature similarity comparison from visually richer higher level features. The model weighed common
and co-dependent local patterns based on the similarity score and loss computed in the subsequent
soft-max layer. This way, the inferred mutual pattern enabled the lower layers to learn filters that could
distinguish the local pattern of positive pairs from negative pairs through the gradient that flowed
during back propagation. The mutual-attention was computed from the self-attention map of the pair
of feature map as follows:

MA(i,j) = SA1(i, j) ∗ SA2(i, j) (5)

where MA is the mutual attention and SA1 and SA2 are the self-attention map for the pair of feature
maps, respectively. * is the element-wise multiplication. The feature point with higher activation in a
similar location in both feature maps inferred by the Self-Attention map (SA) also obtained a higher
value in the the mutual attention map. The mutual attention map hence re-emphasized mutually
discriminative visual cues and robust features across the two inputs. To make the mutual-attention
map learnable and adjust its weights based on the proportion of correlated pattern, we passed the
mutual attention map through a 1 × 1 convolutional layer as follows:

MAi = f (MAi, Wi) (6)

where f is the convolutional layer with parameter W. The mutual-attention map was used to rescale the
original feature map of the two inputs and enhance their respective activations. Given a feature map
of two input images, f1 and f2, and their mutual-attention map MA, the new feature maps F1 and F2
were enhanced by the mutual-attention map proportional to their relative magnitude. To consolidate
the features learned across a layer, the original features were added back. Hence, the newly mutually
boosted features maps F1 and F2 are given as follows:

F1(i, j) = f1(i, j) ∗MU(i, j) + f1(i, j) (7)
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F2(i, j) = f 2(i, j) ∗MU(i, j) + f 2(i, j) (8)

where * refers to the element-wise multiplication. We inserted the mutual attention map at Layer 3 and
Layer 4 of the model, where compact and high level features were learned. The classification task of
the model learned to identify each person’s identity. This assisted the verification part to learn person
related features from the pair of inputs for which our mutual-attention map co-related visually salient
concurrent regions previously boosted by the self-attention map of each branch. A detailed discussion
and analysis of the effective regions learned by the mutual-attention layer are given in Section 6.

4. Loss Function and Similarity Learning

The model was based on two branch Siamese architectures, and parameters were shared between
the two branches. The batch of input pairs was fed to the model, and two identity labels were
predicated for each input pair. The final fully connected layer in ResNet-50 was replaced with a
512-dimensional sequential layer. The resulting feature vector was connected to an N-dimensional
fully connected layer where N is the number of unique identities in the dataset in consideration. With
the soft-max unit, the final image descriptor of size 1 × 1 × N was normalized to the N-dimensional
vector representing predicted multi-class probabilities for N identities. Given f as the feature descriptor,
the class probability prediction and cross-entropy losses are given as:

ŷ = So f tmax(Sq(Φc, f )) (9)

Cls( f , y, Φc) =
N

∑
i=1
−y log(yi) (10)

where ŷ is the predicated probability, is Sq the sequential layer, and Φc is a parameter of the sequential
layer. Cls –identification loss y is the ground truth for the target class.

For the verification task, we used the feature from the higher layer, which was enhanced and
rescaled by the mutual-attention layer. This layer encoded aggregated, richer, and condensed
activations. Hence, similarity was computed from features at this layer learned from input pairs.
Given a 512-dimensional feature embedding f1 and f2 for the pair of input images, the Euclidean
distance between these features was computed to give a 512-dimensional fd distance feature vector
encoding similarity between the inputs. The 512-dimensional sequential layer followed by the soft-max
layer to encode fd as a two-dimensional probability vector for the input pair indicating if the pair were
similar or different. The verification task was formulated as binary classification. Binary Cross-Entropy
(BCE) loss for predicated class probabilities is given as:

ŷ = So f tmax(Sq(Φc, fd) (11)

V( f1, f2, d, Φc) =
N

∑
i=1
−yi log(yi) (12)

where f1 and f2 are the feature descriptors for the pair of 512-dimensional vectors, d is the target label
for input pair ([1, 0], the same; [0, 1], different), and ŷ predicts the label of the inputs. V refers to the
verification loss.

