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Abstract: This paper proposes some formulations of weak local residuals of shallow-water-type
equations, namely, one-, one-and-a-half-, and two-dimensional shallow water equations. Smooth
parts of numerical solutions have small absolute values of weak local residuals. Rougher parts of
numerical solutions have larger absolute values of weak local residuals. This behaviour enables the
weak local residuals to detect parts of numerical solutions which are smooth and rough (non-smooth).
Weak local residuals that we formulate are implemented successfully as refinement or coarsening
indicators for adaptive mesh finite volume methods used to solve shallow water equations.

Keywords: balance laws; conservation laws; finite volume; shallow water equations;
smoothness indicator; weak local residual

1. Introduction

In the literature, fluid dynamics have been modelled into mathematical equations in the forms of
partial differential equations. For example, Lee [1] used the forced KdV equation to model dynamics
of trapped solitary waves. Shi et al. [2] studied the coupled time-fractional Boussinesq–Burgers system
and provided some exact solutions to the system. Caputo et al. [3] reported some coupling conditions
for water waves at forks. Paliathanasis [4] researched the two-dimensional rotating ideal gas dynamics
and found a one-dimensional optimal system approximation. Castaings and Navon [5] proposed a
numerical method for solving reaction–diffusion problems. These fluid dynamics often relate to the
theory of conservation laws [6–9] with finite volume methods [10–13] as solving techniques. Overall,
we can choose a fluid dynamics model in the literature that best suits the problem we want to solve.

This paper deals with fluid dynamics and focuses on solving the shallow water equations
numerically using an adaptive mesh finite volume method with weak local residuals as the refinement
indicators. Weak local residuals of the one-dimensional scalar conservation law were proved by
Karni and Kurganov [14] to have lower degrees of accuracy at discontinuities than at smooth regions.
Therefore, a weak local residual can be used as a smoothness indicator of numerical solutions of the
one-dimensional scalar conservation law. Furthermore, even though the theory developed by Karni
and Kurganov [14] is valid only for the one-dimensional scalar conservation law, the same behaviour
of weak local residuals was seen to also be true for systems of conservation laws by numerical
simulations [14–16].

A weak local residual formulation depends on the choice of test functions having a compact
support on the computational domain. Karni et al. [15] chose to take quadratic B-splines as the test
functions for both time and space variables. Constantin and Kurganov [16] chose linear B-splines
for both time and space variables leading to a less expensive computational formulation of the weak
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local residual. All weak local residuals of the aforementioned work of Kurganov et al. [15,16] assume
uniform discretisation of spatial domain.

Our main contribution in this paper is the weak local residual formulation as refinement or
coarsening indicators in adaptive mesh finite volume methods used to solve shallow-water-type
equations in generic dimensions, including one, one and a half, and two dimensions. This generic
formulation for different dimensions, and more importantly, for two dimensions in triangular grids,
has never been published by the authors and any other researchers. By adaptive mesh we mean that
the spatial domain discretisation can be non-uniform as the time evolves because of mesh refinement
and mesh coarsening processes. We extend the work of Constantin and Kurganov [16] and so we
choose linear B-splines as the test functions for both time and space variables in the formulation of
weak local residuals.

Three shallow-water-type equations are considered, namely, one-, one-and-a-half-, and
two-dimensional shallow water equations. Weak local residuals that we formulate are implemented
in adaptive mesh finite volume methods to solve shallow water problems. Our numerical solutions show
that weak local residuals are successful in detecting non-smooth regions of the solutions and lead to adaptive
mesh methods which result in accurate numerical solutions.

There are several adaptive methods in the literature using other than weak local residuals as their
refinement or coarsening indicator. One of them is the adaptive method based on the numerical entropy
production, as proposed by Puppo and Semplice [17]. The theory of numerical entropy production
was given by Puppo [18,19]. This method is tested for shallow water equations by Mungkasi [20,21].
The numerical entropy production is calculated using iterations of the discretised entropy inequality.
Therefore, the computation of this refinement or coarsening indicator can be expensive. Another
adaptive method is based on the gradient of the solution for the refinement and coarsening indicator,
as used by Felcman and Kadrnka [22]. However, the gradient of the solution is actually not an error
indicator, so the error indication may not be accurate.

In contrast, the weak local residual is cheap to compute and it is an error indicator. In each
iteration of the conserved quantities, the residual can be obtained using a very short algebraic formula.
Due to this reason, we choose a weak local residual as the coarsening or refinement indicator in our
adaptive method in the present paper.

This paper is organised as follows. We recall the formulations of the weak local residuals (WLR)
of Kurganov et al. [14–16] in Section 2. Section 3 presents weak local residuals for shallow-water-type
equations. In Section 4, we implement the weak local residuals as error indicator for adaptive mesh
refinement or coarsening. Some concluding remarks are then drawn in Section 5.

