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Abstract: In this paper we deal with the trigonometric Gaudin model, generalized using a nontrivial
triangular reflection matrix (corresponding to non-periodic boundary conditions in the case of
anisotropic XXZ Heisenberg spin-chain). In order to obtain the generating function of the Gaudin
Hamiltonians with boundary terms we follow an approach based on Sklyanin’s derivation in
the periodic case. Once we have the generating function, we obtain the corresponding Gaudin
Hamiltonians with boundary terms by taking its residues at the poles. As the main result, we find the
generic form of the Bethe vectors such that the off-shell action of the generating function becomes
exceedingly compact and simple. In this way—by obtaining Bethe equations and the spectrum of the
generating function—we fully implement the algebraic Bethe ansatz for the generalized trigonometric
Gaudin model.

Keywords: Gaudin model; Algebraic Bethe Ansatz; non-unitary r-matrix

1. Introduction

The so-called rational s`(2) Gaudin model was first introduced in [1] as a model of “long-range”
interacting spins in a chain. Having non-trivial long-range (pairwise) interactions and yet being fully
integrable, the model was of clear potential interest in many areas of physics. Naturally, the most
promising were its applications in condensed matter physics, where the need for exactly (or even
only quasi-exactly) solvable interacting many-body models was maybe the most acute, and where
the generalizations of Gaudin algebra arguably play a significant role [2]. However, the potential
physical significance of Gaudin model is not confined to this area; for example, its connection with
Wess–Zumino–Novikov–Witten model was pointed out in [3], more recently it was also related to AGT
correspondence [4], and applied to obtain classical integrable field theories [5].

Therefore it is not surprising that many generalizations ensued soon after the Gaudin’s original
paper, along various directions: to other simple Lie algebras [6,7], in the context of the quantum
inverse scattering method [8–10], to other cases where skew-symmetric r-matrix fulfills the classical
Yang-Baxter equation [11,12]. In general, not only Gaudin models corresponding to the classical
r-matrices of simple Lie algebras [3,13–17], but also those of Lie superalgebras [18–22] attracted
considerable attention.

One particular approach to the relation between Heisenberg spin-chains and Gaudin models was
due to Hikami, Kulish and Wadati, who showed that the Gaudin Hamiltonians can be obtained by
making the so-called quasi-classical expansion of the transfer matrix of the periodic chain [23,24]. This
was soon demonstrated also for cases with non-periodic boundary conditions [25]. The progress
paved the way for further studies of open Gaudin models, and algebraic Bethe ansatz (ABA)
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was soon applied to open Gaudin model in the context of Lie superalgebras [26] and of the the
Vertex-IRF correspondence [27–29]. Open Gaudin models were also studied in the light of the classical
reflection equation [30–32] and, more recently, an approach utilizing non-unitary r-matrices was
demonstrated [33,34]. A more detailed review of the open Gaudin model can be found in [35].

Due to the close mathematical connection between Heisenberg spin-chains and Gaudin models,
development in one area inevitably led also to the progress in the other. Further generalizations in
applications of ABA to spin-chains with non-periodic boundary conditions [36–53] recently influenced
study of the corresponding Gaudin model [54,55]. A new method to obtain the eigenvalues of the
Gaudin Hamiltonians and the corresponding Bethe ansatz equations was derived in [56], based on
T − Q approach to implementation of Bethe ansatz [41,42]. Also, in [53], by taking the so-called
quasi-classical limit we obtained the off-shell action of the generating function on the Bethe vectors for
the trigonometric Gaudin model with boundary terms.

While in [53] we considered expansion of the XXZ spin-chain expressions to obtain Bethe vectors
for the Gaudin model (i.e., by exploiting the mathematical relation between the two models), the open
trigonometric Gaudin model can be treated in its own right, by fully implementing the algebraic Bethe
ansatz for this case. This is the essential goal of the present paper.

The first important goal of an independent treatment of the Gaudin model is to obtain the
generating function of the Gaudin Hamiltonians. Similarly like in the rational case [55], we will follow
the approach based on Sklyanin’s method in the periodic case [10,57]. Once we have the generating
function, taking its residues at the poles will yield the Gaudin Hamiltonians with the boundary terms.

The next step is to establish the algebra of Bethe operators. This will be accomplished by first
constructing non-unitary classical r-matrix (which satisfies the generalized classical Yang-Baxter
equation) and the corresponding modified Lax matrix—both of which depend on the reflection
K-matrix (following the analogy with the spin-chain case, we may say that the K-matrix encodes
non-period boundary conditions). These two entities are mutually related via linear bracket, which
is anti-symmetric, obeys the Jacobi identity and will lead us to algebraic relations between Bethe
operators (matrix elements of the Lax matrix). Additionally, as an important nontrivial step, we will
demonstrate how an appropriate change of generator basis can result in significant simplification of
the initial Bethe algebra relations.

The most difficult part of the ABA implementation is to find the Bethe vectors and the
corresponding off-shell action of the generating function. After explicitly solving the first few particular
cases, we will conjecture the general form of a Bethe vector using a family of suitably defined creation
operators. Such Bethe vectors will turn out to yield strikingly simple off-shell action of the generating
function—so simple that it is hardly any more complex than the corresponding formula when the
boundary matrix is diagonal [25]. As usual, off-shell action of the generating function provides us
both with the spectrum of the system and with the corresponding Bethe equations (the latter are the
necessary conditions to eliminate the unwanted terms and promote Bethe vectors into true solutions
of the eigenproblem).

This paper is organized as follows. In Section 2 we establish the fundamentals of the framework,
defining the reflection matrix, Lax matrix and r-matrix that correspond to the Gaudin model with
nontrivial boundary. The generating function, as well as the Gaudin Hamiltonians are also derived
in this section. Section 3 deals with the algebraic Bethe ansatz of the model: we derive the relevant
algebraic structure and proceed to solve the generating function eigenproblem by finding the
appropriate Bethe vectors and the formula for the off-shell action. We summarize our results in the
Section 4. In Appendix A we provide proof for the essential commutativity property of the generating
function of the Gaudin Hamiltonians, while the Appendix B contains some explicit formulas regarding
the Bethe vector ϕ3(µ1, µ2, µ3).
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2. Trigonometric Gaudin Model with Boundary

Lax matrix of the trigonometric Gaudin model with periodic boundary conditions [20] is of the
following form [53,57]:

L0(λ) =
N

∑
m=1

σ3
0 ⊗ cosh(λ− αm)S3

m + 1
2
(
σ+

0 ⊗ S−m + σ−0 ⊗ S+
m
)

sinh(λ− αm)
, (1)

where spin operators Sα
m, α = +,−, 3, living in the product Hilbert space

H =
N
⊗

m=1
Vm = (C2s+1)⊗N , (2)

satisfy the usual commutation relations:

[S3
m, S±n ] = ±S±m δmn, [S+

m , S−n ] = 2S3
m δmn. (3)

The corresponding classical r-matrix is given by:

r(λ) =
−1

2 sinh(λ)

(
cosh(λ)(1⊗ 1+ σ3 ⊗ σ3) +

1
2
(
σ+ ⊗ σ− + σ− ⊗ σ+

))
. (4)

The r-matrix (4) satisfies the classical Yang-Baxter equation

[r13(λ), r23(µ)] + [r12(λ− µ), r13(λ) + r23(µ)] = 0, (5)

and also has the following unitarity property

r21(−λ) = −r12(λ). (6)

Crucially, Lax matrix and r-matrix satisfy the so-called Sklyanin linear bracket relation:

[L1(λ), L2(µ)] = [r12(λ− µ), L1(λ) + L2(µ)] . (7)

The Sklyanin linear bracket (7) obeys the Jacobi identity and is also anti-symmetric. From here it
follows that the entries of the Lax matrix (1) generate a Lie algebra (Gaudin algebra), which in this
case corresponds to the trigonometric Gaudin model with periodic boundary conditions [20].

