
symmetryS S

Article

Homomorphic Encryption-Based Robust Reversible
Watermarking for 3D Model

Li Li 1, Shengxian Wang 1, Shanqing Zhang 1,*, Ting Luo 2 and Ching-Chun Chang 3

1 Department of Computer Science, Hangzhou Dianzi University, Hangzhou 330018, China;
lili2008@hdu.edu.cn (L.L.); wsx1131@163.com (S.W.)

2 Collage of Science and Technology, Ningbo University, Ningbo 315000, China; luoting@nbu.edu.cn
3 Department of Computer Science, University of Warwick, Coventry CV47AL, UK;

ching-chun.chang@warwick.ac.uk
* Correspondence: sqzhang@hdu.edu.cn; Tel.: +86-130-7360-1029

Received: 31 January 2020; Accepted: 21 February 2020; Published: 1 March 2020
����������
�������

Abstract: Robust reversible watermarking in an encrypted domain is a technique that preserves
privacy and protects copyright for multimedia transmission in the cloud. In general, most models of
buildings and medical organs are constructed by three-dimensional (3D) models. A 3D model shared
through the internet can be easily modified by an unauthorized user, and in order to protect the
security of 3D models, a robust reversible 3D models watermarking method based on homomorphic
encryption is necessary. In the proposed method, a 3D model is divided into non-overlapping patches,
and the vertex in each patch is encrypted by using the Paillier cryptosystem. On the cloud side,
in order to utilize addition and multiplication homomorphism of the Paillier cryptosystem, three
direction values of each patch are computed for constructing the corresponding histogram, which is
shifted to embed watermark. For obtaining watermarking robustness, the robust interval is designed
in the process of histogram shifting. The watermark can be extracted from the symmetrical direction
histogram, and the original encrypted model can be restored by histogram shifting. Moreover, the
process of watermark embedding and extraction are symmetric. Experimental results show that
compared with the existing watermarking methods in encrypted 3D models, the quality of the
decrypted model is improved. Moreover, the proposed method is robust to common attacks, such as
translation, scaling, and Gaussian noise.

Keywords: three-dimensional models; cloud computing; histogram shifting; encrypted model;
decrypted model

1. Introduction

Due to the development of outsourced storage in the cloud, reversible watermarking in an
encrypted domain has been developed for security in the cloud [1–4]. However, the cloud cannot
introduce distortion of original content during watermark embedding. Therefore, the reversible
watermarking method is required [5,6]. In addition, the watermark carrier is vulnerable during
transmission, and the embedded watermark is expected to resist common attacks [7,8]. Therefore,
robust reversible watermarking in an encrypted domain has greatly attracted researchers for
potential applications.

In general, watermarking can be divided into robust and fragile watermarking methods in terms
of their robustness. Robust watermarking [9] is used to protect security and resist attacks, while fragile
watermarking [10,11] is used to provide integrity authentication. For the occasions with high data
security requirements, such as judicial authentication, medical images, etc., more researchers focus on
fragile watermarking in the encrypted domain.

Symmetry 2020, 12, 347; doi:10.3390/sym12030347 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://dx.doi.org/10.3390/sym12030347
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/3/347?type=check_update&version=2

Symmetry 2020, 12, 347 2 of 18

Reversible watermarking in the encrypted domain can be divided into reserving room before
encryption (RRBE) and vacating room after encryption (VRAE). The RRBE method reserves embedding
room before encrypting the original image [12–15]. For example, the vacated bits, which are reserved
by self-embedding before encryption, can be substituted by the watermark in the encrypted domain [4].
With the development of reversible watermarking [16,17], the original image can be restored absolutely
after extracting the watermark. The second type directly implements watermark embedding by
modified the encrypted image [18,19] after encryption. For instance, Xiang divided the original image
into patches to be encrypted, and then the histogram of statistical values was calculated in the encrypted
domain for shifting to embed watermark [20].

However, these methods are only applied to images, and cannot be used in 3D models directly
due to different structures between images and 3D models. Ke et al. proposed a robust watermarking
method on the basis of self-similarity [21]. In that method, a 3D model is divided into patches, and
watermark bits were embedded by changing the local vector length of a point in each patch. Feng et al.
divided a 3D model into patches, then embedded a watermark into each patch by modulating angle
quantization [22]. However, those methods are not reversible. Jiang et al. proposed a 3D model
watermarking method on the basis of stream cipher encryption [1]. The watermark was embedded by
flipping the least significant bits (LSBs) of the vertex coordinates. Since the original 3D models have
high spatial correlation, the watermark can be extracted successfully. Shah proposed a watermarking
method based on the homomorphic Paillier cryptosystem, which used VRAE framework to vacate space
before encryption [2]. However, those methods are fragile to attacks and cannot protect their copyrights.

To our best of knowledge, although the aforementioned watermarking methods on encrypted 3D
models have been developed, the research on robustness for encrypted 3D models is rarely reported.
In this paper, in order to protect the security of a 3D model in the cloud, we proposed a homomorphic
encryption-based robust reversible watermarking method. In this method, the original model is
first divided into patches to facilitate patch encryption using the Paillier cryptosystem. Then, the
watermark is embedded by constructing the symmetrical direction histogram and shifting histogram
in the encrypted domain, and the robust interval is reserved during the histogram shifting. Last, the
receiver extracts the watermark in the encrypted model or the decrypted model by constructing a
direction histogram of patches, and restores the original model through the method of histogram
shifting which is the opposite to the embedding process. The contributions of the paper are organized
as follows.

(1) The proposed method can directly construct direction histogram in the encrypted model
so that the watermark can be extracted and the original encrypted model can be restored in the
encrypted domain.

(2) The proposed method is robust to several common attacks by reserving the robust interval
during the histogram shifting for watermark embedding.

(3) The proposed method not only has higher security and capacity, but also has less distortion
compared with the original model.

The rest of this paper is organized as follows. In the second part, the Paillier cryptosystem is briefly
introduced. In the third part, the related robust reversible watermarking method flow is proposed. The
experimental results are shown in Section 4. The conclusions of the thesis are discussed in Section 5.

2. Paillier Cryptosystem

The Paillier cryptosystem [23], which was proposed by Paillier Pascal in 1999, has homomorphism
and probability. Homomorphism means that one arithmetic operation of two ciphertexts are equal
to another arithmetic operation of two corresponding plaintext. Moreover, homomorphism includes
addition and multiplication homomorphism. Probability means that different ciphertexts, which are
obtained by encrypting the same plaintext with different parameters, can be decrypted to the same
plaintext. The following describes the processes of key generation, encryption, and decryption, two
properties, and the application of modular multiplication inverse (MMI) [24] in the Paillier cryptosystem.

Symmetry 2020, 12, 347 3 of 18

• Key Generation

Randomly pick up two large primes numbers p and q. Calculate N = pq and λ = lcm(p −
1, q− 1), where lcm(·) stand for the lowest common multiple. Afterwards, select g ∈ Z∗

N2 randomly,
which satisfies

gcd(L(gλmodN2), N) = 1 (1)

where L(u) = (u − 1)/N, and gcd(·) means the greatest common divisor of two inputs. ZN2 ={
0, 1, 2, . . . , N2

− 1
}

and Z∗
N2 are the numbers in ZN2 which prime with N2. Finally, we get the public

key (N, g) and corresponding private key λ.

• Encryption

Select a parameter r ∈ Z∗
N2 randomly. The plaintext m ∈ ZN can be encrypted to the corresponding

ciphertext c by
c = E[m, r] = gm

· rNmodN2 (2)

where E[·] denotes the encryption function. Due to the nature of the Paillier cryptosystem, for the same
plaintext m, different ciphertexts c can be obtained by choosing different r. After decryption, different
ciphertexts can be restored to the same plaintext m, which ensures the security of the ciphertext.

• Decryption

The original plaintext m can be obtained by

m = D[c] =
L(cλmodN2)

L(gλmodN2)
modN (3)

Moreover, two important characteristics are described as follows (which has been applied in the
proposed method).

• Lemma One

For two plaintexts m1, m2 ∈ ZN, compute corresponding ciphertexts c1, c2 with r1, r2 according to
Equation (1), respectively. The Equation c1 = c2 holds if and only if m1 = m2 and r1 = r2.

• Homomorphic Multiplication

For ∀r1, r2 ∈ Z∗N, two plaintexts m1, m2 ∈ ZN and corresponding ciphertexts E[m1, r1], E[m2, r2] ∈

Z∗
N2 satisfy

c1 · c2 = E[m1, r1] · E[m2, r2] = gm1+m2 · (r1 · r2)
NmodN2 (4)

D[c1 · c2] = D[E[m1, r1] · E[m2, r2]modN2] = m1 + m2modN (5)

The original Paillier cryptosystem only has addition homomorphism and multiplication
homomorphism. The subtraction homomorphism can be achieved through modular multiplication
inverse (MMI).

