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Abstract: This paper proposes a method for kinematic calibration of a 3T1R, 4-degree-of-freedom
symmetrical parallel manipulator driven by two pairs of linear actuators. The kinematic model of the
individual branched chain is established by using the local product of exponentials formula. Based
on this model, the model of the end effector’s pose error is established from a pair of symmetrical
branched chains, and a recursive least square method is applied for the parameter identification.
By installing built-in sensors at the passive joints, a calibration method for a serial manipulator
is eventually extended to this parallel manipulator. Specifically, the sensor installed at the second
revolute joint of each branched chain is saved, replaced by numerical calculation according to
kinematic constraints. The simulation results validate the effectiveness of the proposed kinematic
error modeling and identification methods. The procedure for pre-processing compensation on this
3T1R parallel manipulator is eventually given to improve its absolute positioning accuracy, using the
inverse of the calibrated kinematic model.

Keywords: parallel manipulator; parallel mechanism; symmetrical mechanism; kinematics; calibration;
parameter identification; differential geometry

1. Introduction

Compared with serial manipulators, parallel manipulators have the advantages of high rigidity
and high loading capacity [1], but also have the disadvantages of complex structure and relatively
small workspace. Recently, a 3T1R symmetrical parallel manipulator with a simple structure and
a large working space has received widespread attention in academia and industrial applications [2].
This symmetrical parallel manipulator uses four open branched chains to connect the fixed platform
with the moving platform. It can achieve three-degree-of-freedom translation along the X, Y, and Z
axes and one-degree-of-freedom rotation around the Z axis (3T1R), for a total of four degrees of
freedom. Its advantages such as large workspace and high speed make it be widely applicable
to industrial automation scenarios such as pick-and-place and sorting, if its absolute positioning
accuracy meets the particular requirements of these applications. Therefore, it is necessary to develop
an effective calibration method to improve the absolute positioning accuracy of this symmetrical
parallel manipulator [3,4].

The kinematic error of the manipulator is defined as the end effector’s error between the actual
pose and the nominal one, which is mainly caused by geometric tolerances, such as assembly and
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manufacturing error. Kinematic calibration is the most effective and economical method to improve
accuracy [5]. This method is generally divided into four steps. First is to establish a kinematic error
model that consists of parameters to be identified and the measurable variables. Second is to acquire
measurements from built-in or external sensors. Third is to perform the identification of parameters in
the error model. Fourth is to carry out simulation verification of the calibrated kinematic model and to
perform relevant calibration experiments [6,7].

Establishing a proper kinematic error model is the basis for parallel manipulator calibration.
The essence of this process is the mapping between the pose error of the moving platform and the error
source [8]. Although many modeling methods involving parallel manipulators have been proposed,
the modeling method of kinematic error for such a 3T1R complex symmetrical parallel manipulator
has not been mentioned yet. Compared with traditional manipulators’ calibration methods such as the
Denavit–Hartenberg (D-H) model based method [9] and the zero-position reference model method [10],
the error model based on the local product of exponentials (POE) formula has some advantages [11,12].
First, the parameters of the kinematic model on the POE formula change smoothly with the change
of the joint axis. This ensures that the singularity will not occur in the kinematic error model [11,13].
Secondly, according to Chase’s theorem, any rigid body motion can be regarded as a screw motion,
so the calibration model established by the POE formula is also complete [14]. Last but not least, on the
POE formula, all joint axes are described based on Lie geometry, so they are represented uniformly for
the translation and rotation joints of the robot [14].

Since Okamura and Park first introduced the POE formula to robotic kinematics calibration in
1996 [13], the establishment of a kinematic error model using the POE formula has received widespread
attention. Two ways have been proposed till now, using the global POE formula [14,15] or the local
POE formula [11,16]. The main difference between them is on the choice of reference frames to describe
the relative motion of the robot joints. In the global POE formula, the relative motion of the robot joints
is described in the base coordinate system. In the local POE formula, each link of the robot is assigned
a local coordinate system, and all joint motions are expressed in the corresponding local coordinate
system. The main advantage of building the kinematic error model using the local POE formula is that
the pose error of the end effector is considered to be solely caused by the accumulation of the pose
error of each link.

The accuracy of measurement has a great impact on the calibration. Various devices have been
used to perform the calibration experiments on parallel manipulators, such as the ball and stick
system [17], the magnetic processing ball [18], vision [19], the laser tracker [20], etc. Since there are
multiple passive joints in the 3T1R parallel manipulator, installation of sensors on every passive joint
for calibration purposes will be costly. The identification of the kinematic error model parameters is
performed by minimizing the deviation between the theoretical and measured values of kinematic
error, such as nonlinear least squares optimization [21], but the optimization efficiency may be low due
to the nonlinear nature of the model. The error pre-processing compensation will be performed after
obtaining the kinematic error model. This step is to use the identified parameters to modify the active
joint variables, so that the absolute positioning accuracy of the parallel manipulator is enhanced [22].

The 3T1R parallel manipulator has a “two-layer, binary-tree”-like symmetrical mechanism,
while symmetry issues have received widespread attention in academia [23–25]. In this paper,
the development of its kinematic calibration method is studied. Its symmetrical structure leads to
the establishment of the kinematic model and the associated error model from two branched chains
symmetrically. In detail, the local POE formula method is used for modeling its kinematic error firstly.
This approach attributes the errors to the initial pose of each joint, resulting in a simpler kinematic error
model. In addition, this work uses the pose of the end effector from two branched chains to evaluate the
kinematic error. Compared with the kinematic error modeling methods using the metric of the distance
of two points on the end effector [26,27], setting up the equality of pose errors from two branched
chains improves the error model fitness. In the measurement stage, a method of combining a built-in
sensor with an external measurement device is adopted. Although this 3T1R parallel manipulator
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has multiple passive joints, all of them can be treated as active ones as in the series robot, if sensors
are attached to them during calibration. In this way, the calibration method by the local POE formula
used for serial robots can be directly applied to parallel manipulators with passive joints. Specifically,
to save the number of sensors used in the revolute joints, the angle of the second revolute joint of each
branched chain is computed numerically according to the kinematic constraints of the mechanism.
Eventually, a linear-in-parameter error model is synthesized, which greatly improves the efficiency in
the coming least squares estimation of parameters. Due to the symmetry of this mechanism, the idle
pair of branched chains can be used for cross-validation of the kinematic and error models, thereby
ensuring the model accuracy. A simulation study of the calibration algorithm is performed to verify
the effectiveness of the algorithm. Last but not least, the pre-processing compensation procedure of
the command pose is suggested for this 3T1R parallel manipulator.