5. Experiment

5.1. Experimental Settings

• Input preparation: We used pre-trained ResNet-50 trained on ImageNet and used the feature
extracted from the third and fourth residual block to compute the self- and mutual-attention map.
We re-sized all input images to a resolution of 256× 188, horizontally flipped, and the mean image
computed from all training was subtracted from all the images. We also used random-erasing to
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regularize and make the model robust. Positive and negative pairs were randomly chosen and
shuffled in each mini-batch to avoid the model benefiting from a fixed input sequence and to
avoid overfitting.

• Training: We used the Pytorch deep learning framework to implement the proposed model.
The mini-batch size was set to 32 and with initial learning initialized as 1× 10−2 The learning
rate gradually faded by a factor of 1× 10−1 between the 40th and 60th epoch. We used stochastic
gradient descent to optimize the model and trained for 60 epochs. We maintained a drop-out
rate of 0.75 for the fully connected layer to reduce the risk of overfitting. To maintain the
stability of training and avoid vanishing and/or exploding gradients, the weights for the model
were initialized using Kaiming initialization. As the model was trained with the classification
and verification tasks, two cross-entropy losses, namely multi-class cross-entropy and binary
cross-entropy loss, jointly optimized the training. We experimentally set the regulating weight
coefficient of α = 0.5 for verification loss (Vloss). Total training loss from the two tasks is
computed as:

Ltotal = α ∗Vloss + IDloss (13)

• Testing: During testing, the feature was first extracted from the gallery and queried using the
trained model by feed-forwarding test dataset images of 256 × 188 and obtained the person
descriptors of 512 dimensions. The final ranking was performed by calculating the Euclidean
distance between each query image and all galleries. We used the commonly used Cumulative
Match Curve (CMC) and mean Average Precision (mAP) for the performance evaluation of
the model.

5.2. Datasets and Protocols

We conducted experiments on two large-scale datasets, namely Market-1501 [47] and Duke
MTMC-ReID [48] to train and test the performance of the proposed model. Market-1501 was the
largest re-ID dataset containing 32,668 manually annotated images boxes with 1501 pedestrians’
identities captured with at most six different cameras with different views. The total identities were
split into 751 training IDs and 750 for testing.

There was a total of 3368 images for query, which were randomly selected from each camera,
making it possible to perform cross-camera search. The search for query images was performed from a
gallery set containing 19,732 images and another 6796 distractor junk images. Some sample images
from this dataset are shown in Figure 3.

DukeMTMC Market-1501

Figure 3. Sample pedestrian image from the Market-1501 and DukeMTMC-reID datasets.



Symmetry 2020, 12, 358 11 of 18

The DukeMTMC-reID dataset was a subset of the DukeMTMC prepared for image-based person
re-ID. The dataset was collected with eight different cameras. DukeMTMC-reID followed the same
format and protocol as Market-1501 with 16,522 training images of 702 identities and 2228 query
images of another 702 identities. The gallery set contained 17,661 images. It was the largest image
dataset to have images that were cropped by hand-drawn bounding boxes. Some sample images from
DukeMTMC-reID are shown in Figure 2.

6. Result and Discussion

We trained and evaluated our model on the Market-1501 and DukeMTMC-reID datasets.
The results for Rank 1, Rank 5, Rank 10, and Rank 20 were used as performance measurements.
The experimental results for the Market-1501 and DukeMTMC-reID datasets are shown in Table 1.
Furthermore, a comparison with other works is given in Tables 2 and 3, respectively. Our
proposed mutual-attention-based model outperformed the baseline methods by a considerable
margin. As our model was designed with the standard ResNet-50 model as the backbone, we
examined the improvement observed over ResNet-50 without the mutual-attention layer. The
model also showed very competitive performance on similar supervised methods indicating the
effectiveness of our approach and its prospect for being a competitive baseline technique. All results
compared were with the single shoot scenario without re-ranking. We present the result analysis for
Market-1501 and DukeMTMC-reID in the following subsections, and further analysis on the effect of
the mutual-attention layer is discussed in detail in Section 6.3.

Table 1. Performance of the deep mutual attention model on the Market-1501 and DukeMTMC-reID
datasets for Sing-shoot, multi-shoot, and re-ranking.