• Modular Multiplication Inverse (MMI)

For two coprime integers y and z, the existence of an integer θ satisfies

θ · y = 1modz (6)

where θ is called the modular multiplicative inverse of y, and θ can be obtained according to the
extended Euclidean method [25].

Symmetry 2020, 12, 347 4 of 18

3. The Proposed Method

In order to protect the security of 3D model in the cloud, a homomorphic encryption-based robust
reversible watermarking method is proposed. Figure 1 shows the flowchart of the proposed method.
Firstly, the original model is divided into patches, and vertices in each patch are encrypted using
the Paillier cryptosystem. In the cloud, three direction values of each patch are computed, and the
direction histogram is constructed for shifting to embed the watermark. At last, the watermark can be
extracted from direction histogram, and the original 3D model can be restored by histogram shifting.

Symmetry 2020, 12, 347 4 of 19

 Modular Multiplication Inverse (MMI)

For two coprime integers y and z , the existence of an integer  satisfies

1mody z   (6)

where  is called the modular multiplicative inverse of y , and  can be obtained according to the

extended Euclidean method [25].

3. The Proposed Method

In order to protect the security of 3D model in the cloud, a homomorphic encryption-based

robust reversible watermarking method is proposed. Figure 1 shows the flowchart of the proposed

method. Firstly, the original model is divided into patches, and vertices in each patch are encrypted

using the Paillier cryptosystem. In the cloud, three direction values of each patch are computed, and

the direction histogram is constructed for shifting to embed the watermark. At last, the watermark

can be extracted from direction histogram, and the original 3D model can be restored by histogram

shifting.

Figure 1. Flowchart of the proposed method.

3.1. Preprocessing

Because the input of the Paillier cryptosystem should be a positive integer, the vertex coordinates

firstly are converted from decimal to positive integer.

3D models are consisted of vertex data and connectivity data. The vertex data includes the

coordinates of each vertex in the spatial domain. The connectivity data reflects the connection

relationship between vertices. A 3D model devil and its local region are illustrated in Figure 2. Each

vertex and each face of the 3D model have a corresponding index number, respectively. For a 3D

model M , let
0{ } VN

i iv 
 represents the sequence of vertices, where , , ,(, ,)i i x i y i zv v v v and

VN is the

number of vertices. Note that each coordinate
,| | 1, { , , }i jv j x y z  , and the significant digit of each

coordinate is 6.

Figure 1. Flowchart of the proposed method.

3.1. Preprocessing

Because the input of the Paillier cryptosystem should be a positive integer, the vertex coordinates
firstly are converted from decimal to positive integer.

3D models are consisted of vertex data and connectivity data. The vertex data includes the
coordinates of each vertex in the spatial domain. The connectivity data reflects the connection
relationship between vertices. A 3D model devil and its local region are illustrated in Figure 2. Each
vertex and each face of the 3D model have a corresponding index number, respectively. For a 3D model
M, let {vi}

NV
i=0 represents the sequence of vertices, where vi = (vi,x, vi,y, vi,z) and NV is the number of

vertices. Note that each coordinate
∣∣∣vi, j

∣∣∣< 1, j ∈
{
x, y, z

}
, and the significant digit of each coordinate is 6.

Symmetry 2020, 12, 347 5 of 18
Symmetry 2020, 12, 347 5 of 19

(a) (b)

Figure 2. A 3D model devil; (a) original model, (b) local region.

Normally, uncompressed vertices are 32-bit floating point numbers with a precision of 6 digits.

The first four significant digits of vertex coordinates can accurately display the 3D model. Therefore,

the vertex coordinates are converted into an integer with four significant digits by using Equation

(7).

4

, , 10 , { , , }i j i jv v j x y z      (7)

Moreover, all vertex coordinates should be converted to positive integers for encryption by

using Equation (8).

, , 10000, { , , }i j i jv v j x y z    (8)

After preprocessing, the pre-processed 3D model is computed, and denoted as M  .

3.2. Patch Dividing and Patch Encryption

The section describes how to divide the model into several non-overlapping patches and

perform encryption by using the Paillier cryptosystem.

3.2.1. Patch Dividing

For the vertex of the 3D model, if two vertices iv and kv are connected by a edge, kv is a

neighbor of iv . All neighbors of iv constitute the 1-ring neighborhood of iv , and all 1-ring

neighborhood of the neighbors of the vertex
iv constitute its 2-ring neighborhood. ()iN v is the 2-

ring neighborhood of the vertex
iv , and ()iN v is computed by

() { | 0 | | 2, 0,1,..., }i k i k VN v v v v k N    (9)

where
VN are the number of the vertices of the 3D model, and | |i kv v represents the number of

vertices between
iv and

kv . As illustrated in Figure 2, the blue vertices are the 1-ring neighborhood

of the red vertex, and the green vertices are the 2-ring neighborhood of the red vertex.

When the 3D model is divided into patches, it is necessary to ensure patches do not overlap each

other. Suppose that the unclassified and classified sets are
YS and

NS , respectively.
0{ } VN

Y i iS v 

and
NS

are initially empty. Suppose that the thl patch is denoted as
()lP . A 3D model is divided

into patches by the following rules, and initially 1l  .

Step 1: The first vertex iv is selected according to the order of vertex index, and iv and its 1-

ring neighborhood are used as the
()lP . Vertices in

()lP are sorted by

Figure 2. A 3D model devil; (a) original model, (b) local region.

Normally, uncompressed vertices are 32-bit floating point numbers with a precision of 6 digits.
The first four significant digits of vertex coordinates can accurately display the 3D model. Therefore,
the vertex coordinates are converted into an integer with four significant digits by using Equation (7).

v′i, j =
⌊
vi, j · 104

⌋
, j ∈

{
x, y, z

}
(7)

Moreover, all vertex coordinates should be converted to positive integers for encryption by
using Equation (8).

v′i, j = v′i, j + 10000, j ∈
{
x, y, z

}
(8)

After preprocessing, the pre-processed 3D model is computed, and denoted as M′.

3.2. Patch Dividing and Patch Encryption

The section describes how to divide the model into several non-overlapping patches and perform
encryption by using the Paillier cryptosystem.

3.2.1. Patch Dividing

For the vertex of the 3D model, if two vertices vi and vk are connected by a edge, vk is a neighbor
of vi. All neighbors of vi constitute the 1-ring neighborhood of vi, and all 1-ring neighborhood of the
neighbors of the vertex vi constitute its 2-ring neighborhood. N(vi) is the 2-ring neighborhood of the
vertex vi, and N(vi) is computed by

N(vi) = {vk|0 ≤|vivk|≤ 2, k = 0, 1, . . . , NV} (9)

where NV are the number of the vertices of the 3D model, and |vivk| represents the number of vertices
between vi and vk. As illustrated in Figure 2, the blue vertices are the 1-ring neighborhood of the red
vertex, and the green vertices are the 2-ring neighborhood of the red vertex.

When the 3D model is divided into patches, it is necessary to ensure patches do not overlap each
other. Suppose that the unclassified and classified sets are SY and SN, respectively. SY = {vi}

NV
i=0 and SN

are initially empty. Suppose that the lth patch is denoted as P(l). A 3D model is divided into patches by
the following rules, and initially l = 1.

Step 1: The first vertex vi is selected according to the order of vertex index, and vi and its 1-ring
neighborhood are used as the P(l). Vertices in P(l) are sorted by

P(l)(p) =
{

vi, p = 1
vk, p = 2, 3, . . .Nl

(10)

where Nl is the number of vertices in P(l).

Symmetry 2020, 12, 347 6 of 18

Step 2: Update the unclassified set and the classified set by using Equation (11).

SN = SN ∪N(vi), SY = SY −N(vi) (11)

where SN ∪N(vi) is the union of two sets, and SY −N(vi) is the vertex set that exist in SY but not in
N(vi). N(vi) is put into the classified set for ensuring patches do not overlap each other.

Step 3: Determine whether the unclassified set SY is empty. If SY is empty, then the division
of patches ends. If SY is not empty, then continue to select the (l + 1)th patch from Step 1, until SY
is empty.

As illustrated in Figure 3, the local region of 3D model devil can be divided into five patches, and
each color in Figure 3 represents a patch.

Symmetry 2020, 12, 347 6 of 19

()
, 1

()
, 2,3,...

il

k l

v p
P p

v p N


 


 (10)

where
lN is the number of vertices in

()lP .

Step 2: Update the unclassified set and the classified set by using Equation (11).

(), ()N N i Y Y iS S N v S S N v   (11)

where ()N iS N v is the union of two sets, and ()Y iS N v is the vertex set that exist in
YS but not

in ()iN v . ()iN v is put into the classified set for ensuring patches do not overlap each other.