2. Balance Laws and Their Weak Local Residuals

In this section, we provide our numerical method of weak local residuals for detecting the
smoothness of the solutions to balance laws. We follow the work described by Mungkasi [20]. We note
that Kurganov et al. [14–16] have formulated weak local residuals of conservation laws. Mungkasi
and Roberts [23,24] have extended those weak local residual formulations for balance laws. In this
section, we recall the weak local residual formulations for balance laws. The formulations following
Mungkasi et al. [20,23–25] are indeed important for the completeness of our work in the present paper.

We consider the scalar balance law{
qt + f (q)x = s, −∞ < x < ∞
q(x, t) = q0(x), t = 0.

(1)

Here, x represents the one-dimesional spatial variable, t represents the temporal variable, q
denotes the conserved quantity, s is the source function, and f denotes the flux function. In addition,
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q0 is an arbitrary function which is defined as an initial condition. We construct the weak form of
problem Equation (1)∫ ∞

0

∫ ∞

−∞
[q(x, t)Tt(x, t) + f (q(x, t))Tx(x, t) + s(x, t)T(x, t)] dx dt +

∫ ∞

−∞
q0(x)T(x, 0) dx = 0 (2)

where T(x, t) is an arbitrary test function. The derivation of this weak form can be found in the work
of Knobel [26] and Smoller [27].

Let qn
j be approximate values of q(xj, tn) computed by a conservative numerical method and

suppose that we have uniform grids (xj := j∆x, tn := n∆t). Using the notations of Karni and
Kurganov [14], the corresponding approximation q∆(x, t) (which is piecewise constant) is defined as

q∆(x, t) := qn
j , if (x, t) ∈ [xj−1/2, xj+1/2]× [tn−1/2, tn+1/2] (3)

where xj±1/2 := xj ± ∆x/2 and tn±1/2 := tn ± ∆t/2. We choose localized linear B-splines as our
test functions Tn−1/2

j+1/2 (x, t) := Bj+1/2(x)Bn−1/2(t), where Bj+1/2(x) and Bn−1/2(t) are centered at

x = xj+1/2 and t = tn−1/2 with support of size 2∆x and 2∆t. These are

Bj+1/2(x) =


x−xj−1/2

∆x , if xj−1/2 ≤ x ≤ xj+1/2,
xj+3/2−x

∆x , if xj+1/2 ≤ x ≤ xj+3/2,
0, otherwise,

(4)

and

Bn−1/2(t) =


t−tn−3/2

∆t , if tn−3/2 ≤ t ≤ tn−1/2,
tn+1/2−t

∆t , if tn−1/2 ≤ t ≤ tn+1/2,
0, otherwise.

(5)

This leads to the weak local residual

En−1/2
j+1/2 = −

∫ tn+1/2

tn−3/2

∫ xj+3/2

xj−1/2

[
q∆(x, t)

[
Tn−1/2

j+1/2

]
t
+ f (q∆(x, t))

[
Tn−1/2

j+1/2

]
x
+ s∆(x, t)Tn−1/2

j+1/2

]
dx dt, (6)

which can be expressed straightforwardly as

En−1/2
j+1/2 =

∆x
2

[
qn

j − qn−1
j + qn

j+1 − qn−1
j+1

]
+

∆t
2

[
f
(

qn−1
j+1

)
− f

(
qn−1

j

)
+ f

(
qn

j+1

)
− f

(
qn

j

)]
−∆x∆t

4

[
sn−1

j + sn
j + sn−1

j+1 + sn
j+1

]
. (7)

Constantin and Kurganov [16] proposed the use of linear B-splines in the construction of the
test function for conservation laws. Therefore, the weak local residual Equation (7) is denoted by CK
(Constantin–Kurganov) indicator.

3. Shallow Water Equations and Their Weak Local Residuals

In this section, we focus on formulating weak local residuals for shallow water equations.
We follow the methods of Mungkasi [20]. The one-dimensional shallow water equations (1D SWE) are

ht + (hu)x = 0, (8)

(hu)t +

(
hu2 +

1
2

gh2
)

x
= −ghzx, (9)
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which are the mass and the momentum equations, respectively. Here, x is a free variable denoting
the one-dimensional position, t is a free variable denoting the time, u = u(x, t) represents the fluid
velocity dependent on x and t, h = h(x, t) represents the fluid height (depth) dependent on x and t,
z = z(x) is the topography (bed elevation) dependent on x measured from the horizontal reference,
and g is constant representing the acceleration due to gravity. We introduce an additional variable
called the stage w = h + z representing the position of water surface from the horizontal reference.