The Gaudin model described by the above Lax matrix (1) and r-matrix (4) is mathematically tightly
related to the trigonometric spin-chain model with periodic boundary: the former can be obtained
from the latter by the so-called quasi-classical expansion [23,24]. This can be verified by considering
linear terms in the η expansion of the XXZ Heisenberg spin-chain Lax operator and R-matrix, taken
from [53], in a full analogy with the rational case [55]:

L0m(λ− αm) = 10 ⊗ 1m + η

(
σ3

0 ⊗ coth(λ− αm) S3
m +

1
2 sinh(λ− αm)

(
σ+

0 ⊗ S−m + σ−0 ⊗ S+
m
))

+
η2

2
10 ⊗

(
S3

m

)2
+O(η3);

(8)

and
1

sinh(λ)
R(λ) = 1− ηr(λ) +O(η2). (9)

To extend the generality of the model it is possible to introduce the reflection K-matrix, in a
mathematically similar manner as when the periodic Heisenberg spin-chain model is extended
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to account for nontrivial boundary conditions. K-matrix must then satisfy the classical reflection
equation [30,31,55]:

r12(λ− µ)K1(λ)K2(µ) + K1(λ)r21(λ + µ)K2(µ) =

= K2(µ)r12(λ + µ)K1(λ) + K2(µ)K1(λ)r21(λ− µ).
(10)

In the spin chain case, parameters of K− and K+ matrices (encoding, respectively, boundary conditions
on the left and on the right end of the chain) are allowed to be different. However, in the Gaudin
model case we must impose the following additional condition on the reflection matrices [35,55]:

lim
η→0

(
K+(λ)K−(λ)

)
=
(

κ2 sinh(ξ − λ) sinh(ξ + λ)− φψ sinh2(λ)
)
1. (11)

In turn, this implies that parameters of the K− and K+ cannot be mutually independent, and effectively,
we cannot speak of two reflection matrices but of a single one. Intuitively, this is not surprising, since
the long-range Gaudin interactions actually do not single out any nodes as boundary nodes and
thus, physically, K-matrices cannot be literally interpreted as describing any boundary conditions but
merely as parameters that provide further generalization of the model (this can be best inferred
from the Hamiltonian Expression (23) below). In spite of this, we will say for such a Gaudin
model—incorporating a nontrivial K-matrix—that it satisfies nontrivial boundary conditions (or
denote it as “open”), simply due to the analogy and direct relation with the corresponding
spin-chain model (the strict mathematical connection can be again established by the quasi-classical
expansion procedure).

The solutions for K−(λ) and K+(λ) can be thus given in terms of a single K-matrix, and they take
the following form [58–60]:

K−(λ) ≡ K(λ) =

(
κ sinh(ξ + λ) ψ sinh(2λ)

φ sinh(2λ) κ sinh(ξ − λ)

)
(12)

and

K+(λ) = K(−λ− η) =

(
κ sinh(ξ − λ− η) −ψ sinh (2(λ + η))

−φ sinh (2(λ + η)) κ sinh(ξ + λ + η)

)
. (13)

Moreover, it is straightforward to check the following useful identities

K(−λ)K(λ) = det (K(λ))1, (14)

K(−λ) = tr K(λ)− K(λ). (15)

Now, the new Gaudin Lax matrix generalized by the K-matrix, is given by

L0(λ) = L0(λ)− K0(λ)L0(−λ)K−1
0 (λ), (16)

and the corresponding non-unitary r-matrix is given by:

rK
00′(λ, µ) = r00′(λ− µ)− K0′(µ)r00′(λ + µ)K−1

0′ (µ). (17)

It is not difficult to check that this r-matrix satisfies the classical Yang-Baxter equation

[rK
32(λ3, λ2), rK

13(λ1, λ3)] + [rK
12(λ1, λ2), rK

13(λ1, λ3) + rK
23(λ2, λ3)] = 0 (18)

and that the linear bracket for the modified Lax operator is now preserved:

[L0(λ),L0′(µ)] =
[
rK

00′(λ, µ),L0(λ)
]
−
[
rK

0′0(µ, λ),L0′(µ)
]

. (19)
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This linear bracket is also anti-symmetric. Since the r-matrix (17) satisfies the classical Yang-Baxter
equation, it additionally obeys the Jacobi identity.

We have now set the stage to introduce the generating function of the Gaudin Hamiltonians with
boundary terms:

τ(λ) = tr0 L2
0(λ) (20)

The essential property of τ(λ) is that it commutes for different values of the spectral parameter:

[τ(λ), τ(µ)] = 0. (21)

The proof of this relation is given in the Appendix A.
Next, we obtain the Gaudin Hamiltonians with the boundary terms by taking the residues of the

generating function (20) at poles λ = ±αm :

Res
λ=αm

τ(λ) = 4 Hm and Res
λ=−αm

τ(λ) = (−4) Hm (22)

where

Hm =
N

∑
n 6=m

(
coth(αm − αn) S3

mS3
n +

S+
mS−n + S−mS+

n
2 sinh(αm − αn)

)
+

N

∑
n=1

coth(αm + αn)
S3

mS3
n + S3

nS3
m

2

+
ψ

κ

sinh(2αm)

sinh(ξ + αm)

N

∑
n=1

S3
mS+

n + S+
n S3

m
2 sinh(αm + αn)

+
sinh(ξ − αm)

2 sinh(ξ + αm)

N

∑
n=1

S−mS+
n + S+

n S−m
2 sinh(αm + αn)

− ψ

κ

sinh(2αm)

sinh(ξ − αm)

N

∑
n=1

coth(αm + αn)
S+

mS3
n + S3

nS+
m

2
+

sinh(ξ + αm)

2 sinh(ξ − αm)

N

∑
n=1

S+
mS−n + S−n S+

m
2 sinh(αm + αn)

− ψ2

κ2
sinh2(2αm)

2 sinh(ξ − αm) sinh(ξ + αm)

N

∑
n=1

S+
mS+

n + S+
n S+

m
2 sinh(αm + αn)

. (23)

In the next section we will deal with the arduous task of obtain the spectrum and the corresponding
Bethe vectors of the generating function.

3. Algebraic Bethe Ansatz

Implementation of the algebraic Bethe ansatz requires triangularity of the K-matrix (12).
As opposed to the rational case [55] where the triangularity of the K-matrix can be guaranteed
by the similarity transformation independent of the spectral parameter, in the present case there is no,
in general, U(1) symmetry transformation that can bring the reflection matrix to the upper triangular
form. For this reason, we are forced to impose an extra condition on the parameters of K(λ). By setting

φ = 0

the reflection matrix becomes upper triangular

K(λ) =

(
κ sinh(ξ + λ) ψ sinh(2λ)

0 κ sinh(ξ − λ)

)
. (24)

The inverse matrix has the following form:

K−1(λ) =
1

κ2 sinh(ξ + λ) sinh(ξ − λ)

(
κ sinh(ξ − λ) −ψ sinh(2λ)

0 κ sinh(ξ + λ)

)
. (25)
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By substituting these formulas into (16),

L0(λ) =

(
H(λ) F(λ)
E(λ) −H(λ)

)
= L0(λ)− K0(λ)L0(−λ)K−1

0 (λ), (26)

we obtain local realisation for the entries of the Lax matrix of the following form:

E(λ) =
N

∑
m=1

(
S+

m
sinh(λ− αm)

+
sinh(ξ − λ) S+

m
sinh(ξ + λ) sinh(λ + αm)

)
, (27)