Step 3: Determine whether the unclassified set
YS is empty. If

YS is empty, then the division

of patches ends. If
YS is not empty, then continue to select the 1（ ） thl patch from Step 1, until

YS

is empty.

As illustrated in Figure 3, the local region of 3D model devil can be divided into five patches,

and each color in Figure 3 represents a patch.

Figure 3. Patch dividing of 3D model devil.

3.2.2. Patch Encryption

Let () (,), { , , }lP p j j x y z be the j -axis coordinates of the thp vertex in
()lP . Referring to

Equation (2), an integer *

1() Nr l Z can be randomly selected to encrypt () (,)lP p j with the public

key (,)N g .

()() () (,) 2

1 1(,) [(,), ()] () mod
ll l P p j NC p j E P p j r l g r l N   (12)

where [1,], { , , }lp N j x y z  , ()lC denotes the encrypted vertex coordinates, and []E M 

represents the encrypted model.

3.3. Watermark Embedding

Firstly, three direction values of each patch in ciphertext are computed. Then, according to the

possible values of the direction in ciphertext, the mapping table is constructed to map the direction

values in ciphertext to the direction values in plaintext. The direction histogram is constructed by

counting the direction values of all patches. Lastly, the watermark is embedded by histogram shifting.

Figure 3. Patch dividing of 3D model devil.

3.2.2. Patch Encryption

Let P(l)(p, j), j ∈
{
x, y, z

}
be the j-axis coordinates of the pth vertex in P(l). Referring to Equation (2),

an integer r1(l) ∈ Z∗N can be randomly selected to encrypt P(l)(p, j) with the public key (N, g).

C(l)(p, j) = E[P(l)(p, j), r1(l)] = gP(l)(p, j)
· r1(l)

N mod N2 (12)

where p ∈ [1, Nl], j ∈
{
x, y, z

}
, C(l) denotes the encrypted vertex coordinates, and E[M′] represents the

encrypted model.

3.3. Watermark Embedding

Firstly, three direction values of each patch in ciphertext are computed. Then, according to the
possible values of the direction in ciphertext, the mapping table is constructed to map the direction
values in ciphertext to the direction values in plaintext. The direction histogram is constructed by
counting the direction values of all patches. Lastly, the watermark is embedded by histogram shifting.

3.3.1. Three Direction Values Calculation of Each Patch

In order to calculate three direction values of each patch, a vector M(p) is defined by using
Equation (13).

M(p) =
{

1 i f p = 2, 3, . . .Nl
−1 i f p = 1

(13)

Suppose that d(l)(j), j ∈
{
x, y, z

}
denotes the j-axis direction value of the lth patch P(l), which is

calculated by Equation (14).

d(l)(j) =
Nl∑

p=2

[P(l)(p, j) ·M(p) + P(l)(1, j) ·M(1)] (14)

Symmetry 2020, 12, 347 7 of 18

In the encrypted domain, without the private key λ, the encrypted vertex coordinates cannot by
decrypted to obtain the vertex coordinate in plaintext, so the direction value d(l)(j) cannot be directly
calculated. In the proposed method, the direction value in ciphertext can be calculated using the
MMI method. C(l) represents the encrypted patch corresponding to the original patch P(l). In order
to calculate the direction value in ciphertext, the modular multiplicative inverse θC(l)(p, j) of C(l)(p, j)
should be calculated through the extended Euclidean method. θC(l)(p, j) satisfies

θC(l)(p, j) ·C
(l)(p, j) = 1modN2 (15)

For the lth patch, the vectors M(l)
1 and M(l)

2 are defined by using Equations (16) and (17), respectively.

M(l)
1 (p, j) =

 C(l)(p, j) i f p = 2, 3, . . .Nl
θC(l)(p, j) i f p = 1 (16)

M(l)
2 (p, j) =

 θC(l)(p, j) i f p = 2, 3, . . .Nl

C(l)(p, j) i f p = 1
(17)

Since the direction value d(l)(j) may be negative, two direction values c(l)d1 (j) and c(l)d2 (j) are

re-defined. If d(l)(j) is positive, c(l)d1 (j) is the ciphertext corresponding to d(l)(j). If d(l)(j) is negative,

c(l)d2 (j) is the ciphertext corresponding to d(l)(j). c(l)d1 (j) and c(l)d2 (j) can be calculated by Equation (18).
c(l)d1 (j) = M(l)

1 (1, j)3
Nl∏

p=2
M(l)

1 (p, j)modN2

c(l)d2 (j) = M(l)
2 (1, j)3

Nl∏
p=2

M(l)
2 (p, j)modN2

(18)

After c(l)d1 (j) and c(l)d2 (j) are calculated, d(l)(j) is obtained by querying the mapping table. The
following is the corresponding equation derivation and proof. To facilitate understanding, a patch
consisting of four vertices is used as an example. Suppose that P1, P2, P3, P4 denote the j-axis coordinate
of the pth vertex as illustrated in Figure 4, and ĉ1, ĉ2, ĉ3, ĉ4 is the ciphertext corresponding to P1, P2, P3, P4.
θ1,θ2,θ3,θ4 is the modular multiplicative inverses corresponding to ĉ1, ĉ2, ĉ3, ĉ4, which satisfies

θ1 · c1 = θ1 · gP1 · r1
N = 1modN2

θ2 · c2 = θ2 · gP2 · r1
N = 1modN2

θ3 · c3 = θ3 · gP3 · r1
N = 1modN2

θ4 · c4 = θ4 · gP4 · r1
N = 1modN2

(19)

Symmetry 2020, 12, 347 8 of 19

1

2

3

4

2

1 1 1 1

2

2 2 2 1

2

3 3 3 1

2

4 4 4 1

1mod

1mod

1mod

1mod

P N

P N

P N

P N

c g r N

c g r N

c g r N

c g r N

 

 

 

 

     


    


    


    

 (19)

Then the direction value in ciphertext can be calculated by using Equation (20).

3 2 3

1 1 1 1 2 3 4

2

3 2 3

2 2 2 1 2 3 4

2

ˆ ˆ ˆ() (1,) (,) mod

ˆ() (1,) (,) mod

l

l

N

d

p

N

d

p

c j M j M p j N c c c

c j M j M p j N c



  






    



     







(20)

It can be derived to the following equation.

2 3 4

1

() 3 2

1 1 1

3() 3 2

2 1 1 2 3

() mod

() mod

P P Pl N

d

Pl N

d

c j g r N

c j g r N



  

    


    

 (21)

According to Carmichael theory, the following equation holds.

2

2

1

1mod

1mod

N

N

g N

r N





 




 (22)

Hence, the following equation holds.

2

1 1modN Ng r N   (23)

According to Equations (19) and (23), Equation (24) can be derived.

1

2

3

4

(1) 2

1 1

(1) 2

2 1

(1) 2

3 1

(1) 2

4 1

mod

mod

mod

mod

N P N

N P N

N P N

N P N

g r N

g r N

g r N

g r N

 

 

 

 









 

 

 

 

 










 (24)

According to Equations (22) and (24), Equation (20) can be simplified as

2 3 4 1

1 2 3 4

3 3() 2

1

3 3() 2

2

() mod

() mod

N P P P Pl

d

N P P P Pl

d

c j g N

c j g N





   

   

 




 (25)

(a) (b)

Figure 4. The patch with four vertices. (a) ()M p correspond to the vertex. (b) The encrypted

coordinate.

Figure 4. The patch with four vertices. (a) M(p) correspond to the vertex. (b) The encrypted coordinate.