2. Kinematics of a Symmetrical 3T1R Parallel Manipulator

In order to establish a kinematic model for the symmetrical 3T1R parallel manipulator, the basic
structure of this parallel manipulator is firstly introduced. Subsequently, its forward kinematics based
on the local POE formula is derived. It lays the foundation for the subsequent establishment of the
kinematic error model for this parallel manipulator.

2.1. Structure of the 3T1R Parallel Manipulator

As shown in Figure 1, it has two identical branched chains, yielding symmetrical structures.
Each branched chains has two identical sub-branches, so the whole mechanism can be treated as
a “binary-tree” structure. This parallel manipulator is driven by four linear actuators installed on the
base, and two linear actuators on one side share one stator. The entire manipulator mechanism looks
like the shape of the letter “M”, and it can move along the X, Y, and Z axes and rotate about the Z axis.

Base

Collinear 
linear modules

Moving platform

x

y

z

{B}

lu

ld

Figure 1. Basic structure figure of this 3T1R parallel manipulator.

2.2. Dyad kinematics Based on local POE formula

The Dyad branched chain is shown in Figure 2. Based on the traditional local POE formula method
of building in Figure 2a, the Dyad kinematics can be obtained as (1):

Tj−1,j = Tj−1(0) · eŝjqj , (1)

where Tj−1,j ∈ SE(3), represents the pose of {Oj} relative to {Oj−1} and uses the representation
method of the local coordinate system. ŝj is the corresponding element for Tj−1,j in se(3).
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Figure 2. Dyad kinematics based on different methods of establishing coordinate systems for the local
POE formula. (a) to establish a coordinate system arbitrarily, (b) to establish a coordinate system which
leads to reduced number of kinematic parameters.

According to the characteristics of the local POE formula, it is known that the local coordinate
system of the POE formula can be assigned arbitrarily, that is the pose of {Oj} is arbitrary, so it requires
13 parameters to completely define Tj−1,j. Among them, the 13 parameters include: 6 parameters
within initial pose Tj−1(0) ∈ SE(3), 6 parameters within joint twist ŝj ∈ se(3), and 1 parameter within
joint variable qj ∈ R1X1. Compared with the D-H method, which only needs four parameters to define
the kinematics, this method of establishing the kinematic model requires too many parameters.

In order to reduce the number of parameters in the kinematic model, a new method of assigning
the local coordinate systems is proposed, as shown in Figure 2b. In this method, the origin of the
coordinate system {Oj−1} is at the center of the joint, and the direction of the z axis is along the joint
line. Furthermore, an additional local coordinate system {O′j−1} is on the same link at the joint j.
Now, (1) is written as:

Tj−1,j = Tj−1,j(0) · eŝjqj , (2)

where Tj−1,j(0) represents the pose transformation of {O′j−1} relative to {Oj−1}. eŝjqj represents the
pose transformation of {Oj} relative to {O′j−1}.

According to the transformation between Lie groups and Lie algebras, Tj−1,j(0) ∈ SE(3), at least

one t̂j ∈ se(3) exists, making Tj−1,j(0) ∈ SE(3). Therefore, Tj−1,j(0) = et̂j , and (2) is written as:

Tj−1,j = et̂j · eŝjqj , (3)

2.3. Branched Chain Kinematics Based on the Local POE Formula

Based on (2), consider a single branched chain of the parallel manipulator with (n + 1) links,
numbered sequentially in the order 0, 1, 2 · · · , n from base coordinate system {0} to tool coordinate
system {n}; the forward kinematics is expressed as:

g0,n(q1, q2, . . . , qn) = T0,1(q1)T1,2(q2) . . . T(n−1),n(qn) =
n

∏
i=1

(T(i−1),i(0)e
ŝiqi ). (4)

2.4. Kinematics of the Parallel Manipulator Branched Chain i Based on the Local POE Formula

The schematic of the 3T1R parallel manipulator is shown in Figure 3a. It has a symmetrical
structure, dividing it into two identical parts, I and II. This parallel manipulator contains four linear
actuators B1, B2, B3, and B4. Each linear actuator to the midpoint of the end effector p is regarded as
a branched chain. On side I, the branched chains formed by B1 and B2 to the end p point are recorded
as i and i, respectively, where i = 1; on side II, the branched chains formed by B3 and B4 to the end p
point are recorded as i and i, respectively, where i = 2. Any one of the branched chains from B1 and B2

and any one from B3 and B4 are chosen to build the entire parallel manipulator kinematics, so there are
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four possible combinations. In this article, B1 and B3 are chosen for kinematic calibration and recorded
as the ith branched chain, i = 1, 2, which is the structure indicated by the dark solid line in Figure 1.
Surely, because this parallel manipulator structure is symmetrical, the remaining two branch chains
can be used to carry out the calibration as well for cross-validation. This also helps to enhance the
accuracy of the kinematic model.

There are four joint modules within each branched chain i (i = 1, 2), which are one active
translation joint and three passive rotation joints. The coordinate systems are established as shown
in Figure 1, and the way of naming is referenced in Nomenclature. The joint ij is an active joint for
i = 1, 2 and j = 1, and the joint ij is a passive joint for i = 1, 2 and j = 2, 3, 4. The pose of the end
effector coordinate system {P} relative to the parallel manipulator base coordinate system {B} is
defined as the forward kinematics.
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Figure 3. Mechanism schematic of this 3T1R parallel manipulator. (a) the schematic of the 3T1R parallel
manipulator; (b) the establishment of the coordinate system.

The kinematic equation of the mechanism is given as:

gi = TB,i0 · Ti0,i1(0) · eŝi1qi1 · Ti1,i2(0) · eŝi2qi2 · Ti2,i3(0) · eŝi3qi3 · Ti3,i4(0) · eŝi4qi4 · Ti4,P(0). (5)

3. Establishing the Kinematic Error Model for this 3T1R Parallel Manipulator

Since this parallel manipulator is a closed-chain mechanism, the kinematic error at the end effector
of the parallel manipulator should be the same if they are calculated from individual branched chains.