Setting Rank Market-1501 DukeMTMC-reID

Single-shoot

R = 1 90.74 80.83
R = 5 90.36 90.08
R = 10 97.86 93.49
R = 20 98.57 94.74
mAP 76.92 64.52

Multi-shoot

R = 1 93.82 -
R = 5 97.86 -
R = 10 98.81 -
R = 20 99.34 -
mAP 83.55 -

Re-ranking

R = 1 91.77 85.18
R = 5 95.39 91.29
R = 10 96.70 93.49
R = 20 98.07 95.51
mAP 87.30 80.65

6.1. Result on DukeMTMC-reID

For the DukeMTMC-reID dataset, we conducted an experiment on the single query setting.
We also tested the model with re-ranking. Our approach with the mutual-attention layer outperformed
the baseline ResNet-50 without the mutual-attention layer by a margin of 5.56% for Rank 1. Compared
with the Deep Co-attention-based Comparator (DCC) [14], which employed a closer scheme to our
method, the proposed model outperformed it by a margin of 0.53% and even by greater margin
compared to many supervised methods, as shown in Table 2.
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Table 2. Performance comparison with the state-of-the-art work for the deep mutual attention model
on DukeMTMC-reID. DCC, Deep Co-attention-based Comparator.

Methods Rank 1 mAP

LOMO+XQDA [49] 30.7 17.04
BoW+Kissme [47] 25.13 12.17
GAN(R) [50] 67.68 47.13
SPGAN [51] 46.4 26.2
IDE [31] 66.7 46.3
GOG [52] 65.8 -
GAN(R) [22] 67.68 47.13
LSRO [53] 67.7 47.1
SVDNet[54] 76.70 56.80
DCC [46] 80.3 59.2
PAN [55] 71.6 51.5
DPFL [41] 79.2 60.6
HA-CNN [44] 80.50 63.80
ResNet-50 Baseline 75.27 57.13
Ours 80.83 64.52

We fine-tuned and trained ResNet-50 baseline on the DukeMTMC-reID dataset for comparison purposes with
our mutual-attention-based model.

6.2. Result on Market-1501

We conducted an experiment on Market-1501 on the single and multi-shoot scenarios. We also
evaluated the model with re-ranking to further analyze the performance. Results for Rank 1, Rank 5,
Rank 10, and Rank 20 and mAP are shown in Table 1. Likewise, the proposed model was compared
with similar attention-based methods and with other supervised methods, as shown in Table 3.
Our proposed model with the mutual-attention map outperformed the baseline ResNet-50 method
without mutual-attention by a margin of 2.77% and 4.46% on Rank 1 and Rank 5, respectively.
Compared with similar work on DCC in [14], our model outperformed by a margin of 4.04%, 0.66%,
and 0.76% on Rank 1, Rank 5, and Rank 10, respectively.

Table 3. Performance comparison with state-of-the-art work for the deep mutual attention model on
Market-1501. MA, Mutual-Attention.

Method Single-Query Multi-Shoot

Rank 1 mAP Rank 1 mAP

PUL [56] 45.5 - - -
BoW [47] 34.4 14.1 - -
OSML [53] 42.6 - - -
PIE [52] 65.7 41.1 - -
S -CNN [15] 76.04 48.45 - -
MSCAN [57] 80.3 57.5 - -
SpindleNet [58] 76.9 - - -
LSRO [53] 83.9 66.1 -
Part-aligned [43] 81.0 - - -
VGG16-Basel [59] 65.02 38.27 74.14 52.25
CaffeNet-Basel [3] 50.89 26.79 59.80 36.50
ResNet-50-Basel [27] 73.69 51.48 81.47 63.95
DCC [14] 86.7 69.4 - -
ResNet-50 Base 87.97 72.46 - -
Ours with MA 90.74 76.92 93.82 83.55

We fine-tuned and trained ResNet-50 baseline on the Market-1501 dataset for comparison purposes with our
mutual-attention-based model.