Symmetry 2020, 12, 347 8 of 18

Then the direction value in ciphertext can be calculated by using Equation (20).
cd1(j) = M1(1, j)3

Nl∏
p=2

M1(p, j)modN2 = θ1
3
· ĉ2 · ĉ3 · ĉ4

cd2(j) = M2(1, j)3
Nl∏

p=2
M2(p, j)modN2 = ĉ1

3
· θ2 · θ3 · θ4

(20)

It can be derived to the following equation. c(l)d1 (j) = gP2+P3+P4 · r1
3N
· θ1modN2

c(l)d2 (j) = g3P1 · r1
3N
· θ1 · θ2 · θ3modN2

(21)

According to Carmichael theory, the following equation holds.{
gNλ = 1modN2

r1
Nλ = 1modN2 (22)

Hence, the following equation holds.

gNλ
· r1

Nλ = 1modN2 (23)

According to Equations (19) and (23), Equation (24) can be derived.
θ1 = gNλ−P1 ·r1

N(λ−1)modN2

θ2 = gNλ−P2 ·r1
N(λ−1)modN2

θ3 = gNλ−P3 ·r1
N(λ−1)modN2

θ4 = gNλ−P4 ·r1
N(λ−1)modN2

(24)

According to Equations (22) and (24), Equation (20) can be simplified as c(l)d1 (j) = g3Nλ+P2+P3+P4−3P1modN2

c(l)d2 (j) = g3Nλ+3P1−P2−P3−P4modN2
(25)

3.3.2. Constructing the Mapping Table

Due to the spatial correlation of the 3D model, the vertex coordinates are relatively close in space.
According to the experiments on multiple 3D model, the direction values are usually in a certain
range, and the maximum direction value is usually related to the number of vertices in the patch.
As illustrated in Figure 5, the blue line shows the change in the maximum direction value when the
number of vertices in the patch changes. The red line is the fitted curve of the blue line, and its fitting
function F(Nl) satisfies

F(Nl) = 1.925 · (Nl − 1)3
− 60.6 · (Nl − 1)2 + 528 · (Nl − 1) − 609 (26)

Therefore, the direction values are all within a certain range. When the number of vertices of the
patch changes, the direction values does not exceed F(Nl). Moreover, in order to obtain robustness, the
robust interval T(Nl) is designed in the process of histogram shifting. The robust interval T(Nl) is
related to the number of the patch, which is defined by

T(Nl) = t · (Nl − 1) (27)

where t represents the strength of robustness. Hence, the change of direction values is F(Nl) + T(Nl)

at most.

Symmetry 2020, 12, 347 9 of 18

Suppose that dp denotes the absolute of direction values, then dp ∈ [0, 2F(Nl) + T(Nl)]. With the
public key, and the ciphertext cdp corresponding to dp can be calculated by

cdp = gdpmodN2, dp = 0, 1, 2, . . . , 2F(Nl) + T(Nl) (28)

Symmetry 2020, 12, 347 9 of 19

3.3.2. Constructing the Mapping Table

Due to the spatial correlation of the 3D model, the vertex coordinates are relatively close in space.

According to the experiments on multiple 3D model, the direction values are usually in a certain

range, and the maximum direction value is usually related to the number of vertices in the patch. As

illustrated in Figure 5, the blue line shows the change in the maximum direction value when the

number of vertices in the patch changes. The red line is the fitted curve of the blue line, and its fitting

function ()lF N satisfies

3 2() 1.925 (1) 60.6 (1) 528 (1) 609l l l lF N N N N          (26)

Figure 5. The blue line represents relationship between the maximum direction value and the number

of vertices of the patch, and the red line is the fitted curve of the blue line.

Therefore, the direction values are all within a certain range. When the number of vertices of the

patch changes, the direction values does not exceed ()lF N . Moreover, in order to obtain robustness,

the robust interval ()lT N is designed in the process of histogram shifting. The robust interval

()lT N is related to the number of the patch, which is defined by

() (1)l lT N t N   (27)

where t represents the strength of robustness. Hence, the change of direction values is

() ()l lF N T N at most.

Suppose that
pd denotes the absolute of direction values, then [0,2 () ()]p l ld F N T N  . With

the public key, and the ciphertext
pdc corresponding to pd can be calculated by

2mod , 0,1,2,..., 2 () ()p

p

d

d p l lc g N d F N T N   (28)

Hence, the mapping table can be constructed as illustrated in Figure 6, and the direction values

in ciphertext can be mapped to the direction values in plaintext through the mapping table
pdc . The

mapping method is described as follows:
pdc is a ciphertext set obtained by encrypting all possible

values
pd . When

1

() ()
d

lc j matches the value []
pdc m in

pdc , it indicates () () 0ld j  , and

() () []l

pd j d m . When
2

() ()
d

lc j matches the value []
pdc m in

pdc , it indicates () () 0ld j  , and

() () []l

pd j d m  , where [0,2 () ())l lm F N T N  , and []pd m represents the thm value in the

mapping table. Therefore, without the private key, the direction values in plaintext can be obtained

by querying the mapping table.

Figure 5. The blue line represents relationship between the maximum direction value and the number
of vertices of the patch, and the red line is the fitted curve of the blue line.

Hence, the mapping table can be constructed as illustrated in Figure 6, and the direction values
in ciphertext can be mapped to the direction values in plaintext through the mapping table cdp . The
mapping method is described as follows: cdp is a ciphertext set obtained by encrypting all possible

values dp. When c(l)d1 (j) matches the value cdp [m] in cdp , it indicates d(l)(j) ≥ 0, and d(l)(j) = dp[m].

When c(l)d2 (j) matches the value cdp [m] in cdp , it indicates d(l)(j) < 0, and d(l)(j) = −dp[m], where
m ∈ [0, 2F(Nl) + T(Nl)), and dp[m] represents the mth value in the mapping table. Therefore, without
the private key, the direction values in plaintext can be obtained by querying the mapping table.
Symmetry 2020, 12, 347 10 of 19

Figure 6. The mapping table.

3.3.3. Constructing the Symmetrical Direction Histogram

In the proposed method, the direction values in ciphertext are first calculated using the MMI

method. Then, according to all possible direction values, the mapping table can be constructed, so

the direction values in ciphertext can be mapped to direction values in plaintext. Last, the direction

histogram can be constructed by counting all direction values. The direction histogram of all patches

with six vertices is shown as Figure 7. It is found that most direction values are concentrated in the

central area, and only a small part of the direction values are beyond the central area. Moreover, the

direction histogram is symmetrical visually.

Figure 7. The direction histogram of patches with seven vertices.

3.3.4. Embedding Watermark by Histogram Shifting

In the proposed method, the watermark is embedded by shifting the direction histogram. In

order to embed the watermark, the changed direction values should exceed the range of original

histogram. Using ()lF N and ()lT N as embedding keys, the embedded function ()lB N is defined

by Equation (29) to change the direction values.

() ()
() 528 (1)

1

l l
l l

l

F N T N
B N t N

N


 
     

 
 (29)

where (1)lN  is the function about 1lN  , (1)lN  will not change, and   
 means to

round up. Suppose that 528t   , and ()lB N can be changed by modifying  . Moreover, three

bits can be embedded by changing three direction values of a patch. Suppose that ()l

wC denotes the

Figure 6. The mapping table.

3.3.3. Constructing the Symmetrical Direction Histogram

In the proposed method, the direction values in ciphertext are first calculated using the MMI
method. Then, according to all possible direction values, the mapping table can be constructed, so

Symmetry 2020, 12, 347 10 of 18

the direction values in ciphertext can be mapped to direction values in plaintext. Last, the direction
histogram can be constructed by counting all direction values. The direction histogram of all patches
with six vertices is shown as Figure 7. It is found that most direction values are concentrated in the
central area, and only a small part of the direction values are beyond the central area. Moreover, the
direction histogram is symmetrical visually.

Symmetry 2020, 12, 347 10 of 19

Figure 6. The mapping table.

3.3.3. Constructing the Symmetrical Direction Histogram

In the proposed method, the direction values in ciphertext are first calculated using the MMI

method. Then, according to all possible direction values, the mapping table can be constructed, so

the direction values in ciphertext can be mapped to direction values in plaintext. Last, the direction

histogram can be constructed by counting all direction values. The direction histogram of all patches

with six vertices is shown as Figure 7. It is found that most direction values are concentrated in the

central area, and only a small part of the direction values are beyond the central area. Moreover, the

direction histogram is symmetrical visually.

Figure 7. The direction histogram of patches with seven vertices.

3.3.4. Embedding Watermark by Histogram Shifting

In the proposed method, the watermark is embedded by shifting the direction histogram. In

order to embed the watermark, the changed direction values should exceed the range of original

histogram. Using ()lF N and ()lT N as embedding keys, the embedded function ()lB N is defined

by Equation (29) to change the direction values.

() ()
() 528 (1)

1

l l
l l

l

F N T N
B N t N

N


 
     

 
 (29)

where (1)lN  is the function about 1lN  , (1)lN  will not change, and   
 means to

round up. Suppose that 528t   , and ()lB N can be changed by modifying  . Moreover, three

bits can be embedded by changing three direction values of a patch. Suppose that ()l

wC denotes the

Figure 7. The direction histogram of patches with seven vertices.

3.3.4. Embedding Watermark by Histogram Shifting

In the proposed method, the watermark is embedded by shifting the direction histogram. In order
to embed the watermark, the changed direction values should exceed the range of original histogram.
Using F(Nl) and T(Nl) as embedding keys, the embedded function B(Nl) is defined by Equation (29)
to change the direction values.