3.1. Establishment of the Kinematic Error Model from a Single Branched Chain

An error model of the 3T1R parallel manipulator, considering the kinematic errors of the single
branched chain, is established. Due to the part manufacturing and assembly error, the actual pose of
the end effector is different from its nominal value. Since:

TB,i1(0) = TB,i0 · Ti0,11(0),

TB,i1(0) is the kinematic transformation from coordinate system {i1} to coordinate system {B}.
The kinematic Equation (5) of a single branched chain is simplified as:

gi = TB,i1(0) · eŝi1qi1 · Ti1,i2(0) · eŝi2qi2 · Ti2,i3(0) · eŝi3qi3 · Ti3,i4(0) · eŝi4qi4 · Ti4,P(0), (6)
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If t̂ ∈ se(3) for a given T(0) ∈ SE(3), then et̂ = T holds. Therefore, for the initial pose Ti(j−1),ij(0),

et̂ij = Ti(j−1),ij(0) holds, and t̂ij ∈ se(3)(i = 1, 2; j = 1, 2, 3, 4), so (6) is simplified to:

gi = et̂i1 eŝi1qi1 · et̂i2 eŝi2qi2 · et̂i3 eŝi3qi3 · et̂i4 eŝi4qi4 · et̂P . (7)

From (6), it is known that the modeling method using the local POE formula, whose forward
kinematics gi is a function of the initial pose T(0) = [TB,i1(0), Ti1,i2(0), Ti2,i3(0), Ti3,i4(0), Ti4,P(0)]

T ,
the joint twist s = [si1, si2, si3, si4]

T , and the joint variable q = [qi1, qi2, qi3, qi4]
T , that is,

gi = f (T(0), s, q). (8)

Differentiate the kinematic parameters of (8) to obtain the calibration model, yielding:

δgi · g−1
i =

(
∂ f

∂T(0)
δT(0) +

∂ f
∂s

δs +
∂ f
∂q

δq
)

g−1
i , (9)

where δT · T−1 represents the end effector’s pose error of this parallel manipulator base coordinate
system {B} through the branched chain i, and the motion parameter error is δT(0), δs, δq. The purpose
of the kinematic calibration algorithm is to find the appropriate δT(0), δs, δq, achieving the least
squares fitting between two sides of (9), which is:

min
(

∑
∥∥∥∥δgi · g−1

i −
(

∂ f
∂T(0)

δT(0) +
∂ f
∂s

δs +
∂ f
∂q

δq
)

g−1
i

∥∥∥∥) . (10)

From earlier analysis, the kinematic error model consists of 13 parameters from the initial poses, joint
twists, and joint variables. In order to simplify the calibration model, we assign the coordinate systems
in the way shown in Figure 2b. Since the initial pose coordinate system in the local POE formula can
be established at any point on the link, the initial pose T(0) is floating. Therefore, the kinematic error is
regarded as only due to the deviation of the initial poses T(0), while the joint twists and joint variables
are regarded as being accurate [12]. Therefore, (9) and (10) are simplified to:

δgi · g−1
i =

∂ f
∂T(0)

δT(0)g−1
i , (11)

min
(

∑
∥∥∥∥δgi · g−1

i −
∂ f

∂T(0)
δT(0)g−1

i

∥∥∥∥) . (12)

By using two branched chains for kinematic calibration, the goal of optimization is revised as:

min
2

∑
i=1

(∥∥∥∥δgi · g−1
i −

∂ f
∂T(0)

δT(0)g−1
i

∥∥∥∥) . (13)

From (7), δgi used in (11) and (13) is obtained as:

δgi = δ(et̂i1)eŝi1qi1 · et̂i2 eŝi2qi2 · et̂i3 eŝi3qi3 · et̂i4 eŝi4qi4 · et̂P + et̂i1 eŝi1qi1 · δ(et̂i2)eŝi2qi2 · et̂i3 eŝi3qi3 · et̂i4 eŝi4qi4 · et̂P

+et̂i1 eŝi1qi1 · et̂i2 eŝi2qi2 · δ(et̂i3)eŝi3qi3 · et̂i4 eŝi4qi4 · et̂P + et̂i1 eŝi1qi1 · et̂i2 eŝi2qi2 · et̂i3 eŝi3qi3 · δ(et̂i4)eŝi4qi4 · et̂P

+et̂i1 eŝi1qi1 · et̂i2 eŝi2qi2 · et̂i3 eŝi3qi3 · et̂i4 eŝi4qi4 · δ(et̂P).
(14)

If the parameter error is relative to its local coordinate system, δ(etij) = et̂ij δt̂ij, so (14) is further
expressed as:

δgi = et̂i1 δt̂i1eŝi1qi1 · et̂i2 eŝi2qi2 · et̂i3 eŝi3qi3 · et̂i4 eŝi4qi4 · et̂P + et̂i1 eŝi1qi1 · et̂i2 δt̂i2eŝi2qi2 · et̂i3 eŝi3qi3 · et̂i4 eŝi4qi4 · et̂P

+et̂i1 eŝi1qi1 · et̂i2 eŝi2qi2 · et̂i3 δt̂i3eŝi3qi3 · et̂i4 eŝi4qi4 · et̂P + et̂i1 eŝi1qi1 · et̂i2 eŝi2qi2 · et̂i3 eŝi3qi3 · et̂i4 δt̂i4eŝi4qi4 · et̂P

+et̂i1 eŝi1qi1 · et̂i2 eŝi2qi2 · et̂i3 eŝi3qi3 · et̂i4 eŝi4qi4 · et̂P δt̂P.
(15)
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By multiplying (15) with g−1
i on both its left and right sides, where g−1

i = e−t̂P · e−ŝi4qi4 e−t̂i4 ·
e−ŝi3qi3 e−t̂i3 · e−ŝi2qi2 e−t̂i2 · e−ŝi1qi1 e−t̂i1 , this yields:

δgi · g−1
i = et̂i1 · δt̂i1 · e−t̂i1 + et̂i1 eŝi1qi1 et̂i2 · δt̂i2 · e−t̂i2 e−ŝ1q1 e−t̂1

+et̂i1 eŝi1qi1 et̂i2 eŝi2qi2 et̂i3 · δt̂i3 · e−t̂i3 e−ŝi2qi2 e−t̂i2 e−ŝi1qi1 e−t̂i1 r
+et̂i1 eŝi1qi1 et̂i2 eŝi2qi2 et̂i3 eŝi3qi3 et̂i4 · δt̂i4 · e−t̂i4 e−ŝi3qi3 e−t̂i3 e−ŝi2qi2 e−t̂i2 e−ŝi1qi1 e−t̂i1

+et̂i1 eŝi1qi1 et̂i2 eŝi2qi2 et̂i3 eŝi3qi3 et̂i4 eŝi4qi4 et̂P · δt̂Pr
·e−t̂P e−ŝi4qi4 e−t̂i4 e−ŝi3qi3 e−t̂i3 e−ŝi2qi2 e−t̂i2 e−ŝi1qi1 e−t̂i1 .