H(λ) =
N

∑
m=1

(
coth(λ− αm) S3

m + coth(λ + αm) S3
m +

ψ sinh(2λ) S+
m

κ sinh(ξ + λ) sinh(λ + αm)

)
, (28)

F(λ) =
N

∑
m=1

(
S−m

sinh(λ− αm)
+

sinh(ξ + λ) S−m
sinh(ξ − λ) sinh(λ + αm)

− 2ψ sinh(2λ)

κ sinh(ξ − λ)
coth(λ + αm) S3

m

− ψ2 sinh2(2λ) S+
m

κ2 sinh(ξ − λ) sinh(ξ + λ) sinh(λ + αm)

)
. (29)

Similarly, by using (4), (24), (25) and (17) we obtain explicit expression for rK
00′(λ, µ). This

non-unitary, classical r-matrix together with the Lax matrix (26) defines the Lie algebra relevant for
the open trigonometric Gaudin model. By explicitly rewriting the relation (19) we find the following
commutation relations for the generators E(λ), H(λ) and F(λ):

[E(λ), E(µ)] = 0, (30)

[H(λ), E(µ)] =
1

sinh(λ− µ) sinh(λ + µ)

(
sinh(2λ) E(µ)− sinh(ξ + λ)

sinh(ξ + µ)
sinh(2µ) E(λ)

)
, (31)

[E(λ), F(µ)] =
2ψ

κ
coth(λ + µ)

sinh(2µ)

sinh(ξ − µ)
E(λ) +

2
sinh(λ− µ) sinh(λ + µ)

×

×
(

sinh(ξ + µ)

sinh(ξ + λ)
sinh(2λ) H(µ)− sinh(ξ − λ)

sinh(ξ − µ)
sinh(2µ) H(λ)

)
, (32)

[H(λ), H(µ)] =
−ψ

κ sinh(λ + µ)

(
sinh(2λ)

sinh(ξ + λ)
E(µ)− sinh(2µ)

sinh(ξ + µ)
E(λ)

)
, (33)

[H(λ), F(µ)] = − 1
sinh(λ− µ) sinh(λ + µ)

(
sinh(2λ) F(µ)− sinh(ξ − λ)

sinh(ξ − µ)
sinh(2µ) F(λ)

)
+

2ψ sinh(2λ)

κ sinh(λ + µ) sinh(ξ + λ)
H(µ)− ψ2 sinh2(2µ)

κ2 sinh(λ + µ) sinh(ξ − µ) sinh(ξ + µ)
E(λ), (34)

[F(λ), F(µ)] =
2ψ

κ
coth(λ + µ)

(
sinh(2λ)

sinh(ξ − λ)
F(µ)− sinh(2µ)

sinh(ξ − µ)
F(λ)

)
− 2ψ2

κ2 sinh(λ + µ)

(
sinh2(2λ)

sinh(ξ − λ) sinh(ξ + λ)
H(µ)− sinh2(2µ)

sinh(ξ − µ) sinh(ξ + µ)
H(λ)

)
. (35)

In terms of the entries of the Lax matrix, the generating function of the Gaudin Hamiltonians (20)
has the following form:

τ(λ) = tr0 L2
0(λ) = 2H2(λ) + 2F(λ)E(λ) + [E(λ), F(λ)] , (36)

where, from (32) we evaluate the last term to be

[E(λ), F(λ)] = 2
cosh(2ξ) cosh(2λ)− 1

sinh(2λ) sinh(ξ + λ) sinh(ξ − λ)
H(λ)− 2H′(λ) +

2ψ cosh(2λ)

κ sinh(ξ − λ)
E(λ), (37)
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and thus the final expression becomes

τ(λ) = 2
(

H2(λ) +
cosh(2ξ) cosh(2λ)− 1

sinh(2λ) sinh(ξ + λ) sinh(ξ − λ)
H(λ)− H′(λ)

)
+

(
2F(λ) +

2ψ cosh(2λ)

κ sinh(ξ − λ)

)
E(λ). (38)

In order to simplify commutation relations (30)–(35) we switch to new generators e(λ), h(λ) and
f (λ), defined as linear combinations of the original ones:

e(λ) =
sinh(ξ + λ)

sinh(2λ)
E(λ) =

N

∑
m=1

sinh(ξ + αm) S+
m

sinh(λ− αm) sinh(λ + αm)
, (39)

h(λ) =
1

sinh(2λ)

(
H(λ)− ψ sinh(λ)

k sinh(ξ)
E(λ)

)
=

N

∑
m=1

S3
m −

ψ sinh(αm)

κ sinh(ξ)
S+

m

sinh(λ− αm) sinh(λ + αm)
, (40)

f (λ) =
1

sinh(2λ)

(
sinh(ξ − λ)F(λ) +

ψ

κ
sinh(2λ)H(λ)

)
=

N

∑
m=1

sinh(ξ − αm) S−m +
ψ

κ
sinh(2αm) S3

m

sinh(λ− αm) sinh(λ + αm)
. (41)

The essential property of the new basis operators is:

[e(λ), e(µ)] = [h(λ), h(µ)] = [ f (λ), f (µ)] = 0. (42)

Therefore there are only three remaining nontrivial commutation relations

[h(λ), e(µ)] =
1

sinh(λ− µ) sinh(λ + µ)
(e(µ)− e(λ)) , (43)

[h(λ), f (µ)] =
−1

sinh(λ− µ) sinh(λ + µ)
( f (µ)− f (λ)) +

2ψ coth(ξ)
κ sinh(λ− µ) sinh(λ + µ)

×

×
(

sinh2(µ) h(µ)− sinh2(λ) h(λ)
)
+

2ψ2

κ2 sinh(λ− µ) sinh(λ + µ) sinh2(ξ)
×

×
(

sinh2(µ) e(µ)− sinh2(λ) e(λ)
)

, (44)

[e(λ), f (µ)] =
−2ψ coth(ξ)

κ sinh(λ− µ) sinh(λ + µ)

(
sinh2(µ) e(µ)− sinh2(λ) e(λ)

)
+

2
sinh(λ− µ) sinh(λ + µ)

×

× (sinh(ξ − µ) sinh(ξ + µ) h(µ)− sinh(ξ − λ) sinh(ξ + λ) h(λ)) . (45)

Lie algebra (42)–(45) will be the basis of our implementation of the algebraic Bethe ansatz. The first
step is to find the expression for the generating function τ(λ) as a function of the new generators
e(λ), h(λ) and f (λ). To this end, we will invert the relations (39)–(41)

E(λ) =
sinh(2λ)

sinh(ξ + λ)
e(λ), (46)

H(λ) = sinh(2λ)

(
h(λ) +

ψ sinh(λ)
κ sinh(ξ) sinh(ξ + λ)

e(λ)
)

, (47)

F(λ) =
sinh(2λ)

sinh(ξ − λ)

(
f (λ)− ψ sinh(2λ)

κ
h(λ)− ψ2 sinh(λ) sinh(2λ)

κ2 sinh(ξ) sinh(ξ + λ)
e(λ)

)
. (48)
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In particular, we find

H2(λ) = sinh2(2λ)

(
h2(λ) +

ψ sinh(λ)
κ sinh(ξ) sinh(ξ + λ)

(2h(λ)e(λ)− [h(λ), e(λ)])

+
ψ2 sinh2(λ)

κ2 sinh2(ξ) sinh2(ξ + λ)
e2(λ)

)

= sinh2(2λ)

(
h2(λ) +

ψ sinh(λ)
κ sinh(ξ) sinh(ξ + λ)

(
2h(λ)e(λ) +

e′(λ)
sinh(2λ)

)
+

ψ2 sinh2(λ)

κ2 sinh2(ξ) sinh2(ξ + λ)
e2(λ)

)
. (49)

Substitution of (46)–(49) into (38) yields the desired expression for the the generating function

τ(λ) = 2 sinh2(2λ)

(
h2(λ) +

h(λ)
sinh(ξ + λ) sinh(ξ − λ)

− h′(λ)
sinh(2λ)

)
+

2 sinh2(2λ)

sinh(ξ + λ) sinh(ξ − λ)
×

×
(

f (λ)− 2
ψ

κ
coth(ξ) sinh2(λ) h(λ)− ψ2 sinh2(λ)

κ2 sinh2(ξ)
e(λ) +

ψ

κ
coth(ξ)

)
e(λ).