B(Nl) =

⌈
F(Nl) + T(Nl)

Nl − 1

⌉
= t + 528 + ϕ(Nl − 1) (29)

where ϕ(Nl − 1) is the function about Nl − 1, ϕ(Nl − 1) will not change, and d·e means to round up.
Suppose that β = t + 528, and B(Nl) can be changed by modifying β. Moreover, three bits can be
embedded by changing three direction values of a patch. Suppose that C(l)

w denotes the encrypted
patch with watermark. If the watermark bit ‘0′ needs to be embedded, the vertex coordinate is not
changed, which means C(l)

w = C(l). If the bit ‘1′ needs to be embedded, the ciphertext C(l)(p, j) in the
patch C(l)

w is changed by Equation (30) to obtain C
(l)
w (p, j).

C(l)
w (p, j) =

 C(l)(p, j) · gB(Nl) = gP(l)(p, j)+B(Nl) · r1(k)
NmodN, i f d(l)(j) ∈ [0, f (Nl)) and p = 2, 3, . . . , N

C(l)(p, j) · gB(Nl) = gP(l)(p, j)+B(Nl) · r1(k)
NmodN, i f d(l)(j) ∈ (− f (Nl), 0) and p = 1

(30)

where C
(l)
w (p, j) is the encrypted patch with watermark. Suppose that P(l)

w (p, j) denotes the decrypted
patch with watermark. The operation in ciphertext is equivalent to change the coordinates P(l)(p, j) to
P(l)

w (p, j) in plaintext.

P(l)
w (p, j) =

{
P(l)(p, j) + B(Nl), i f d(l)(j) ∈ [0, F(Nl)) and p = 2, 3, . . . , N
P(l)(p, j) + B(Nl), i f d(l)(j) ∈ (−F(Nl), 0) and p = 1

(31)

Suppose that d(l)w (j) denotes the direction value with watermark. After embedding the bit ‘0′,
d(l)w (j) is still in the range (−F(Nl), F(Nl)), so (−F(Nl), F(Nl)) is called the 0-bit area. After embedding
the bit ‘1′, d(l)(j) will be changed by the size of F(Nl) + T(Nl) for making d(l)w (j) within the range
(−2F(Nl) − T(Nl),−F(Nl) − T(Nl)] or [F(Nl) + T(Nl), 2F(Nl) + T(Nl)). (−2F(Nl) − T(Nl),−F(Nl) −

T(Nl)] and [F(Nl) + T(Nl), 2F(Nl) + T(Nl)) are called the 1-bit area. Finally, the encrypted model with

Symmetry 2020, 12, 347 11 of 18

watermark can be obtained. For example, after embedding 1000 bits, the direction histogram is shown
in Figure 8. When embedding the bit ‘0′, the direction values are still in the 0-bit area. When embedding
the bit ‘1′, the direction values will be shifted into the 1-bit area. Moreover, the 0-bit area and the 1-area
are separated by the robust interval of size T(Nl). Hence, the watermark is embedded successfully.

Symmetry 2020, 12, 347 11 of 19

encrypted patch with watermark. If the watermark bit ‘0′ needs to be embedded, the vertex

coordinate is not changed, which means () ()l l

wC C . If the bit ‘1′ needs to be embedded, the ciphertext

() (,)lC p j in the patch ()l

wC is changed by Equation (30) to obtain ()

(,)
l

wC p j .

()

()

() (,) ()() ()

1()

() (,) ()() ()

1

(,) () mod , () [0, ()) 2,3,...,
(,)

(,) () mod , () ((),0) 1

l
l l

l
l l

B N P p j B Nl N l

ll

w
B N P p j B Nl N l

l

C p j g g r k N if d j f N and p N
C p j

C p j g g r k N if d j f N and p





     
 

     

 (30)

where
()

(,)
l

wC p j is the encrypted patch with watermark. Suppose that () (,)l

wP p j denotes the

decrypted patch with watermark. The operation in ciphertext is equivalent to change the coordinates
() (,)lP p j to () (,)l

wP p j in plaintext.

() ()

()

() ()

(,) (), () [0, ()) 2,3,...,
(,)

(,) (), () ((),0) 1

l l

l ll

w l l

l l

P p j B N if d j F N and p N
P p j

P p j B N if d j F N and p

   
 

   

 (31)

Suppose that () ()l

wd j denotes the direction value with watermark. After embedding the bit ‘0′,

() ()l

wd j is still in the range ((), ())l lF N F N , so ((), ())l lF N F N is called the 0-bit area. After

embedding the bit ‘1′, () ()ld j will be changed by the size of () ()l lF N T N for making () ()l

wd j

within the range (2 () (), () ()]l l l lF N T N F N T N    or [() (),2 () ())l l l lF N T N F N T N  .

(2 () (), () ()]l l l lF N T N F N T N    and [() (),2 () ())l l l lF N T N F N T N  are called the 1-bit area. Finally, the

encrypted model with watermark can be obtained. For example, after embedding 1000 bits, the

direction histogram is shown in Figure 8. When embedding the bit ‘0′, the direction values are still in

the 0-bit area. When embedding the bit ‘1′, the direction values will be shifted into the 1-bit area.

Moreover, the 0-bit area and the 1-area are separated by the robust interval of size ()lT N . Hence, the

watermark is embedded successfully.

Figure 8. The watermarked histogram. After embedding the watermark, the original direction

histogram can be divided into 0-bit area and 1-bit area. The 0-bit area and 1-bit area are separated by

the robust interval of size ()lT N .

3.4. Watermark Extraction

Watermark extraction includes extracting the watermark in the encrypted model and extracting

the watermark in the decrypted model.

3.4.1. Extracting Watermark in an Encrypted Domain and Restore the Original Encrypted Model

The watermarked model is firstly divided into patches, and the direction values in ciphertext is

calculated and mapped to the direction values in plaintext using the MMI method and the mapping

table. Then, the direction histogram is constructed, and the watermark is extracted from direction

histogram. Finally, with the embedding key ((), ())l lF N T N , the embedding function ()lB N can be

Figure 8. The watermarked histogram. After embedding the watermark, the original direction
histogram can be divided into 0-bit area and 1-bit area. The 0-bit area and 1-bit area are separated by
the robust interval of size T(Nl).

3.4. Watermark Extraction

Watermark extraction includes extracting the watermark in the encrypted model and extracting
the watermark in the decrypted model.

3.4.1. Extracting Watermark in an Encrypted Domain and Restore the Original Encrypted Model

The watermarked model is firstly divided into patches, and the direction values in ciphertext is
calculated and mapped to the direction values in plaintext using the MMI method and the mapping
table. Then, the direction histogram is constructed, and the watermark is extracted from direction
histogram. Finally, with the embedding key (F(Nl), T(Nl)), the embedding function B(Nl) can be
obtained to restore the original encrypted model. Let w(l)(j) be the watermark embedded in the j-axis
of the lth patch, and w(l)(j) is extracted by Equation (32).

w(l)(j) =
{

0, i f d(l)(j) ∈ (−F(Nl), F(Nl))

1, else
(32)

The original encrypted model can be restored by histogram shifting, which is reverse to the
embedding process. In order to restore the original encrypted model, the modular multiplicative
inverse θgB(Nl) of gB(Nl) need to be calculated through the extended Euclidean method.

θgB(Nl) · g
B(Nl) = 1modN2 (33)

Therefore, the original encrypted vertex coordinate C(l)(p, j) can be obtained by Equation (34).

C(l)(p, j) =



C(l)
w (p, j)· θgB(Nl) = C(l)(p, j) · gB(Nl) · θgB(Nl)modN2

i f d(l)(j) ∈ [F(Nl) + T(Nl), 2F(Nl) + T(Nl)) and p = 2, .., N
C(l)

w (p, j)· θgB(Nl) = C(l)(p, j) · gB(Nl) · θgB(Nl)modN2

i f d(l)(j) ∈ (−2F(Nl) − T(Nl),−F(Nl) − T(Nl)] and p = 1

C(l)
w (p, j)

i f d(l)(j) ∈ (−F(Nl), F(Nl))

(34)

Symmetry 2020, 12, 347 12 of 18

where C(l)
w (p, j) is the vertex coordinate with watermark in the patch C(l)

w , and the processing in
ciphertext is equivalent to the change in plaintext by using Equation (35).

P(l)(p, j) =


P(l)

w (p, j) − B(Nl), i f d(l)(j) ∈ [F(Nl) + T(Nl), 2F(Nl) + T(Nl)) and p = 2, .., N
P(l)

w (p, j) − B(Nl), i f d(l)(j) ∈ (−2F(Nl) − T(Nl),−F(Nl) − T(Nl)] and p = 1

P(l)
w (p, j), i f d(l)(j) ∈ (−F(Nl), F(Nl))

(35)

After the above process, d(l)w is restored to d(l), and the original encrypted model can be obtained.

3.4.2. Extracting Watermark in Decrypted Model

With the private key, the watermarked model can be decrypted. With the embedding key,
the watermark can be extracted and the original 3D model can be restored. Firstly, the watermarked
model is divided into patches and the direction values of each patch are calculated by using Equation (14).
Then, the direction histogram is constructed and the watermark is extracted from direction histogram
by using Equation (32). Finally, with the embedding key, the original model can be restored by
using Equation (35).