(16)

From the adjoint transformation AdXy = XyX−1, (16) is simplified to:

δgi · g−1
i = AdTB,i1(0)δt̂i1 + Adg0,1·Ti1,i2(0)δt̂i2

+Adg0,2·Ti2,i3(0)δt̂i3 + Adg0,3·Ti3,i4(0)δt̂i4 + Adg0,4·Ti4,P(0)δt̂P, (17)

where:
g0,k = et̂i1 eŝi1qi1 · et̂i2 eŝi2qi2 · · · et̂ik eŝikqik .

For (17), the left term δgi · g−1
i ∈ se(3) represents the end effector’s pose error in the base coordinate

system {B}, according to the definition of the logarithm of the matrix on SE(3):(
δgi · g−1

i

)∨
= log

(
ga

i · g−1
i

)
, (18)

where ga
i is the pose measured at the end of the branched chain i and g−1

i is the inverse of nominal
pose matrix at the end of the branched chain i. From (17) and (18), we get:

log
(

ga
i · g−1

i

)
=
[
AdTB,i1(0), Adg0,1·Ti1,i2(0), Adg0,2·Ti2,i3(0), Adg0,3·Ti3,i4(0), Adg0,4·Ti4,P(0)

]


δti1
δti2
δti3
δti4
δtP

 . (19)

(19) is written as a linear-in-parameter form:

yi = Jixi, (20)

where yi is the pose error of the end effector from the branched chain i, Ji is the error Jacobian matrix
of the branched chain i, and xi is the kinematic parameter error of the branched chain i, given as:

yi = log
(

ga
i · g−1

i

)
∈ R6×1,

Ji =
[
AdTB,i1(0), Adg0,1·Ti1,i2(0), Adg0,2·Ti2,i3(0), Adg0,3·Ti3,i4(0), Adg0,4·Ti4,P(0)

]
∈ R6×30,

xi = [δti1, δti2, δti3, δti4, δtP]
T ∈ R30×1.

3.2. Establishment of the Overall Kinematic Error Model

The kinematic error of the end effector calculated from the kinematic error models of different
branched chains should be identical. This yields:

Y = AX, (21)
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where:

Y = y1 = y2 ∈ R6×1,

A = [J1, J2] ∈ R6×60,

X =
[

xT
1 , xT

2

]T
∈ R60×1.

In the above error model, it has a total of 60 error parameters to describe the kinematic error. Through
the discernibility analysis of the error model deduced from the POE formula, the maximum number
of independent motion parameters of a universal non-over-constrained parallel manipulator after
eliminating redundant error components is 4r + 2p + 6, where r and p represent equivalent rotation
joints and translation joints, respectively [12]. In the 3T1R parallel manipulator, there are six equivalent
rotation joints and two translation joints. Therefore, the maximum number of identifiable parameters
after eliminating redundant error components is 34. According to (21), the number of errors obtained
using the method described in this article is 60, so the error model does have redundancy in terms of
the number of parameters.

4. Method to Reduce the Number of Sensors Used in Passive Joints

In general, since the parallel manipulator contains many passive joints, a sensor will be installed
on each passive joint to measure the corresponding joint angle throughout the calibration process.
The required measurements for calibration are accomplished by both built-in sensors and external
measurement device. The built-in sensors are used for measuring rotation of the passive joints, and a
laser tracker is used for measuring the end effector’s pose. As the 3T1R parallel manipulator has many
passive joints and such a measurement scheme is costly, a recursive method is proposed to estimate
one of the joint angles in each branched chain, so that the number of sensors being used is reduced.

This recursive method is based on the coordinates of the end point Ai and uses the local POE
formula method to establish the branched chain kinematics of the end point Ai, such as (22):[

pi
1

]
= TB,i1(0) · eŝi1qi1 · Ti1,i2(0) · eŝi2qi2 · Ti2,i3(0) · eŝi3qi3 ·

[
p′i
1

]
, (22)

where pi represents the coordinates of point Ai on the branched chain i relative to the base coordinate
system {B} and p′i represents the coordinates of the point Ai on the branched chain i relative to the
coordinate system {i3}.

By setting: [
pi
1

]
= Pi,

[
p′i
1

]
= P′i , (23)

(22) is re-written as:
Pi = Ti · eŝi3qi3 P′i , (24)

The difference between the nominal and actual distance of two revolute joints at the end effector is
given by:

d12 −
∥∥∥−−−→A1 A2

∥∥∥ = d
∥∥∥−−−→A1 A2

∥∥∥ ≡ dd, (25)

where
∥∥∥−−−→A1 A2

∥∥∥ represents the nominal distance of between A1 and A2 and d12 represents the actual
distance between A1 and A2. Here,∥∥∥−−−→A1 A2

∥∥∥2
= (P2 − P1)

T (P2 − P1) . (26)
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Differentiating (26), we get:

dd =
(P2 − P1)

T∥∥A1 A2
∥∥ (dP2 − dP1) , (27)

dPi = Ti · eŝi3·qi3 · Ŝ3 · P′i · dq3, (28)

With (25), (26), (27), and (28), it yields:

dq = J−1 · dd, (29)

where:

dq =

(
dq13

dq23

)
, J =

(
− (P2 − P1)

T

‖A1 A2‖
· Ṗ1

(P2 − P1)
T

‖A1 A2‖
· Ṗ2

)
,

Ṗi = Ti · eŝi3·qi3 · ŝ3 · P′i .