(50)

In every factor-space Vm = C2s+1 from the Hilbert space H (2) there exists a vector ωm ∈ Vm

such that
S3

mωm = smωm and S+
mωm = 0. (51)

We define a vector Ω+ to be
Ω+ = ω1 ⊗ · · · ⊗ωN ∈ H. (52)

The action of the generators e(λ) and h(λ) on the vector Ω+ can be obtained from the definitions above
and the formulas (27)–(28) and (39)–(41):

e(λ)Ω+ = 0 and h(λ)Ω+ = ρ(λ)Ω+, with ρ(λ) =
N

∑
m=1

sm

sinh(λ + αm) sinh(λ− αm)
. (53)

Of a crucial importance in what follows is to note that the vector Ω+ (52) is an eigenvector of the
generating function τ(λ). This can be shown by using (53)

τ(λ)Ω+ = χ0(λ)Ω+ = 2 sinh2(2λ)

(
ρ2(λ) +

ρ(λ)

sinh(ξ + λ) sinh(ξ − λ)
− ρ′(λ)

sinh(2λ)

)
Ω+. (54)

By using the explicit expression for the function ρ(λ) (53) the eigenvalue χ0(λ) can be also written as

χ0(λ) = 2 sinh2(2λ)

(
N

∑
m=1

sm(sm + 1)
sinh2(λ + αm) sinh2(λ− αm)

+
N

∑
m=1

sm

sinh(λ + αm) sinh(λ− αm)
×

×
(

1
sinh(ξ + λ) sinh(ξ − λ)

+
N

∑
n>m

2sn

sinh(λ + αn) sinh(λ− αn)

))
.

(55)

The essential goal of the implementation of the algebraic Bethe ansatz is to find the corresponding
Bethe vectors. Due to the existence of Bethe conditions, it turns out that their form is not unique,
and we seek the solution that renders the off-shell action of the generating function of the Gaudin
Hamiltonians as simple as possible. We proceed by demonstrating that the Bethe vector ϕ1(µ) has
the form

ϕ1(µ) =
(

f (µ) + c(1)1 (µ)
)

Ω+, (56)
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where c1(µ) is given by

c(1)1 (µ) =
ψ

κ

(
1 +

(
e−2ξ − cosh(2µ)

)
ρ(µ)

)
. (57)

We proceed by explicit calculation to find

τ(λ)ϕ1(µ) = [τ(λ), f (µ)]Ω+ + χ0(λ)ϕ1(µ), (58)

where the commutator in the first term of (58) becomes

[τ(λ), f (µ)]Ω+ = − 2 sinh2(2λ)

sinh(λ + µ) sinh(λ− µ)

(
2ρ(λ) +

1
sinh(ξ + λ) sinh(ξ − λ)

)
ϕ1(µ)

+
2 sinh2(2λ)

sinh(λ + µ) sinh(λ− µ)

sinh(ξ + µ) sinh(ξ − µ)

sinh(ξ + λ) sinh(ξ − λ)
×

×
(

2ρ(µ) +
1

sinh(ξ + µ) sinh(ξ − µ)

)
ϕ1(λ). (59)

Hence the action of the generating function τ(λ) on ϕ1(µ) is

τ(λ)ϕ1(µ) = χ1(λ, µ)ϕ1(µ) +
2 sinh2(2λ)

sinh(λ + µ) sinh(λ− µ)

sinh(ξ + µ) sinh(ξ − µ)

sinh(ξ + λ) sinh(ξ − λ)
×

×
(

2ρ(µ) +
1

sinh(ξ + µ) sinh(ξ − µ)

)
ϕ1(λ),

(60)

with

χ1(λ, µ) = χ0(λ)−
2 sinh2(2λ)

sinh(λ + µ) sinh(λ− µ)

(
2ρ(λ) +

1
sinh(ξ + λ) sinh(ξ − λ)

)
. (61)

We can make the unwanted term in (60) vanish in the standard manner, i.e., by imposing the following
Bethe equation:

2ρ(µ) +
1

sinh(ξ + µ) sinh(ξ − µ)
= 0. (62)

Therefore, we have shown that ϕ1(µ) (56) is indeed a Bethe vector of the generating function τ(λ)

with the eigenvalue χ1(λ, µ) (61).
Next, we seek the Bethe vector ϕ2(µ1, µ2) in the form of the following symmetric function

ϕ2(µ1, µ2) = f (µ1) f (µ2)Ω+ + c(1)2 (µ2; µ1) f (µ1)Ω+ + c(1)2 (µ1; µ2) f (µ2)Ω+ + c(2)2 (µ1, µ2)Ω+. (63)

We now proceed to show that a proper solution for the scalar coefficients c(1)2 (µ1; µ2) and c(2)2 (µ1, µ2) is

c(1)2 (µ1; µ2) =
ψ

κ

(
1 +

(
e−2ξ − cosh(2µ1)

)(
ρ(µ1)−

1
sinh(µ1 − µ2) sinh(µ1 + µ2)

))
, (64)

c(2)2 (µ1, µ2) =
ψ2

κ2

(
3 +

(
e−2ξ − cosh(2µ1)

) (
e−2ξ − cosh(2µ2)

)
ρ(µ1)ρ(µ2)+

+
2e−4ξ + 2e−2ξ (cosh(2µ1)− 3 cosh(2µ2))− (3 + cosh(4µ1)− 6 cosh(2µ1) cosh(2µ2))

4 sinh(µ1 − µ2) sinh(µ1 + µ2)
ρ(µ1)

+
2e−4ξ + 2e−2ξ (cosh(2µ2)− 3 cosh(2µ1))− (3 + cosh(4µ2)− 6 cosh(2µ2) cosh(2µ1))

4 sinh(µ2 − µ1) sinh(µ2 + µ1)
ρ(µ2)

)
. (65)
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The action of τ(λ) on ϕ2(µ1, µ2) can be written as

τ(λ)ϕ2(µ1, µ2) = [[τ(λ), f (µ1)] , f (µ2)]Ω+ +
(

f (µ2) + c(1)2 (µ2; µ1)
)
[τ(λ), f (µ1)]Ω+

+
(

f (µ1) + c(1)2 (µ1; µ2)
)
[τ(λ), f (µ2)]Ω+ + χ0(λ)ϕ2(µ1, µ2).