The decrypted model with watermark may be vulnerable to some common attacks such as noise
interference during transmission. Since the robust interval during histogram shifting is reserved, the
proposed method is robust to common attacks, such as Gaussian noise, translation, scaling, etc. As
illustrated in Figure 8, the 0-bit area and the 1-bit area are separated by the robust interval of size T(Nl).
After the decrypted watermarked model is attacked slightly, it will cause a small range fluctuation of
the direction values. However, if the direction values do not enter the error area, the receiver can still
correctly extract the watermark. In order to improve the accuracy of watermark extraction after being
disturbed, the watermark is extracted by using

w(l)(j) =
{

0, i f d(l)(j) ∈ (−F(Nl) − T(Nl)/3, F(Nl) + T(Nl)/3)
1, else

(36)

4. Experimental Results and Discussion

The proposed method processed 3D model and implemented the watermark method in MATLAB
R2016b under Window 7. We implemented the following experiment on 40 3D models and calculated
the average of 40 3D models. Figure 9 shows six models used in the experiment.

The quality of the decrypted watermarked model is evaluated by the signal-to-noise ratio (SNR).
The higher the value SNR, the better the imperceptibility after embedding watermark. SNR is
computed as

SNR = 10lg

NV∑
i=1

[(vi,x − vx)
2 + (vi,y − vy)

2 + (vi,z − vz)
2]

NV∑
i=1

[(gi,x − vi,x)
2 + (gi,y − vi,y)

2 + (gi,z − vi,z)
2]

(37)

where vx, vy, vz are the mean of vertex coordinates, vi(vi,x, vi,y, vi,z) are the original coordinates, and
gi(gi,x, gi,y, gi,z) are the coordinates of the watermarked model Mw.

In addition, the bit error rate (BER) is used to measure the error rate of the extracted watermark.
The lower the value, the higher the accuracy of the extracted watermark.

4.1. The Value of β

According to Equation (29), B(Nl) = β+ϕ(Nl − 1), and the embedding function B(Nl) is changed
by changing the value of β. According to Equation (31), if the value of β is large, the distortion of the
decrypted model is high and the accuracy of watermark extracting is high, and vice versa. In order
to observe the effect of β on the quality of decrypted model and the bit error rate of the extracted

Symmetry 2020, 12, 347 13 of 18

watermark, we changed the value of β to perform on 40 tested models and calculated their average. The
relationship between the value of β and the distortion SNR is illustrated in Figure 10a. As β increases,
SNR gradually decreases. When β = 588, SNR of the decrypted model is slightly greater than 30 dB.
Based on imperceptible considerations, in order to obtain better model quality, the value of β cannot
exceed 588. The relationship between the value of β and BER is shown in Figure 10b. When β ≥ 528,
the watermark was correctly extracted without being attacked. Therefore, the value of b cannot be less
than 528.

Symmetry 2020, 12, 347 13 of 19

4. Experimental Results and Discussion

The proposed method processed 3D model and implemented the watermark method in

MATLAB R2016b under Window 7. We implemented the following experiment on 40 3D models and

calculated the average of 40 3D models. Figure 9 shows six models used in the experiment.

(a) (b) (c)

(d) (e) (f)

Figure 9. Six tested 3D models. (a) Fairy. (b) Boss. (c) Solider. (d) Devil. (e) Thing. (f) Lord.

The quality of the decrypted watermarked model is evaluated by the signal-to-noise ratio (SNR).

The higher the value SNR , the better the imperceptibility after embedding watermark. SNR is

computed as

2 2 2

, , ,

1

2 2 2

, , , , , ,

1

[() () ()]

10lg

[() () ()]

V

V

N

i x x i y y i z z

i

N

i x i x i y i y i z i z

i

v v v v v v

SNR

g v g v g v





    



    





(37)

where , ,x y zv v v are the mean of vertex coordinates,
, , ,(, ,)i i x i y i zv v v v are the original coordinates, and

, , ,(, ,)i i x i y i zg g g g are the coordinates of the watermarked model
wM .

In addition, the bit error rate (BER) is used to measure the error rate of the extracted watermark.

The lower the value, the higher the accuracy of the extracted watermark.

4.1. The Value of 

According to Equation (29), () (1)l lB N N    , and the embedding function ()lB N is

changed by changing the value of  . According to Equation (31), if the value of  is large, the

distortion of the decrypted model is high and the accuracy of watermark extracting is high, and vice

versa. In order to observe the effect of  on the quality of decrypted model and the bit error rate

Figure 9. Six tested 3D models. (a) Fairy. (b) Boss. (c) Solider. (d) Devil. (e) Thing. (f) Lord.

Symmetry 2020, 12, 347 14 of 19

of the extracted watermark, we changed the value of  to perform on 40 tested models and

calculated their average. The relationship between the value of  and the distortion SNR is

illustrated in Figure 10a. As  increases, SNR gradually decreases. When  = 588, SNR of the

decrypted model is slightly greater than 30 dB. Based on imperceptible considerations, in order to

obtain better model quality, the value of  cannot exceed 588. The relationship between the value

of  and BER is shown in Figure 10b. When 528  , the watermark was correctly extracted

without being attacked. Therefore, the value of b cannot be less than 528.

(a) (b)

Figure 10. The effect of  on the distortion of decrypted model and the bit error rate of the

extracted watermark. (a)  is related to signal-to-noise ratio (SNR). (b)  is related to bit error rate

(BER).

4.2. The Value of t

As shown in Figure 7, the 0-bit area and 1-bit area are separated by the robust interval of size

(1)lt N  . If the robust interval is large, the robustness is high. However, as t increases, the quality

of the decrypted model is reduced. Therefore, t needs to be adjusted according to the actual

application scenario. If higher robustness is required, a greater value of t can be assigned. If better

quality of decrypted model is required, a smaller value of t is set. In order to choose a suitable value,

experiments were conducted on 40 models to test the robustness with different values of t .

As illustrated in Figure 11, the BER of watermark extraction is low under Gaussian noise (0.01).

By increasing t , the BER could be reduced. When 50t  , the watermark could be extracted

correctly. Therefore, when higher robustness is required, the value of t can be assigned to be 50.

Figure 10. The effect of β on the distortion of decrypted model and the bit error rate of the extracted
watermark. (a) β is related to signal-to-noise ratio (SNR). (b) β is related to bit error rate (BER).

Symmetry 2020, 12, 347 14 of 18

4.2. The Value of t

As shown in Figure 7, the 0-bit area and 1-bit area are separated by the robust interval of size
t · (Nl − 1). If the robust interval is large, the robustness is high. However, as t increases, the quality of
the decrypted model is reduced. Therefore, t needs to be adjusted according to the actual application
scenario. If higher robustness is required, a greater value of t can be assigned. If better quality of
decrypted model is required, a smaller value of t is set. In order to choose a suitable value, experiments
were conducted on 40 models to test the robustness with different values of t.

As illustrated in Figure 11, the BER of watermark extraction is low under Gaussian noise (0.01).
By increasing t, the BER could be reduced. When t = 50, the watermark could be extracted correctly.
Therefore, when higher robustness is required, the value of t can be assigned to be 50.

Symmetry 2020, 12, 347 14 of 19

of the extracted watermark, we changed the value of  to perform on 40 tested models and

calculated their average. The relationship between the value of  and the distortion SNR is

illustrated in Figure 10a. As  increases, SNR gradually decreases. When  = 588, SNR of the

decrypted model is slightly greater than 30 dB. Based on imperceptible considerations, in order to

obtain better model quality, the value of  cannot exceed 588. The relationship between the value

of  and BER is shown in Figure 10b. When 528  , the watermark was correctly extracted

without being attacked. Therefore, the value of b cannot be less than 528.

(a) (b)

Figure 10. The effect of  on the distortion of decrypted model and the bit error rate of the

extracted watermark. (a)  is related to signal-to-noise ratio (SNR). (b)  is related to bit error rate

(BER).

4.2. The Value of t

As shown in Figure 7, the 0-bit area and 1-bit area are separated by the robust interval of size

(1)lt N  . If the robust interval is large, the robustness is high. However, as t increases, the quality

of the decrypted model is reduced. Therefore, t needs to be adjusted according to the actual

application scenario. If higher robustness is required, a greater value of t can be assigned. If better

quality of decrypted model is required, a smaller value of t is set. In order to choose a suitable value,

experiments were conducted on 40 models to test the robustness with different values of t .

As illustrated in Figure 11, the BER of watermark extraction is low under Gaussian noise (0.01).

By increasing t , the BER could be reduced. When 50t  , the watermark could be extracted

correctly. Therefore, when higher robustness is required, the value of t can be assigned to be 50.