(29) is written in a recursive form as:

q(k+1) = q(k) +
(

J−1 · dd
)(k)

, (30)

where k is the number of iterations.
This means, by utilizing the geometric constraints of the mechanism, the proposed recursive

method is able to estimate the rotation angle of the second revolute joint of each branched chain.
This saves one rotation sensor for each branched chain during calibration.

5. A Recursive Least Squares Method to Identify the Parameters in the Kinematic Error Model

In order to improve the efficiency, a recursive least squares method is used in the parameter
identification process for the kinematic error model. Suppose that when measuring positions of m
points, there will be m position error vectors, and the Jacobian matrix will be expanded to m terms,
so the kinematic error vector X will remain unchanged. Hence, (31) is obtained as:

Ỹ = ÃX, (31)

where:

Ỹ =
[

Y1 Y2 . . . Ym

]T
∈ R6m×1,

Ã = column [A1, A2, . . . , Am] ∈ R6m×60,

X =
[

xT
1 , xT

2

]T
∈ R60×1.

The solution in the least squares sense for X is given as:

X =
(

ÃT Ã
)−1

ÃTỸ. (32)

(32) can be further simplified by recursion. Once the kinematic error parameter X is determined,
the initial pose Ti(j−1),ij(0) will be updated by substituting X into the following equation:

Tc
i(j−1),ij(0) = et̂ij eδt̂ij = Ti(j−1),ij(0)e

δt̂ij , (33)

until the norm ‖X‖ of X approaches zero. Therefore, the pose computed from the calibrated kinematic
model approaches the actual pose.
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6. Simulation Results

The kinematic modeling schematic diagram and the establishment of the coordinate system are
shown in Figure 3, where lu = 0.7, ld = 0.7, a = 0.3, b = 1.0 (units: m). According to the modeling
method using the local POE formula given in Nomenclature, the values of the initial pose and joint
twist of adjacent links of two branched chains are given as:

TB,11(0) =


1 0 0 0
0 1 0 0.03
0 0 1 0
0 0 0 1

, T11,12(0) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,

T12,13(0) =


1 0 0 0
0 cos(−α) − sin(−α) lu
0 sin(−α) cos(−α) 0
0 0 0 1

, T13,14(0) =


cos (−β) 0 sin (−β) ld
0 1 0 0
− sin(−β) 0 cos(−β) 0
0 0 0 1

,

T14,P(0) =


1 0 0 a/2
0 1 0 0
0 0 1 0
0 0 0 1

, TB,21(0) =


1 0 0 b
0 1 0 0.03
0 0 1 0
0 0 0 1

, T21,22(0) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,

T22,23(0) =


1 0 0 0
0 cos(−α) − sin(−α) lu
0 sin(−α) cos(−α) 0
0 0 0 1

, T23,24(0) =


− cos (β) 0 − sin (β) ld
0 1 0 0
sin(β) 0 − cos(β) 0
0 0 0 1

,

T24,P(0) =


1 0 0 −a/2
0 1 0 0
0 0 1 0
0 0 0 1

,

s11 =
[

0 1 0 0 0 0
]T

, s12 =
[

0 0 0 1 0 0
]T

,

s13 =
[

0 0 0 0 1 0
]T

, s14 =
[

0 0 0 0 0 1
]T

,

s21 =
[

0 1 0 0 0 0
]T

, s22 =
[

0 0 0 1 0 0
]T

,

s23 =
[

0 0 0 0 1 0
]T

, s24 =
[

0 0 0 0 0 1
]T

.

In order to simulate the deviation of kinematic parameters from the nominal ones, the errors δt, δs,
and δq are applied to the initial poses, joint twists, and joint variables in the theoretical model. Noise is
introduced in the measurement of joint variables to test the robustness of the parameter identification
method. In this way, an actual model is obtained, where the actual initial pose is:

Ta
i(j−1),ij(0) = et̂ij eδt̂ij = Ti(j−1),ij(0)e

δt̂ij , (34)

the actual joint twist is:

sa
ij = sij + δsij, (35)

the actual joint variable is:

qa
ij = qij + δqij. (36)
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Hence, the kinematic model of the actual branched chain i is:

gi = Ta
B,i1(0)e

ŝa
i1qa

i1 · Ta
i1,i2(0)e

ŝa
i2qa

i2 · Ta
i2,i3(0)e

ŝa
i3qa

i3 · Ta
i3,i4(0)e

ŝa
i4qa

i4 · Ta
i4,P(0). (37)

Add deviations δt, δs, and δq to the nominal values to get the actual value of the parallel
manipulator simulation, as shown in Table 1. Each joint, regardless of being active or passive, is
considered as a joint with one degree of freedom, so the error vector of the spin volume should be
orthonormal, that is ‖wi + δw‖ = 1,(wi + δw)T (vi + δv) = 0.

Table 1. Preset error of each link (all units are in SI).

Dyad δt δs δq

B-11
[

0.002 0.002 0.002 0.001 0.001 0.001
]T [

0 0 0 0 0 0
]T 0.02

11-12
[

0.002 0.002 0.002 0.001 0.001 0.001
]T [

0 0 0 −1 + cos 0.02 sin 0.02 0
]T 0.02

12-13
[

0.002 0.002 0.002 0.001 0.001 0.001
]T [

0 0 0 0 −1 + cos 0.02 sin 0.02
]T 0.02

13-14
[

0.002 0.002 0.002 0.001 0.001 0.001
]T [

0 0 0 0 sin 0.02 −1 + cos 0.02
]T 0.02

14-P
[

0.002 0.002 0.002 0.001 0.001 0.001
]T

B-21
[

0.002 0.002 0.002 0.001 0.001 0.001
]T [

0 0 0 0 0 0
]T 0.02

21-22
[

0.002 0.002 0.002 0.001 0.001 0.001
]T [

0 0 0 1− cos 0.02 sin 0.02 0
]T 0.02

22-23
[

0.002 0.002 0.002 0.001 0.001 0.001
]T [

0 0 0 0 −1 + cos 0.02 sin 0.02
]T 0.02

23-24
[

0.002 0.002 0.002 0.001 0.001 0.001
]T [

0 0 0 0 sin 0.02 −1 + cos 0.02
]T 0.02

24-P
[

0.002 0.002 0.002 0.001 0.001 0.001
]T

Now, the simulation process of the kinematic error modeling and parameter identification is
summarized as follows:

1. Use the numerical forward kinematics algorithm to obtain the joint displacements and joint
angles of 20 different parallel manipulator poses;

2. Assign errors to kinematic parameters, such as δt, δs, and δq, as shown in Table 1.

3. Simulate the actual initial pose using Ta
i(j−1),ij(0) = Ti(j−1),ij(0)e

δt̂ij ;
4. The actual joint twist is computed as sa

ij = sij + δsij;
5. The actual joint variable is computed as qa

ij = qij + δqij;
6. The recursive calibration algorithm is used to identify the kinematic errors of the parallel

manipulator.