6.3. Ablation Study

To see the effectiveness of the proposed mutual-attention map, we studied the activation map
produced at the layer where we used the mutual-attention map. In this section, we analyze how the
mutual-attention filtered out and emphasized key mutually relevant regions in input pairs. The mutual
attention was inserted at Layer 3 and Layer 4 of the model. We extracted the feature map at Layer 4
for some samples to demonstrate how the learned features were improved with the help of the
mutual-attention layers. The first row in Figure 4 shows the activation of regions across the image from
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the baseline model without mutual-attention being used. The second row shows activation across the
image region learned and guided by our mutual-attention map. While person related features were
learned with supervision from the ground truth in the classification part, the mutual-attention assisted
the learning by inferring visual cues at corresponding regions of input pairs and re-emphasized
them to facilitate effective comparison in the verification part. It is clear from the figure that features
learned with the help of the mutual-attention layer focused more on person body parts, and they
were fairly distributed compared to the feature from the baseline model with no mutual-attention.
For instance, closely watching the activation of the fourth image in Figure 4d, it can be noted that the
salient regions learned from the baseline focused on the object carried by the person, whereas our
model with mutual-attention expanded the focus from the object to more regions of the pedestrian
like arms, legs, and some part of torso, which are important in identifying a person. For the image
in the second column (b), we can also note that our model effectively paid attention to part of the
heads, arms, and lower legs, whereas the baseline model attended only to part of the arm. The model
gained this capability by virtue of mutually learned common features from input pairs conditioned
on each other’s spatial pattern, and features getting higher activation during training were implicitly
selected and further boosted. In the meantime, the gradient produced from verification loss ensured
the proportional magnitude to flow across these regions so that in the long run, the model relied
on the cross-input feature across intermediate layers for final similarity judgment as opposed to
independently learned feature maps solely from the last layer. Note that mutual-attention was used
for pairs of input that were to be processed by the verification part. The classification task took the
original input to make the predication for individual person classes.

Baseline 
method

a b c d e

Our 
method 

Figure 4. Visualization of the feature learned by the baseline and our model. The top list shows the
feature learned by our proposed mutual-attention model, and the second row shows the feature learned
by the baseline model. Each column (a–e), refers to raw input, activation map and activation map
superimposed on raw input respectively. For each sample input image, salient regions learned and
the salient region superimposed over the input are indicated. The features learned by our model are
fairly focused on the salient person body regions and are distributed, while the features learned by the
baseline method fail to emphasize the corresponding salient regions. (Best viewed in colour).

The Market-1501 dataset had multiple matched for each query image. The multi-shoot rank result
was given in the earlier section. We further studied the model’s retrieval performance. It is evident
from Figure 5, given a query image on the left side, that our trained model was effective at retrieving
multiple matching gallery persons (shown on the right side).

The first pedestrians image shown on the left side is a query image, and the rest along the same
row from left to right are retrieved matches from the gallery set based on the similarity with the query
in consideration. The correct matches retrieved are shown in the green bounding box with a few wrong
matches shown in the red bounding box. The wrong matches were mostly hard negatives bearing a
strong resemblance to the query image, like the query image shown in the last row. We also note that
the model convergence was a little faster compared with the baseline model, as shown in the plot in
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Figure 6 for the training loss verification and identification tasks. It could be noted that the verification
loss obtained greatly reduced, and the model converged faster. This was in line with the assertion that
features learned with the aid of the mutual-attention map facilitated similarity computation and back
propagation to the lower layers, enabling learning effective features, which led to the loss incurred to
be minimized faster, as demonstrated in Figure 6.

query
Ranked gallery �

query

query

query

Figure 5. Retrieval performance of the model for a given query from the gallery set where each query
has multiple matched in the gallery set.(Best viewed in colour).
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Figure 6. Convergence plot for training loss for the model with the DukeMTMC-reID dataset. ID,
Identification; Verif., Verification.
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7. Conclusions and Future Work

In this paper, we presented a deep mutual-attention layer based person re-identification
model framed as identification and verification tasks. Our proposed model was comprised of a
mutual-attention layer that bridged between two branches of the feature extraction layer in relating
spatially active regions across the inputs and boosting them to favor an effective similarity judgment
in the subsequent layers. Our mutual-attention was computed from the self-attention layer of the
high-level branch, which summarized the feature map across the channel and spatial dimensions.
This enabled the model to harness the interaction between both the channel and spatial layers of
the input pairs. Key to the superiority of the proposed model was that the deep mutual-attention
computed from the intermediate layer helped the model infer the common features across the input
pairs and propagate this context to similarity measurement. Our experimental results and further
analysis showed the effectiveness of the proposed mutual-attention layer, and the model outperformed
many supervised model sand similar attention-based models. As future extension to this work, body
part-based mutual-attention can be considered to alleviate the interference of background clutter.
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