Figure 11. The BER under Gaussian attacks (the strength is 0.01).

4.3. Feasibility of the Watermarking

In order to show the feasibility of the proposed watermarking method, the 3D model devil with
30,000 vertices was tested, and other models had similar results. The watermark was a 1024-bit
pseudo-random sequence. Firstly, the original model was divided into patches and the encrypted
model was obtained by encrypting the 3D model with the public key as illustrated in Figure 12.
Secondly, with the embedding key, the watermark was embedded to obtain the watermarked model as
illustrated in Figure 12c. Then, the directly decrypted model (as shown in Figure 12d) is obtained by
decrypting the encrypted model; SNR of the decrypted model was 30.93. Lastly, the watermark was
extracted and the model was restored (as shown in Figure 12e), and the SNR of the restored model
approaches infinity, which shows that the restored model was exactly the same as the original model.
Figure 12f shows that all watermark bits were correctly extracted. The experimental results showed that
the proposed method achieved reversibility of embedding and extraction, and the restoration of the
original model. Figure 13 shows five decrypted 3D models had less distortion compared to the original
3D model, and Figure 13f shows the SNR of the decrypted models were close to 30, which denotes the
proposed method can obtain good quality.

Symmetry 2020, 12, 347 15 of 18

Symmetry 2020, 12, 347 15 of 19

Figure 11. The BER under Gaussian attacks (the strength is 0.01).

4.3. Feasibility of the Watermarking

In order to show the feasibility of the proposed watermarking method, the 3D model devil with

30,000 vertices was tested, and other models had similar results. The watermark was a 1024-bit

pseudo-random sequence. Firstly, the original model was divided into patches and the encrypted

model was obtained by encrypting the 3D model with the public key as illustrated in Figure 12.

Secondly, with the embedding key, the watermark was embedded to obtain the watermarked model

as illustrated in Figure 12c. Then, the directly decrypted model (as shown in Figure 12d) is obtained

by decrypting the encrypted model; SNR of the decrypted model was 30.93. Lastly, the watermark

was extracted and the model was restored (as shown in Figure 12e), and the SNR of the restored

model approaches infinity, which shows that the restored model was exactly the same as the original

model. Figure 12f shows that all watermark bits were correctly extracted. The experimental results

showed that the proposed method achieved reversibility of embedding and extraction, and the

restoration of the original model. Figure 13 shows five decrypted 3D models had less distortion

compared to the original 3D model, and Figure 13f shows the SNR of the decrypted models were

close to 30, which denotes the proposed method can obtain good quality.

Figure 12. Experiment with 3D model ‘devil’ (a) The original model; (b) the encrypted model; (c) the

watermarked model; (d) the decrypted model. After decryption, the SNR was 30.93. (e) The restored

model. After restoration, the SNR approached infinity. (f) The bit error rate after watermark

extraction.

(a) (b) (c)

(d) (e) (f)

Figure 12. Experiment with 3D model ‘devil’ (a) The original model; (b) the encrypted model; (c) the
watermarked model; (d) the decrypted model. After decryption, the SNR was 30.93. (e) The restored
model. After restoration, the SNR approached infinity. (f) The bit error rate after watermark extraction.Symmetry 2020, 12, 347 16 of 19

(a) (b) (c)

(d) (e) (f)

Figure 13. Five watermarked 3D models. (a) The watermarked “Fairy”; (b) the watermarked “Boss”;

(c) the watermarked “Solider”; (d) the watermarked “Thing”; (e) the watermarked “Lord”; (f) SNR

of the five watermarked models.

4.4. Robustness Analysis

In order to compare the robustness under attacks, several attacks were performed on the

decrypted 3D model. Table 1 shows the bit error rate of watermark extraction under different attacks.

Table 1. The BER under several common attacks.

Model t SNR
Gaussian Trans

lation

Scaling

(0.005) (0.01) (0.02) 0.8 1.2 1.5

Fairy 40 30.96 1.75% 2.63% 6.15% 1 0.21 0.073 0.18

Boss 40 30.96 1.24% 1.52% 6.26% 1 0.17 0.064 0.19

Solider 35 31.44 1.98% 2.67% 5.98% 1 0.13 0.053 0.15

Devil 30 31.44 2.06% 2.41% 6.74% 1 0.16 0.069 0.19

Thing 30 31.44 1.68% 2.47% 6.45% 1 0.18 0.057 0.21

Lord 25 32.1 2.28% 3.24% 8.64% 1 0.23 0.071 0.24

4.4.1. Robustness Against Translation Attacks

The robustness against the translation attacks was tested. As shown in Table 1, the method

perfectly resisted translation attacks. When the model was subjected to a translation attack, the vertex

Figure 13. Five watermarked 3D models. (a) The watermarked “Fairy”; (b) the watermarked “Boss”;
(c) the watermarked “Solider”; (d) the watermarked “Thing”; (e) the watermarked “Lord”; (f) SNR of
the five watermarked models.

Symmetry 2020, 12, 347 16 of 18

4.4. Robustness Analysis

In order to compare the robustness under attacks, several attacks were performed on the decrypted
3D model. Table 1 shows the bit error rate of watermark extraction under different attacks.

Table 1. The BER under several common attacks.

Model t SNR
Gaussian

Translation
Scaling

(0.005) (0.01) (0.02) 0.8 1.2 1.5

Fairy 40 30.96 1.75% 2.63% 6.15% 1 0.21 0.073 0.18
Boss 40 30.96 1.24% 1.52% 6.26% 1 0.17 0.064 0.19

Solider 35 31.44 1.98% 2.67% 5.98% 1 0.13 0.053 0.15
Devil 30 31.44 2.06% 2.41% 6.74% 1 0.16 0.069 0.19
Thing 30 31.44 1.68% 2.47% 6.45% 1 0.18 0.057 0.21
Lord 25 32.1 2.28% 3.24% 8.64% 1 0.23 0.071 0.24

4.4.1. Robustness Against Translation Attacks

The robustness against the translation attacks was tested. As shown in Table 1, the method
perfectly resisted translation attacks. When the model was subjected to a translation attack, the vertex
coordinates of the patch increased by a certain value at the same time. According to Equation (14),
when the vertex coordinates in a patch are changed by the same size, it can be known that its direction
values will not change. Therefore, the watermark can be extracted correctly.

4.4.2. Robustness Against Scaling Attacks

The robustness against scaling attacks was tested by different levels (0.8, 1.2, 1.5) on the decrypted
3D model. As shown in Table 1, the proposed method was robust to scaling attacks. When the model
was attacked, the vertex coordinates of the patch were multiplied by a certain coefficient at the same
time. According to Equation (14), its direction values also increased or decreased accordingly. As
illustrated in Figure 7, the direction values of most patches were concentrated in the central area.
Therefore, when the scaling size was increased, most of the vertices were still in the original area,
and only a small number of vertices were offset. On this condition, the robustness was high. When
the scaling size was decreased, the 1-bit area was easily shifted to the 0-bit area, which affected the
accuracy of extracting the watermark. Therefore, the robustness was much higher when the 3D model
was amplified compared with other levels of attacks.

4.4.3. Robustness to Gaussian Noise Attacks

The robustness against Gaussian noise attacks was tested by performing different degrees (0.005,
0.01, 0.02) on the decrypted 3D model. As shown in Table 1, the robustness against Gaussian noise
attacks was high. When the model was attacked by Gaussian noise, the vertex coordinates were slightly
disturbed. According to Equation (14), its direction values were also slightly modified. As illustrated
in Figure 7, the direction values of most patches were concentrated in the central area, and only a few
vertices were in the non-central area. Therefore, when the model was slightly disturbed, the direction
values of the central area were slightly disturbed, and only a few direction values of non-central area
were shifted.

However, the proposed method cannot resist the attacks of cropping and simplification, it is
because those attacks will influence the order of the vertices. Moreover, the proposed method
cannot resist salt and pepper noise, mainly because the attack obviously changes the relative position
between vertices.

Symmetry 2020, 12, 347 17 of 18

4.5. Compared with the Existing Watermark Method in an Encrypted Domain

To our knowledge, few effective robust reversible watermarking methods for 3D model in the
encryption domain has been reported in the literature. In order to show the effectiveness of the
proposed method, Jiang [1] is extended to the encrypted 3D model. From Table 2, the proposed method
has a slightly higher embedding capacity compared with the Jiang [1], and it is mainly because a patch
has three coordinate axes and three bits can be embedded. To sum up, the proposed method has good
security and robustness, and the decrypted 3D model has low distortion.

Table 2. Compared to the method of Jiang [1].