The initial pose after calibration is recorded as Tc
i(j−1),ij(0), as shown in Table 2. When trace(R) 6=

−1, 1 + 2 cos φ = trace(R), and ‖ω‖ < π, we get log(T) = t. That is,

log

[
R p
0 1

]
=

[
ω̂ A∗p
0 0

]
∈ se(3), (38)

where,

ω̂ = log R =
φ

2 sin φ
(R− RT),

A∗ = I − 1
2

ω̂ +
2 sin ‖ω‖ − ‖ω‖(1 + cos ‖ω‖)

2‖ω‖2 sin ‖ω‖
ω̂2,

If φ is small, ω̂ ≈ (R− RT)/2. When trace(R) = −1, log R = (2k + 1)πν̂. In this case, k is any integer,
and ν is a unit eigenvector of log R with an eigenvalue of one.
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Table 2. Kinematic error of each link versus its calibration pose (all units are in SI).

Dyad Kinematic Errors Tc
i(j−1),ij(0)

B− 11 (1.824, 2.272, 1.183, 0.02000, 0.00128, 0.00100)T


1.00000 −0.00099 0.00129 1.794
0.00102 0.99980 −0.02000 32.255
−0.00127 0.02000 0.99980 1.805
0 0 0 1


11− 12 (1.794, 2.272, 1.783, 0.02000, 0.00128, 0.00165)T


1.00000 −0.00164 0.00128 1.793
0.00165 0.99999 −0.00201 2.272
−0.00128 0.00201 1.00000 1.784
0 0 0 1


12− 13 (2.855, 2.868,−1.922, 0.00225, 0.00207, 0.00152)T


1.00000 −0.00253 0.00039 1.791
0.00152 0.70869 0.70551 702.869
−0.00207 −0.70551 0.70870 0.344
0 0 0 1


13− 14 (−0.647, 1.134, 3.916,−0.00107, 0.00210, 0.00163)T


0.50182 −0.00163 −0.86497 699.353
0.00174 1.00000 −0.00087 2.273
0.86497 −0.00107 0.50182 2.445
0 0 0 1


14− P (1.794, 2.063, 2.139, 0.000874, 0.00237, 0.00140)T


1.00000 −0.00140 0.00237 151.795
0.00140 1.00000 −0.00087 2.273
−0.00237 0.00088 1.00000 1.782
0 0 0 1


B− 21 (1.790, 2.153, 2.123, 0.02000, 0.00175, 0.00100)T


0.99999 −0.00099 0.00176 1001.760
0.00102 0.99980 −0.02000 33.147
−0.00174 0.02000 0.99980 1.007
0 0 0 1


21− 22 (1.761, 3.155, 0.977, 0.00165, 0.00175, 0.00050)T


1.00000 −0.00050 0.00175 1.761
0.00051 1.00000 −0.00165 3.155
−0.00174 0.00165 1.00000 0.978
0 0 0 1


22− 23 (2.009, 2.922,−0.003, 0.00273, 0.00159, 0.00035)T


1.00000 −0.00137 0.00088 1.759
0.00036 0.70903 0.70518 702.924
−0.00159 −0.70517 0.70903 −0.00154
0 0 0 1


23− 24 (−1.726, 3.529, 2.156,−0.00256, 0.00160,−0.00053)T


−0.49861 0.00053 −0.86682 698.275
0.00248 1.00000 −0.00081 3.157
0.86682 −0.00256 −0.49861 1.034
0 0 0 1


24− P (1.761, 3.598, 0.759, 0.00082, 0.00145, 0.00295)T


1.00000 −0.00295 0.00145 −148.243
0.00295 1.00000 −0.00081 3.157
−0.00145 0.00082 1.00000 0.977
0 0 0 1



The kinematic error between the calibrated value Tc and the actual value Ta is obtained through
the above method, as shown in Table 2, including the orientation and position error at the end effector.
The orientation error is the angular difference between the actual value of the end effector and the
calibrated one. Position error is the norm of the coordinate difference between the actual value of
the midpoint of the moving platform and the calibration one. Note that the derivation of kinematic
parameters was arbitrarily assumed in this simulation example, and it may not truly reflect the actual
situation in the parameter space due to manufacturing and assembly error. However, through the end
effector’s pose error simulation result as in Figure 4, it is seen that both the orientation and position
errors converged, and they were reduced by at least 10 times, thereby verifying the effectiveness of the
calibration algorithm. Compared with other methods based on the deviation of the distance between
points on the end-effector of parallel manipulators [26,27], our method gave better fitness of the pose
error at the central point of the end effector. Since the model was linear-in-parameter, the pose fit with
higher matching and better fitting conversion effects. Therefore, in the case of a linear error model,
the pose error was used for fitting so that the error reduction only needed one iteration.
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(a) (b)

Figure 4. The end effector’s pose error simulation result. (a) Orientation error; (b) position error.

To guide the future calibration experiments, the flowchart of the calibration process is given in
Figure 5. The meanings of various symbols in the flowchart can be referenced in Nomenclature.

Nominal 

inverse 

kinematics 

Calibrated 

forward 

kinematics 
gc

q
n
ij

T
c
i(j-1),ij(0)

T
a

T
n

Actual Parallel 

manipulator 

system

Laser tracker

T
n

Figure 5. Flowchart of the calibration.

7. Pre-Processing Compensation

Since some robot controllers cannot directly utilize the calibrated active and passive joint angles
to drive the robot, the joint variables were preprocessed to obtain the pose of the end effector that
could be directly utilized by the robot.