(66)

Then, we already have the Expression (59) for the second and third term above, and we use the relations

(
f (µ1) + c(1)2 (µ1; µ2)

)
ϕ1(µ2) = ϕ2(µ1, µ2)−

ψ

κ

e−2ξ − cosh(2µ2)

sinh(µ1 − µ2) sinh(µ1 + µ2)
ϕ1(µ1)

−
(

c(2)2 (µ1, µ2)− c(1)1 (µ1)c
(1)
1 (µ2) +

ψ

κ

(
e−2ξ − cosh(2µ1)

)
c(1)1 (µ2)−

(
e−2ξ − cosh(2µ2)

)
c(1)1 (µ1)

sinh(µ1 − µ2) sinh(µ1 + µ2)

)
Ω+, (67)

(
f (µ1) + c(1)2 (µ1; µ2)

)
ϕ1(λ) = ϕ2(µ1, λ)− ψ

κ

e−2ξ − cosh(2λ)

sinh(λ− µ1) sinh(λ + µ1)
ϕ1(µ1)

+
(

c(1)2 (µ1; µ2)− c(1)2 (µ1; λ)
)

ϕ1(λ)

−
(

c(2)2 (µ1, λ)− c(1)1 (µ1)c
(1)
1 (λ) +

ψ

κ

(
e−2ξ − cosh(2λ)

)
c(1)1 (µ1)−

(
e−2ξ − cosh(2µ1)

)
c(1)1 (λ)

sinh(λ− µ1) sinh(λ + µ1)

)
Ω+, (68)

which follow from the definition (63). After expressing appropriately the first term on the right-hand
side of (66) and using twice the expression for the action of the commutator of τ(λ) with the generator
f (λ) on the vector Ω+ (59) as well as the identities (67) and (68), a straightforward calculation shows
that the off-shell action of the generating function τ(λ) on ϕ2(µ1, µ2) is given by

τ(λ)ϕ2(µ1, µ2) = χ2(λ, µ1, µ2)ϕ2(µ1, µ2) +
2

∑
i=1

2 sinh2(2λ)

sinh(λ + µi) sinh(λ− µi)

sinh(ξ + µi) sinh(ξ − µi)

sinh(ξ + λ) sinh(ξ − λ)
×

×
(

2ρ(µi) +
1

sinh(ξ + µi) sinh(ξ − µi)
− 2

sinh(µi + µ3−i) sinh(µi − µ3−i)

)
ϕ2(λ, µ3−i),

(69)

with the eigenvalue

χ2(λ, µ1, µ2) = χ0(λ)−
2

∑
i=1

2 sinh2(2λ)

sinh(λ + µi) sinh(λ− µi)
×

×
(

2ρ(λ) +
1

sinh(ξ + λ) sinh(ξ − λ)
− 1

sinh(λ + µ3−i) sinh(λ− µ3−i)

)
.

(70)

Again, we can take care of the two unwanted terms in (69) by imposing the Bethe equations on the
parameters µ1 and µ2:

2ρ(µi) +
1

sinh(ξ + µi) sinh(ξ − µi)
− 2

sinh(µi + µ3−i) sinh(µi − µ3−i)
= 0, (71)

with i = 1, 2. Thus, we have established that ϕ2(µ1, µ2) is the Bethe vector of the generating function
of the Gaudin Hamiltonians corresponding to the eigenvalue χ2(λ, µ1, µ2).



Symmetry 2020, 12, 352 11 of 20

The form of the Bethe vector ϕ3(µ1, µ2, µ3) is given explicitly (as a symmetric function of these
parameters) in the Appendix B. By a straightforward (but lengthy) computation one can show that the
action of the generating function τ(λ) on ϕ3(µ1, µ2, µ3) has the following form:

τ(λ)ϕ3(µ1, µ2, µ3) = χ3(λ, µ1, µ2, µ3)ϕ3(µ1, µ2, µ3)

+
3

∑
i=1

2 sinh2(2λ)

sinh(λ + µi) sinh(λ− µi)

sinh(ξ + µi) sinh(ξ − µi)

sinh(ξ + λ) sinh(ξ − λ)
×

×
(

2ρ(µi) +
1

sinh(ξ + µi) sinh(ξ − µi)
−

3

∑
j 6=i

2
sinh(µi + µj) sinh(µi − µj)

)
ϕ3(λ, {µj}j 6=i),

(72)

where the eigenvalue is

χ3(λ, µ1, µ2, µ3) = χ0(λ)−
3

∑
i=1

2 sinh2(2λ)

sinh(λ + µi) sinh(λ− µi)
×

×
(

2ρ(λ) +
1

sinh(ξ + λ) sinh(ξ − λ)
−

3

∑
j 6=i

1
sinh(λ + µj) sinh(λ− µj)

)
.

(73)

The three unwanted terms in (72) vanish upon imposing the following Bethe conditions on the
parameters µi:

2ρ(µi) +
1

sinh(ξ + µi) sinh(ξ − µi)
−

3

∑
j 6=i

2
sinh(µi + µj) sinh(µi − µj)

= 0, (74)

with i = 1, 2, 3.
Instead of processing further in a brute-force manner to find the form of ϕ4(µ1, µ2, µ3, µ4), it turns

out that it is possible to unify the obtained expressions for ϕ1, ϕ2 and ϕ3 by introducing a family
of operators

CK(µ) = f (µ) +
ψ

κ

(
(2K− 1) +

(
e−2ξ − cosh(2µ)

)
h(µ)

)
+

ψ2

κ2
e−ξ

2 sinh(ξ)
×

×
(

e−2ξ + 1− 2 cosh(2µ)
)

e(µ),
(75)

for any natural number K. Now, it can be shown by a direct calculation that the Bethe vectors (56), (63)
and (A8) can be expressed as

ϕ1(µ) = C1(µ)Ω+, ϕ2(µ1, µ2) = C1(µ1)C2(µ2)Ω+ and ϕ3(µ1, µ2, µ3) = C1(µ1)C2(µ2)C3(µ3)Ω+. (76)

Although in general the operators CK(µ) (75) do not commute, it is easy to verify that the Bethe vector
ϕ2(µ1, µ2) is a symmetric function

ϕ2(µ1, µ2) = C1(µ1)C2(µ2)Ω+ = C1(µ2)C2(µ1)Ω+ = ϕ2(µ2, µ1). (77)

Analogously, it is straightforward to check that the Bethe vector ϕ3(µ1, µ2, µ3) is a symmetric function
of its arguments

ϕ3(µ1, µ2, µ3) = C1(µ1)C2(µ2)C3(µ3)Ω+ = C1(µ2)C2(µ1)C3(µ3)Ω+ = ϕ3(µ2, µ1, µ3), (78)
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etc. Moreover using the formulae above (76) for the Bethe vectors it is somewhat simpler to calculate
the off-shell action of the generating function. Evidently,

[τ(λ), C1(µ)]Ω+ = [τ(λ), f (µ)]Ω+,

and consequently, the action (60) of the generating function τ(λ) on the Bethe vector ϕ1(µ) follows
directly from (59). In order to show (69), we calculate

[[τ(λ), C1(µ1)] , C2(µ2)]Ω+ =
4 sinh2(2λ)

sinh(λ + µ1) sinh(λ− µ1) sinh(λ + µ2) sinh(λ− µ2)
ϕ2(µ1, µ2)

−
2

∑
i=1

2 sinh2(2λ)

sinh(λ + µi) sinh(λ− µi)

sinh(ξ + µi) sinh(ξ − µi)

sinh(ξ + λ) sinh(ξ − λ)

2
sinh(µi + µ3−i) sinh(µi − µ3−i)

ϕ2(λ, µ3−i)

+
ψ

κ

4 sinh2(2λ)

sinh(λ + µ1) sinh(λ− µ1)

(
2ρ(λ) +

1
sinh(ξ + λ) sinh(ξ − λ)

)
(ϕ1(µ1)− ϕ1(µ2))

− ψ

κ

4 sinh2(2λ)

sinh(λ + µ1) sinh(λ− µ1)

sinh(ξ + µ1) sinh(ξ − µ1)

sinh(ξ + λ) sinh(ξ − λ)

(
2ρ(µ1) +

1
sinh(ξ + µ1) sinh(ξ − µ1)

)
×

× (ϕ1(λ)− ϕ1(µ2))

− ψ

κ

4 sinh2(2λ)

sinh(λ + µ2) sinh(λ− µ2)

(
2ρ(λ) +

1
sinh(ξ + λ) sinh(ξ − λ)

)
ϕ1(µ1)

+
ψ

κ

4 sinh2(2λ)

sinh(λ + µ2) sinh(λ− µ2)

sinh(ξ + µ2) sinh(ξ − µ2)

sinh(ξ + λ) sinh(ξ − λ)

(
2ρ(µ2) +

1
sinh(ξ + µ2) sinh(ξ − µ2)

)
ϕ1(µ1)

(79)

and use (59) appropriately. Finally, the action (72) of the generating function τ(λ) on the Bethe vector
ϕ3(µ1, µ2, µ3) can be obtained by expressing [[[τ(λ), C1(µ1)] , C2(µ2)] , C3(µ3)]Ω+ conveniently and
using (59) and (79)adequately.