Capability Robustness Security SNR of
Decrypted Model

SNR of
Restored Model BER

The proposed method 0.396 yes high 30.08 +∞ 0
Method of Jiang [1] 0.365 no low 5.35 31.97 4.22%

5. Conclusions

In this paper, a robust reversible three-dimensional (3D) model watermarking method based
on homomorphic encryption is presented for protecting the copyright of 3D models. The 3D model
is divided into non-overlapping patches, and the vertex in each patch is encrypted by using the
Paillier cryptosystem. On the cloud side, three direction values of each patch are computed, and the
symmetrical direction histogram is constructed for shifting to embed watermark. In order to obtain
robustness, the robust interval is designed in the process of histogram shifting. The watermark can be
extracted from the direction histogram, and the original encrypted model can be restored by histogram
shifting. Experimental results show that the decrypted 3D models have less distortion compared
with the existing methods, which denotes the proposed method can embed more secret data without
increasing the 3D models distortion. Moreover, the proposed method can resist a series of attacks
compared to the existing watermarking methods on encrypted 3D model. Thus, the proposed method
is efficient to protect copyright of 3D models in the cloud when the cloud administrator does not know
the content of the 3D models, but the existing methods have no ability.

In the future, we will investigate the following two possible research directions. (1) Reduce the
distortion of the directly decrypted 3D model. (2) Further improve the robustness against more kinds
of attacks, such as cropping and salt and pepper noise.

Author Contributions: Conceptualization and funding acquisition are credited to L.L. Methodology and
writing—original draft are due to S.W. Conceptualization and supervision are credited to S.Z. Writing—review &
editing is credited to T.L. Formal analysis and investigation are originated by C.-C.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was partially supported by National Natural Science Foundation of China (No. 61370218, No.
61971247), Public Welfare Technology and Industry Project of Zhejiang Provincial Science Technology Department
(No. LGG19F020016), and Ningbo Natural Science Foundation (No. 2019A610100).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jiang, R.Q.; Zhou, H.; Zhang, W.M. Reversible Data Hiding in Encrypted Three-Dimensional Mesh Models.
IEEE Trans. Multimed. 2018, 20, 55–67. [CrossRef]

2. Shah, M.; Zhang, W.M.; Hu, H.G. Homomorphic Encryption-Based Reversible Data Hiding for 3D Mesh
Models. Arab. J. Sci. Eng. 2018, 43, 8145–8157. [CrossRef]

3. Wu, H.T.; Cheung, Y.M.; Tang, S.H. A high-capacity reversible data hiding method for homomorphic
encrypted images. J. Vis. Commun. Image Represent. 2019, 62, 87–96. [CrossRef]

4. Xiang, S.J.; Luo, X.R. Reversible Data Hiding in Homomorphic Encrypted Domain by Mirroring Ciphertext
Group. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 3099–3110. [CrossRef]

http://dx.doi.org/10.1109/TMM.2017.2723244
http://dx.doi.org/10.1007/s13369-018-3354-4
http://dx.doi.org/10.1016/j.jvcir.2019.04.015
http://dx.doi.org/10.1109/TCSVT.2017.2742023

Symmetry 2020, 12, 347 18 of 18

5. Liu, J.; Wang, Y.; Li, Y. A robust and blind 3D watermarking algorithm using multiresolution adaptive
parameterization of surface. Neurocomputing 2017, 237, 304–315. [CrossRef]

6. Weng, S.; Zhao, Y.; Pan, J.S. Reversible watermarking based on invariability and adjustment on pixel pairs.
IEEE Signal Process. Lett. 2008, 15, 721–724. [CrossRef]

7. Amini, M.; Ahmad, M.; Swamy, M. A Robust multibit multiplicative watermark decoder using vector-based
hidden markov model in wavelet domain. IEEE Trans. Circuits Syst. Video Technol. 2016, 1, 402–413.
[CrossRef]

8. Benedens, X.; Busch, C. Towards blind detection of robust watermarks in polygonal models. Comput. Graph.
Forum 2000, 19, 199–208. [CrossRef]

9. Malvar, H.S.; Florencio, D.A. Improved spread spectrum: A new modulation technique for robust
watermarking. IEEE Trans. Signal Process 2003, 51, 898–905. [CrossRef]

10. Coltuc, D. Low distortion transform for reversible watermarking. IEEE Trans. Image Process. 2012, 21, 412–417.
[CrossRef]

11. Wu, Q.L.; Wu, M. Adaptive and blind audio watermarking algorithm based on chaotic encryption in hybrid
domain. Symmetry 2018, 10, 284. [CrossRef]

12. Feng, J.B.; Lin, I.C.; Tasi, C.S. Reversible watermarking: Current status and key issues. Int. J. Netw. Secur.
2006, 2, 161–171.

13. Ma, K.W.; Zhang, X.; Zhao, N. Reversible data hiding in encrypted images by reserving room before
encryption. IEEE Trans. Inf. Forensics Secur. 2013, 8, 553–562. [CrossRef]

14. Zhang, W.; Ma, K.; Yu, N. Reversibility improved data hiding in encrypted images. Signal Process. 2014, 94,
118–127. [CrossRef]

15. Shiu, C.-W.; Chen, Y.C.; Hong, W. Encrypted image-based reversible data hiding with public key cryptography
from difference expansion. Signal Process. Image Commun. 2015, 39, 226–233. [CrossRef]

16. Ni, Z.; Shi, Y.Q.; Ansari, N. Reversible data hiding. IEEE Trans. Circuits Syst. Video Technol. 2006, 16, 354–362.
17. Wu, H.T.; Cheung, Y.-M. Reversible watermarking by modulation and security enhancement. IEEE Trans.

Instrum. Meas. 2010, 59, 221–228.
18. Zhang, X. Separable reversible data hiding in encrypted image. IEEE Trans. Inf. Forensics Secur. 2012, 16,

826–832. [CrossRef]
19. Zhang, X.; Qian, Z.; Feng, G. Efficient reversible data hiding in encrypted images. J. Vis. Commun. Image

Represent. 2015, 25, 322–328. [CrossRef]
20. Xiang, S.J.; Yang, L. Robust and reversible image watermarking algorithm in homomorphic encrypted

domain. Ruan Jian Xue Bao/J. Softw. 2018, 29, 957–972. (In Chinese)
21. Ke, Q.; Xie, D.Q. A self-similarity based robust watermarking scheme for 3D point cloud models. Inf. Jpn.

2010, 16, 287–291.
22. Feng, X. A new watermarking algorithm for point model using angle quantization index modulation. In

Proceeding of the National Conference on Electrical Electronics and Computer Engineering, Xi’an, China,
12–13 December 2015; pp. 962–968.

23. Paillier, P. Public-key cryptosystems based on composite degree residuosity classes. In International Conference
on the Theory and Applications of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 1999;
pp. 223–238.

24. Zheng, P.J.; Huang, J.W. Discrete wavelet transform and data expansion reduction in homomorphic encrypted
domain. IEEE Trans. Image Process. 2013, 22, 2455–2468. [CrossRef] [PubMed]

25. Donald, K. The Art of Computer Programming, 3rd ed.; Addison-Wesley: Boston, MA, USA, 1997; pp. 325–515.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.neucom.2016.12.065
http://dx.doi.org/10.1109/LSP.2008.2001984
http://dx.doi.org/10.1109/TCSVT.2016.2607299
http://dx.doi.org/10.1111/1467-8659.00412
http://dx.doi.org/10.1109/TSP.2003.809385
http://dx.doi.org/10.1109/TIP.2011.2162424
http://dx.doi.org/10.3390/sym10070284
http://dx.doi.org/10.1109/TIFS.2013.2248725
http://dx.doi.org/10.1016/j.sigpro.2013.06.023
http://dx.doi.org/10.1016/j.image.2015.09.014
http://dx.doi.org/10.1109/TIFS.2011.2176120
http://dx.doi.org/10.1016/j.jvcir.2013.11.001
http://dx.doi.org/10.1109/TIP.2013.2253474
http://www.ncbi.nlm.nih.gov/pubmed/23529086
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Paillier Cryptosystem
	The Proposed Method
	Preprocessing
	Patch Dividing and Patch Encryption
	Patch Dividing
	Patch Encryption

	Watermark Embedding
	Three Direction Values Calculation of Each Patch
	Constructing the Mapping Table
	Constructing the Symmetrical Direction Histogram
	Embedding Watermark by Histogram Shifting

	Watermark Extraction
	Extracting Watermark in an Encrypted Domain and Restore the Original Encrypted Model
	Extracting Watermark in Decrypted Model

	Experimental Results and Discussion
	The Value of
	The Value of t
	Feasibility of the Watermarking
	Robustness Analysis
	Robustness Against Translation Attacks
	Robustness Against Scaling Attacks
	Robustness to Gaussian Noise Attacks

	Compared with the Existing Watermark Method in an Encrypted Domain

	Conclusions
	References