First, the initial pose Tc
i(j−1),ij(0) after calibration of each link was obtained through the calibration

process described above, as shown in Table 2. Combined with the commanded end pose Tco,
the calibrated joint angle qc

ij was calculated using the inverse kinematics after calibration. Since the
manipulator could not directly use qc

ij, the following conversion was required. By bringing qc
ij into

the positive kinematics solution based on the nominal kinematics parameters, the compensated end
effector pose Tcp could be obtained. At this time, Tcp could be directly used for offline programming.
The flowchart of this process is shown in Figure 6. The meaning of various symbols is listed in
Nomenclature.

T
c
i(j-1),ij(0) Calibrated 

inverse 

kinematics 

Actual parallel 

manipulator 

system

q
c
ij

Pre-processing process

Tcp
Nominal 

forword 

kinematics 

Tco

Figure 6. Flowchart of pre-processing compensation.
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8. Conclusions

In this paper, a kinematic model of a symmetrical 3T1R parallel manipulator was proposed based
on the local POE formula. By using local POE formula for kinematic error modeling, the joint twists
and joint variables could maintain their nominal values, and the errors were set to be concentrated in
the matrices of initial poses. As the end effector’s pose errors of the parallel manipulator established
through different branched chains were identical, the entire pose error of the parallel manipulator’s end
effector was formed by equaling the pose error of the end effector calculated in individual branched
chains.In addition, the joint angle of the second revolute joint was calculated by a recursive algorithm
according to the inherent kinematic constraints. This saved the rotary sensors installed at the second
revolute joint of each branched chain. Through simulation, it was shown that the deviation between
the actual and calibrated end effector’s pose could be reduced by at least 10 times with the proposed
kinematic error modeling and parameter identification methods. The procedures to use this error
model for profile pre-compensation in the actual testbed were also proposed.
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Abbreviations

The following abbreviations are used in this manuscript:

3T1R parallel manipulator The parallel manipulator can achieve three degrees of freedom of translation along
the X, Y, and Z axes and one degree of freedom of rotation around the Z axis

POE formula The product of exponentials formula
D-H convention The Denavit-Hartenberg convention

Nomenclature
For the ease of reference, the definition of the symbols used in this article are listed as follows:
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n The number of passive joints
i Represents the parallel manipulator B1, B3 branched chains (i = 1, 2)
i Represents the parallel manipulator B2, B4 branched chains (i = 1, 2)
j The number of joints on each branched chain (j = 1, 2, 3, 4)
gi Forward kinematics of these parallel manipulator branched chains i
Ti(j−1),ij(0) The initial pose of the coordinate system {ij} relative to the coordinate system {i(j− 1)}
Tc

i(j−1),ij(0) After calibration, the initial pose of the coordinate system {ij} relative to the coordinate system
{i(j− 1)}

Ta
i(j−1),ij(0) The actual initial pose of the coordinate system {ij} relative to the coordinate system {i(j− 1)}

qij Standard representation of joint variable; it represent the joint angle or joint displacement
qn

ij Standard representation of the nominal joint variable

qc
ij Standard representation of the joint variable after calibration

{B} Base coordinate system of the parallel manipulator
{i0}, {i0} Base coordinate system of these parallel manipulator branched chains i and i
{i1}, {i1} The translational motion coordinate system of these parallel manipulator branched chains i and i
{i2}, {i2} The rotational motion coordinate system where it is connected to the modules of these parallel

manipulator branched chains i and i
{i3} The coordinate system of ld link rotates around the D point of these parallel manipulator

branched chains i and i

{i4} The parallel manipulator moving platform rotational motion coordinate system around the Ai point
{P} Midpoint coordinate system of the end effector
gc Forward kinematics after calibration of the parallel manipulator
Tn The nominal pose of the end effector
Ta The actual pose of the end effector
Tco The command pose of the end effector during error compensation
Tcp The end pose after compensation
Adgi The adjoint transformation of gi, also written as Ad(gi), gi ∈ SE(3)
δgi · g−1

i The representation of the end error on these parallel manipulator branched chains i in the base
coordinate system {B}

δt̂ij The error of t in coordinate system {ij}
Ji Error Jacobian matrix of these parallel manipulator branched chains i
J Error Jacobian matrix of the entire parallel manipulator

References

1. Stewart, D. A platform with six degrees of freedom. Proc. Inst. Mech. Eng. 1965, 180, 371–386. [CrossRef]
2. Wu, C.; Yang, G.; Chen, C.; Liu, S.; Zheng, T. Kinematic design of a novel 4-dof parallel manipulator.

In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore,
29 May–3 June 2017; pp. 6099–6104.

3. Wu, J.-F.; Zhang, R.; Wang, R.-H.; Yao, Y.-X. A systematic optimization approach for the calibration of
parallel kinematics machine tools by a laser tracker. Int. J. Mach. Tools Manuf. 2014, 86, 1–11. [CrossRef]

4. Chanal, H.; Duc, E.; Ray, P.; Hascoet, J.Y. A new approach for the geometrical calibration of parallel kinematics
machines tools based on the machining of a dedicated part. Int. J. Mach. Tools Manuf. 2007, 47, 1151–1163.
[CrossRef]

5. Fu, J.; Gao, F.; Chen, W.; Pan, Y.; Lin, R. Kinematic accuracy research of a novel six-degree-of-freedom
parallel robot with three legs. Mech. Mach. Theory 2016, 102, 86–102. [CrossRef]

6. Song, Y.; Zhang, J.; Lian, B.; Sun, T. Kinematic calibration of a 5-dof parallel kinematic machine. Precis. Eng.
2016, 45, 242–261. [CrossRef]

7. Sun, T.; Zhai, Y.; Song, Y.; Zhang, J. Kinematic calibration of a 3-dof rotational parallel manipulator using
laser tracker. Robot. -Comput.-Integr. Manuf. 2016, 41, 78–91. [CrossRef]

8. Liu, H.; Gong, M.; O, M.Z.H.A. Error analysis and calibration of a 4-dof parallel mechanism. Robot 2005,
27, 6–9.

http://dx.doi.org/10.1243/PIME_PROC_1965_180_029_02
http://dx.doi.org/10.1016/j.ijmachtools.2014.06.003
http://dx.doi.org/10.1016/j.ijmachtools.2006.09.006
http://dx.doi.org/10.1016/j.mechmachtheory.2016.03.022
http://dx.doi.org/10.1016/j.precisioneng.2016.03.002
http://dx.doi.org/10.1016/j.rcim.2016.02.008


Symmetry 2020, 12, 357 16 of 16

9. Hartenberg, R.S.; Denavit, J. A kinematic notation for lower pair mechanisms based on matrices. J. Appl. Mech.
1955, 77, 215–221.