We proceed in a natural way and conjecture that the Bethe vector ϕ4(µ1, . . . , µ4) can be written in
the form

ϕ4(µ1, . . . , µ4) = C1(µ1)C2(µ2)C3(µ3)C4(µ4)Ω+. (80)

With the aim of calculating the action of the generating function of the Gaudin Hamiltonians on the
vector above we calculate [[[[τ(λ), C1(µ1)] , C2(µ2)] , C3(µ3)] , C4(µ4)]Ω+, expressing it appropriately
as a linear combination of all the previous Bethe vectors. This formula is very long and cumbersome
and for this reason, is not presented in the text. Using this result it is possible to obtain the desired
off-shell action in the following form

τ(λ)ϕ4(µ1, µ2, µ3, µ4) = χ4(λ, µ1, µ2, µ3, µ4)ϕ4(µ1, µ2, µ3, µ4)

+
4

∑
i=1

2 sinh2(2λ)

sinh(λ + µi) sinh(λ− µi)

sinh(ξ + µi) sinh(ξ − µi)

sinh(ξ + λ) sinh(ξ − λ)
×

×
(

2ρ(µi) +
1

sinh(ξ + µi) sinh(ξ − µi)
−

4

∑
j 6=i

2
sinh(µi + µj) sinh(µi − µj)

)
ϕ4(λ, {µj}j 6=i),

(81)

where the eigenvalue is

χ4(λ, µ1, µ2, µ3, µ4) = χ0(λ)−
4

∑
i=1

2 sinh2(2λ)

sinh(λ + µi) sinh(λ− µi)
×

×
(

2ρ(λ) +
1

sinh(ξ + λ) sinh(ξ − λ)
−

4

∑
j 6=i

1
sinh(λ + µj) sinh(λ− µj)

)
.

(82)
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This result we have confirmed also by computer algorithms for symbolical calculation. Upon putting
constrains on parameters µi in the form of the following Bethe equations:

2ρ(µi) +
1

sinh(ξ + µi) sinh(ξ − µi)
−

4

∑
j 6=i

2
sinh(µi + µj) sinh(µi − µj)

= 0, (83)

with i = 1, 2, 3, 4, the four unwanted terms vanish in (81).
We readily proceed to define ϕM(µ1, µ2, . . . , µM), for an arbitrary positive integer M,

ϕM(µ1, µ2, . . . , µM) = C1(µ1)C2(µ2) · · · CM(µM)Ω+, (84)

and the operators CK(µ) are given in (75). Although the operators CK(µ) do not commute, the Bethe
vector ϕM(µ1, µ2, . . . , µM) is nonetheless a symmetric function of its arguments, since these operators
satisfy the following identity,

CK(µ)CK+1(µ̃)− CK(µ̃)CK+1(µ) = 0, (85)

for K = 1, . . . , M − 1. It can be confirmed by explicit calculation that the off-shell action of the
generating function τ(λ) on the Bethe vector ϕM(µ1, µ2, . . . , µM), is given by

τ(λ)ϕM(µ1, µ2, . . . , µM) = χM(µ1, µ2, . . . , µM)ϕM(µ1, µ2, . . . , µM)

+
M

∑
i=1

2 sinh2(2λ)

sinh(λ + µi) sinh(λ− µi)

sinh(ξ + µi) sinh(ξ − µi)

sinh(ξ + λ) sinh(ξ − λ)
×

×
(

2ρ(µi) +
1

sinh(ξ + µi) sinh(ξ − µi)
−

M

∑
j 6=i

2
sinh(µi + µj) sinh(µi − µj)

)
ϕM(λ, {µj}j 6=i),

(86)

with the eigenvalue

χM(µ1, µ2, . . . , µM) = χ0(λ)−
M

∑
i=1

2 sinh2(2λ)

sinh(λ + µi) sinh(λ− µi)
×

×
(

2ρ(λ) +
1

sinh(ξ + λ) sinh(ξ − λ)
−

M

∑
j 6=i

1
sinh(λ + µj) sinh(λ− µj)

)
.

(87)

Imposing the following Bethe equations on parameters µi:

2ρ(µi) +
1

sinh(ξ + µi) sinh(ξ − µi)
−

M

∑
j 6=i

2
sinh(µi + µj) sinh(µi − µj)

= 0, (88)

with i = 1, 2, . . . , M, results in vanishing of M unwanted terms in (86).
The obtained formula (86) for the action of the generating function τ(λ) has a strikingly compact

form. This simplicity stems from our suitable definition of the Bethe vector ϕM(µ1, µ2, . . . , µM)

(84) and of the corresponding creation operators CK(µ) (75). In this sense we have successfully
implemented the algebraic Bethe ansatz for the trigonometric Gaudin model, with triangular K-matrix
(24). The implementation was based on the non-unitary classical r-matrix (17) and the corresponding
linear bracket (19).

4. Conclusions

Our first step was to derive the generating function of the Gaudin Hamiltonians with boundary
terms. We followed the approach based on Sklyanin’s method in the periodic case, just as we previously
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did in the rational case. Having obtained the generating function, we could calculate its residues at
poles and find the corresponding Gaudin Hamiltonians with boundary terms.

Our next step was the implementation of the algebraic Bethe ansatz for the trigonometric Gaudin
model with triangular reflection matrix (24). To this end we have introduced the non-unitary classical
r-matrix (17), which satisfies the generalized classical Yang-Baxter Equation (18), as well as the modified
Lax matrix (16). Together they define the linear bracket (19), which is obviously anti-symmetric and
obeys the Jacobi identity. As a consequence, it follows that the entries of the modified Lax matrix
generate an infinite dimensional Lie algebra, which is the basis of the open trigonometric Gaudin
model. A suitable set of generators (39)–(41) simplifies the commutation relations (42)–(45) and
therefore facilitates the algebraic Bethe ansatz. Another crucial observation for the implementation of
the algebraic Bethe ansatz was the existence of the so-called pseudo-vacuum or the reference state Ω+

(52) (see also (53) and (54)). The simplest way to define the relevant Bethe vectors turned out to be by
using the family of the creation operators CK(µ) (75). Obtained Bethe vectors ϕM(µ1, µ2, . . . , µM) (84)
are symmetric functions of their arguments and they result in exceedingly simple and compact form
of off-shell action of the generating function. In this sense, we have fully implemented the algebraic
Bethe ansatz: we have obtained the spectrum of the generating function and found the corresponding
Bethe equations.

Having in mind the already discussed range of potential applications that Gaudin model and its
generalizations have in various areas of physics (from condensed matter physics to field theory [2–5]),
we believe that the inclusion of nontrivial boundary conditions while retaining the integrability of
the model—demonstrated here—also has its share of significance. In this regard, it would be of
further considerable interest to establish a relationship between the presented Bethe vectors of the
trigonometric Gaudin model and the solutions to the related generalized Knizhnik-Zamolodchikov
equations, analogously as we did it for the rational case in [61]. These results will be reported elsewhere.
Also, we intend to give a mathematical completion of the work presented here by providing a strict
analytical proof (omitted here primarily due to its length) of the general Expression (86) for the
off-shell action.