10. Mooring, B.W. An improved method for identifying the kinematic parameters in a six axes robots.
In Computers in Engineering, Proceedings of the International Computers in Engineering Conference and Exhibit;
American Soc of Mechanical Engineers (ASME): New York, NY, USA, 1984; Volume 1, pp. 79–84.

11. Yang, G.; Chen, I.-M.; Lee, W.K.; Yeo, S.H. Self-calibration of three-legged modular reconfigurable parallel
robots based on leg-end distance errors. Robotica 2001, 19, 187–198. [CrossRef]

12. Chen, G.; Kong, L.; Li, Q.; Wang, H.; Lin, Z. Complete, minimal and continuous error models for the
kinematic calibration of parallel manipulators based on poe formula. Mech. Mach. Theory 2018, 121, 844–856.
[CrossRef]

13. Okamura, K.; Park, F.C. Kinematic calibration using the product of exponentials formula. Robotica 1996, 14,
415–421. [CrossRef]

14. He, R.; Zhao, Y.; Yang, S.; Yang, S. Kinematic-parameter identification for serial-robot calibration based on
poe formula. IEEE Trans. Robot. 2010, 26, 411–423.

15. Wang, H.; Shen, S.; Lu, X. A screw axis identification method for serial robot calibration based on the
poe model. Ind. Robot. Int. J. 2012, 39, 146–153. [CrossRef]

16. Chen, I.-M.; Yang, G.; Tan, C.T.; Yeo, S.H. Local poe model for robot kinematic calibration. Mech. Mach.
Theory 2001, 36, 1215–1239. [CrossRef]

17. Nubiola, A.; Bonev, I.A. Absolute robot calibration with a single telescoping ballbar. PRecision Eng. 2014, 38,
472–480. [CrossRef]

18. Joubair, A.; Slamani, M.; Bonev, I.A. Kinematic calibration of a five-bar planar parallel robot using all
working modes. Robot. -Comput.-Integr. Manuf. 2013, 29, 15–25. [CrossRef]

19. Du, G.; Zhang, P. Online robot calibration based on vision measurement. Robot. Comput.-Integr. Manuf. 2013,
29, 484–492. [CrossRef]

20. HuangFu, Y.; Hang, L.; Cheng, W.; Yu, L.; Shen, C.; Wang, J.; Qin, W.; Wang, Y. Research on robot calibration
based on laser tracker. In Mechanism and Machine Science; Springer: Berlin/Heidelberg, Germany, 2016;
pp. 1475–1488.

21. Elatta, A.Y.; Gen, L.P.; Zhi, F.L.; Daoyuan, Y.; Fei, L. An overview of robot calibration. Inf. Technol. J. 2004, 3,
74–78.

22. Wu, L.; Yang, X.; Chen, K.; Ren, H. A minimal poe-based model for robotic kinematic calibration with only
position measurements. IEEE Trans. Autom. Sci. Eng. 2014, 12, 758–763. [CrossRef]

23. Sareh, P. The least symmetric crystallographic derivative of the developable double corrugation surface:
Computational design using underlying conic and cubic curves. Mater. Des. 2019, 183, 108128. [CrossRef]

24. Chen, J.; San, H.; Wu, X.; Chen, M.; He, W. Structural design and characteristic analysis for
a 4-degree-of-freedom parallel manipulator. Adv. Mech. Eng. 2019, 11, 1687814019850995. [CrossRef]

25. Yang, L.; Tian, X.; Li, Z.; Chai, F.; Dong, D. Numerical simulation of calibration algorithm based on inverse
kinematics of the parallel mechanism. Optik 2019, 182, 555–564. [CrossRef]

26. Huang, K.; Liu, R.G.; Wu, J.S.; Lao, X.R.; Mo, J.H. Parameter calibration method based on screw theory for
articulated coordinate measuring arm. In Advanced Materials Research; Trans Tech Publ: Zurich, Switzerland,
2011; Volume 189, pp. 4049–4052.

27. Gu, L.; Yang, G.; Fang, Z.; Shen, W.; Zheng, T.; Chen, C.; Zhang, C. A two-step self-calibration method with
portable measurement devices for industrial robots based on poe formula. In International Conference on
Intelligent Robotics and Applications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 715–727.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1017/S0263574700002927
http://dx.doi.org/10.1016/j.mechmachtheory.2017.11.003
http://dx.doi.org/10.1017/S0263574700019810
http://dx.doi.org/10.1108/01439911211201609
http://dx.doi.org/10.1016/S0094-114X(01)00048-9
http://dx.doi.org/10.1016/j.precisioneng.2014.01.001
http://dx.doi.org/10.1016/j.rcim.2012.10.002
http://dx.doi.org/10.1016/j.rcim.2013.05.003
http://dx.doi.org/10.1109/TASE.2014.2328652
http://dx.doi.org/10.1016/j.matdes.2019.108128
http://dx.doi.org/10.1177/1687814019850995
http://dx.doi.org/10.1016/j.ijleo.2019.01.079
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Kinematics of a Symmetrical 3T1R Parallel Manipulator
	Structure of the 3T1R Parallel Manipulator
	Dyad kinematics Based on local POE formula
	Branched Chain Kinematics Based on the Local POE Formula
	Kinematics of the Parallel Manipulator Branched Chain i Based on the Local POE Formula

	Establishing the Kinematic Error Model for this 3T1R Parallel Manipulator
	Establishment of the Kinematic Error Model from a Single Branched Chain
	Establishment of the Overall Kinematic Error Model

	Method to Reduce the Number of Sensors Used in Passive Joints
	A Recursive Least Squares Method to Identify the Parameters in the Kinematic Error Model
	Simulation Results
	Pre-Processing Compensation
	Conclusions
	References