Author Contributions: Investigation, N.M. and I.S; methodology N.M.; software, I.S.; writing–original draft
preparation, N.M.; writing–review and editing, I.S. All authors have read and agreed to the published version of
the manuscript.

Funding: I.S. was supported in part by the Serbian Ministry of Science and Technological Development under
grant number ON 171031.
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Appendix A. Commutativity of the Generating Function

There are multiple ways to prove the commutation relation (21). Here we will employ the relation
of the present Gaudin model with the XXZ Heisenberg spin-chain model with boundary, explored in
detail in [53]. Thus, in this appendix, we will extensively reference expressions from that paper.

We will begin by computing the expansion (with respect to the quasi-classical parameter η) of the
monodromy matrix taken from [53]:
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T(λ) = 1+ ηL0(λ) +
η2

2
10 ⊗

N

∑
m=1

(
S3

m

)2

+
η2

2

N

∑
n,m=1
n 6=m

10 ⊗
(

cosh(λ− αm) cosh(λ− αn) S3
mS3

n +
1
2 (S

+
mS−n + S−mS+

n )
)

sinh(λ− αm) sinh(λ− αn)

+
η2

2

N

∑
m=1

N

∑
n<m

σ3
0 ⊗ (S−mS+

n − S+
mS−n ) + σ+

0 ⊗
(
cosh(λ− αm)S3

mS−n − cosh(λ− αn)S−mS3
n
)

2 sinh(λ− αm) sinh(λ− αn)

+
η2

2

N

∑
m=1

N

∑
n<m

σ−0 ⊗
(
cosh(λ− αn)S+

mS3
n − cosh(λ− αm)S3

mS−n
)

2 sinh(λ− αm) sinh(λ− αn)

+
η2

2

N

∑
m=1

N

∑
n>m

σ3
0 ⊗ (S−n S+

m − S+
n S−m) + σ+

0 ⊗
(
cosh(λ− αn)S3

nS−m − cosh(λ− αm)S−n S3
m
)

2 sinh(λ− αn) sinh(λ− αm)

+
η2

2

N

∑
m=1

N

∑
n>m

σ−0 ⊗
(
cosh(λ− αm)S+

n S3
m − cosh(λ− αn)S3

nS−m
)

2 sinh(λ− αn) sinh(λ− αm)
+O(η3). (A1)

Analogously, it is straightforward to obtain the expansion of the T̃(λ) monodromy matrix
from [53] in the powers the quasi-classical parameter η

T̃(λ) = 1− ηL0(−λ) +
η2

2

N

∑
m=1

10 ⊗ (S3
m)

2 −
2
(

σ3
0 ⊗ S3

m + 1
2 cosh(λ + αm)

(
σ+

0 ⊗ S−m + σ−0 ⊗ S+
m
))

sinh2(λ + αm)


+

η2

2

N

∑
n,m=1
n 6=m

10 ⊗
(

cosh(λ + αm) cosh(λ + αn) S3
mS3

n +
1
2 (S

+
mS−n + S−mS+

n )
)

sinh(λ + αm) sinh(λ + αn)

+
η2

2

N

∑
m=1

N

∑
n<m

σ3
0 ⊗ (S−mS+

n − S+
mS−n ) + σ+

0 ⊗
(
cosh(λ + αm)S3

mS−n − cosh(λ + αn)S−mS3
n
)

2 sinh(λ + αm) sinh(λ + αn)

+
η2

2

N

∑
m=1

N

∑
n<m

σ−0 ⊗
(
cosh(λ− αn)S+

mS3
n − cosh(λ + αm)S3

mS−n
)

2 sinh(λ + αm) sinh(λ + αn)

+
η2

2

N

∑
m=1

N

∑
n>m

σ3
0 ⊗ (S−n S+

m − S+
n S−m) + σ+

0 ⊗
(
cosh(λ + αn)S3

nS−m − cosh(λ + αm)S−n S3
m
)

2 sinh(λ + αn) sinh(λ− αm)

+
η2

2

N

∑
m=1

N

∑
n>m

σ−0 ⊗
(
cosh(λ + αm)S+

n S3
m − cosh(λ + αn)S3

nS−m
)

2 sinh(λ + αn) sinh(λ + αm)
+O(η3). (A2)

Using these formulas, as well as the first three terms in the power series of the K-matrix (13), we
can deduce the expansion of the transfer matrix of the chain t(λ) in powers of η. We similarly obtain
the expansion of the so-called Sklyanin determinant ∆ [T (λ)] in powers of η. However these formulas
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are long and cumbersome, therefore we will not present them here. Instead we will give the expansion
of the difference between the transfer matrix of the chain and the Sklyanin determinant:

t(λ)− ∆ [T (λ)]
sinh(2λ)

=
1
2

tr0K0(λ)K0(−λ) + η
(
tr0K′0(−λ)K0(λ) + tr00′P

−
00′K0(λ)r00′(2λ)K0′(λ)

)
+ η2 (tr0K′0(−λ)L0(λ)K0(λ) + tr00′P

−
00′ (L0(λ)K0(λ)r00′(2λ)K0′(λ) + K0(λ)r00′(2λ)L0′(λ)K0′(λ))

)
− η2 tr00′P

−
00′L0(λ)K0(λ)L0′(λ)K0′(λ) +

η2

2

(
tr0K′′0 (−λ)K0(λ)−

1
4

tr0K′′0 (λ)K0(−λ)

+
1
2

tr00′P
−
00′K

′
0(λ)K

′
0′(λ)−

1
sinh(2λ)

tr00′P
−
00′K0(λ)∂

2
η R00′(2λ)

∣∣
η=0K0′(λ)

)
+O(η3). (A3)

Note the explicit appearance of the K-modified Lax matrix (16) in the above result.
Actually, a straightforward calculation shows that the terms in the second line of the expression

above vanish

tr0K′0(−λ)L0(λ)K0(λ) + tr00′P
−
00′ (L0(λ)K0(λ)r00′ (2λ)K0′ (λ) + K0(λ)r00′ (2λ)L0′ (λ)K0′ (λ)) = 0. (A4)

Also, it is important to notice that using the following identity

L0(λ)K0(λ)− tr0′ (L0′(λ)K0′(λ))10 = K0(−λ)L0(λ), (A5)

the first term in the third line of (A3) can be simplified

tr0 K0(−λ)L0(λ)L0(λ)K0(λ) = det K0(λ) tr0 L2
0(λ). (A6)

Finally, the Expansion (A3) reads

t(λ)− ∆ [T (λ)]
sinh(2λ)

= det K0(λ) + η
(
tr0K′0(−λ)K0(λ) + tr00′P

−
00′K0(λ)r00′ (2λ)K0′ (λ)

)
+

η2

2
det K0(λ) tr0 L2

0(λ) +
η2

2

(
tr0K′′0 (−λ)K0(λ)−

1
4

tr0K′′0 (λ)K0(−λ)

+
1
2

tr00′P
−
00′K

′
0(λ)K

′
0′ (λ)−

1
sinh(2λ)

tr00′P
−
00′K0(λ)∂

2
η R00′ (2λ)

∣∣
η=0K0′ (λ)

)
+O(η3). (A7)

Since both the transfer matrix t(λ) and the Sklyanin determinant ∆ [T (λ)] commute (as well as their
difference) for different values of the spectral parameter, the result (21) directly follows from the
previous relation.

Appendix B. Bethe Vector ϕ3(µ1, µ2, µ3)

Here we provide explicit formulas of the Bethe vector ϕ3(µ1, µ2, µ3):

ϕ3(µ1, µ2, µ3) = f (µ1) f (µ2) f (µ3)Ω+ + c(1)3 (µ1; µ2, µ3) f (µ2) f (µ3)Ω+ + c(1)3 (µ2; µ3, µ1) f (µ3) f (µ1)Ω+

+ c(1)3 (µ3; µ1, µ2) f (µ1) f (µ2)Ω+ + c(2)3 (µ1, µ2; µ3) f (µ3)Ω+ + c(2)3 (µ2, µ3; µ1) f (µ1)Ω+

+ c(2)3 (µ3, µ1; µ2) f (µ2)Ω+ + c(3)3 (µ1, µ2, µ3)Ω+,
(A8)
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where the three scalar coefficients above are given by

c(1)3 (µ1; µ2, µ3) =
ψ

κ

(
1 +

(
ρ(µ1)−

1
sinh(µ1 − µ2) sinh(µ1 + µ2)

− 1
sinh(µ1 − µ3) sinh(µ1 + µ3)

)
×

×
(

e−2ξ − cosh(2µ1)
))

, (A9)

c(2)3 (µ1, µ2; µ3) =
ψ2

κ2

(
3 +

(
e−2ξ − cosh(2µ1)

) (
e−2ξ − cosh(2µ2)

)
×

×
(

ρ(µ1)−
1

sinh(µ1 − µ3) sinh(µ1 + µ3)

)(
ρ(µ2)−

1
sinh(µ2 − µ3) sinh(µ2 + µ3)

)

+
2e−4ξ + 2e−2ξ (cosh(2µ1)− 3 cosh(2µ2))− (3 + cosh(4µ1)− 6 cosh(2µ1) cosh(2µ2))

4 sinh(µ1 − µ2) sinh(µ1 + µ2)

×
(

ρ(µ1)−
1

sinh(µ1 − µ3) sinh(µ1 + µ3)

)

+
2e−4ξ + 2e−2ξ (cosh(2µ2)− 3 cosh(2µ1))− (3 + cosh(4µ2)− 6 cosh(2µ2) cosh(2µ1))

4 sinh(µ2 − µ1) sinh(µ2 + µ1)

×
(

ρ(µ2)−
1

sinh(µ2 − µ3) sinh(µ2 + µ3)

))
, (A10)

c(3)3 (µ1, µ2, µ3) =
ψ3

κ3

(
15 +

(
e−2ξ − cosh(2µ1)

) (
e−2ξ − cosh(2µ2)

) (
e−2ξ − cosh(2µ3)

)
ρ(µ1)ρ(µ2)ρ(µ3)

+

((
5− 2 coth(ξ)

(
sinh2(µ1)

sinh(µ1 − µ3) sinh(µ1 + µ3)
+

sinh2(µ2)

sinh(µ2 − µ3) sinh(µ2 + µ3)

))(
e−2ξ − cosh(2µ1)

)
×
(

e−2ξ − cosh(2µ2)
)
− e−ξ

sinh(ξ)

(
sinh(ξ − µ1) sinh(ξ + µ1)

sinh(µ1 − µ3) sinh(µ1 + µ3)

(
e−2ξ + 1− 2 cosh(2µ1)

)
×

×
(

e−2ξ − cosh(2µ2)
)
+

sinh(ξ − µ2) sinh(ξ + µ2)

sinh(µ2 − µ3) sinh(µ2 + µ3)

(
e−2ξ − cosh(2µ1)

) (
e−2ξ + 1− 2 cosh(2µ2)

)))
× ρ(µ1)ρ(µ2)

+

((
5− 2 coth(ξ)

(
sinh2(µ1)

sinh(µ1 − µ2) sinh(µ1 + µ2)
+

sinh2(µ3)

sinh(µ3 − µ2) sinh(µ3 + µ2)

))(
e−2ξ − cosh(2µ1)

)
×
(

e−2ξ − cosh(2µ3)
)
− e−ξ

sinh(ξ)

(
sinh(ξ − µ1) sinh(ξ + µ1)

sinh(µ1 − µ2) sinh(µ1 + µ2)

(
e−2ξ + 1− 2 cosh(2µ1)

)
×

×
(

e−2ξ − cosh(2µ3)
)
+

sinh(ξ − µ3) sinh(ξ + µ3)

sinh(µ3 − µ2) sinh(µ3 + µ2)

(
e−2ξ − cosh(2µ1)

) (
e−2ξ + 1− 2 cosh(2µ3)

)))
× ρ(µ1)ρ(µ3)
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+

((
5− 2 coth(ξ)

(
sinh2(µ2)

sinh(µ2 − µ1) sinh(µ2 + µ1)
+

sinh2(µ3)

sinh(µ3 − µ1) sinh(µ3 + µ1)

))(
e−2ξ − cosh(2µ2)

)
×
(

e−2ξ − cosh(2µ3)
)
− e−ξ

sinh(ξ)

(
sinh(ξ − µ2) sinh(ξ + µ2)

sinh(µ2 − µ1) sinh(µ2 + µ1)

(
e−2ξ + 1− 2 cosh(2µ2)

)
×

×
(

e−2ξ − cosh(2µ3)
)
+

sinh(ξ − µ3) sinh(ξ + µ3)

sinh(µ3 − µ1) sinh(µ3 + µ1)

(
e−2ξ − cosh(2µ2)

) (
e−2ξ + 1− 2 cosh(2µ3)

)))
× ρ(µ2)ρ(µ3)

+
(

8e−6ξ + 4e−4ξ (4 cosh(2µ1)− 5 (cosh(2µ2) + cosh(2µ3))) + 2e−2ξ (−5 + 7 cosh(4µ1) + 30 cosh(2µ2)×

× cosh(2µ3)− 10 cosh(2µ1) (cosh(2µ2) + cosh(2µ3)))− 3 cosh(6µ1) + 10 (3 + cosh(4µ1))×

× (cosh(2µ2) + cosh(2µ3))− 5 cosh(2µ1) (5 + 12 cosh(2µ2) cosh(2µ3))
)
×

× ρ(µ1)

16 sinh(µ1 − µ2) sinh(µ1 + µ2) sinh(µ1 − µ3) sinh(µ1 + µ3)

+
(

8e−6ξ + 4e−4ξ (4 cosh(2µ2)− 5 (cosh(2µ1) + cosh(2µ3))) + 2e−2ξ (−5 + 7 cosh(4µ2) + 30 cosh(2µ1)×

× cosh(2µ3)− 10 cosh(2µ2) (cosh(2µ1) + cosh(2µ3)))− 3 cosh(6µ2) + 10 (3 + cosh(4µ2))×

× (cosh(2µ1) + cosh(2µ3))− 5 cosh(2µ2) (5 + 12 cosh(2µ1) cosh(2µ3))
)
×

× ρ(µ2)

16 sinh(µ2 − µ1) sinh(µ2 + µ1) sinh(µ2 − µ3) sinh(µ2 + µ3)

+
(

8e−6ξ + 4e−4ξ (4 cosh(2µ3)− 5 (cosh(2µ1) + cosh(2µ2))) + 2e−2ξ (−5 + 7 cosh(4µ3) + 30 cosh(2µ1)×

× cosh(2µ1)− 10 cosh(2µ3) (cosh(2µ1) + cosh(2µ2)))− 3 cosh(6µ3) + 10 (3 + cosh(4µ3))×

× (cosh(2µ1) + cosh(2µ2))− 5 cosh(2µ3) (5 + 12 cosh(2µ1) cosh(2µ2))
)
×

× ρ(µ3)

16 sinh(µ3 − µ1) sinh(µ3 + µ1) sinh(µ3 − µ2) sinh(µ3 + µ2)

)
(A11)
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