In the computation of CK indicator in this case, we have three options. We can compute the CK
indicator based on either the equation of mass conservation, that of momentum conservation, or a
combination between equations of mass and momentum conservations. The simplest computation is
the one based on the mass equation

Eh,n−1/2
i+1/2 = (1/2)

{
∆xi

[
hn

i − hn−1
i + hn

i+1 − hn−1
i+1

]
+∆tn

[
hn−1

i+1 un−1
i+1 − hn−1

i un−1
i + hn

i+1un
i+1 − hn

i un
i

]}
(10)

defined at time t = tn−1/2 and position x = xi+1/2, where the superscript h in Eh,n−1/2
i+1/2 represents the

mass quantity (height). Here ∆xi is the width of the ith cell, and ∆tn is the time step of the nth iteration.
Computing the residuals of the mass equation is simpler than computing those of the momentum
equation, because we do not need to deal with any source term. This is a similar situation to that
in the computation of numerical entropy production as a smoothness indicator as in the work of
Mungkasi and Roberts [28]. If we choose to compute the weak local residuals of the the momentum
equation, then the source term must be accounted for, so that the computation of the weak local
residuals is well-balanced. Mungkasi and Roberts [24] have proposed a well-balanced computation of
weak local residuals for the the momentum equation. As in the work of Mungkasi and Roberts [24],
we observed that weak local residuals with respect to the momentum and mass equations have similar
behaviour [24].

We define ∆x := min{∆xi}, for one-dimensional problems, as the minimum cell width over the
whole discretised spatial domain to be substituted in Equation (10) and ∆t is the time step, which
varies from an iteration to another one. We conjecture that over the whole discretised spatial domain,
both ∆tn and ∆xi in Equation (10) can be taken as constants. The difference of the order between rough
and smooth regions makes

∣∣∣Eh,n−1/2
i

∣∣∣ able to detect the smoothness of the numerical solution. This is

guaranteed as the order of
∣∣∣Eh,n−1/2

i

∣∣∣ is O(1) around discontinuities and O
(

∆min{3,r+1}
)

at smooth
regions [16] when the numerical method has the formal order r.

Equation (10) is defined at each vertex of computational cells. We take one having the largest
magnitude of two available indicators at its cell vertices, and we take the absolute value of them in
order to define the CK indicator at the centroids of each cell. Therefore, the CK indicator at the centroid
of the ith cell is given by

Eh,n−1/2
i =

{
Eh,n−1/2

i−1/2 , if
∣∣∣Eh,n−1/2

i−1/2

∣∣∣ ≥ ∣∣∣Eh,n−1/2
i+1/2

∣∣∣ ,

Eh,n−1/2
i+1/2 , otherwise .

(11)

We note some remarks as follows. The assignment of the maximum indicator to the cell centroid
is not the only choice. We can also use a linear interpolation to get the centroid value. However, we use
the maximum, because it is better for the indicator to pick a cell to be refined, so that we maintain
the solution to be more accurate. This is important when we are not sure that a cell is to be refined or
coarsened, especially if the indicators have values close to the tolerance for refinement.

An extended application of the CK indicator for one-and-a-half-dimensional problems needs
special treatment. An available model for one-dimensional shallow water flows involving a passive
tracer is the one-and-a-half-dimensional shallow water equation. We can also consider it a model
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of one-dimensional shallow water flows involving a shear or transverse velocity. We recall the
one-and-a-half-dimensional shallow water equations (1.5 D SWE)

ht + (hu)x = 0, (12)

(hu)t +

(
hu2 +

1
2

gh2
)

x
= −ghzx, (13)

(hv)t + (huv)x = 0. (14)

Here, v(x) is the concentration of the passive tracer for the passive tracer model. Alternatively,
we consider here v := v(x) as the horizontal velocity orthogonal to the x-axis, that is, the transverse
velocity. Note that the variables, except the additional variable v, are the same as those in the
one-dimensional model.

Variable v(x) must be incorporated in the computation of WLR for the one-and-a-half dimensional
shallow water model. This means that WLR is also able to detect the smoothness of the tracer solution.
The concentration v(x) of the passive tracer does not influence the fluid dynamics. If we exclude v(x)
from the WLR formulation, computing WLR based on momentum or mass equation or a combination
of both equations only will not detect the smoothness of the tracer solution. We propose to use the
combination of WLR with respect to passive transport and mass equations. We do not need to deal with
a source term if we use these two equations. Alternatively, one may consider using the combination
of either the equations of passive transport and momentum or the equations of passive transport,
momentum and mass. This alternative needs a well-balanced WLR implementation, because we deal
with source terms. A discussion on well-balanced WLR has been given in our previous work [24].

Particularly, we calculate the WLR of the passive transport equation denoted by Ehv,n−1/2
i+1/2 and of

the mass equation denoted by Eh,n−1/2
i+1/2 at vertices. Here Eh,n−1/2

i+1/2 is given by Equation (10). In addition,

Ehv,n−1/2
i+1/2 is given by

Ehv,n−1/2
i+1/2 = (1/2)

{
∆xi

[
(hv)n

i − (hv)n−1
i + (hv)n

i+1 − (hv)n−1
i+1

]
+∆tn

[
(hv)n−1

i+1 un−1
i+1 − (hv)n−1

i un−1
i + (hv)n

i+1un
i+1 − (hv)n

i un
i

]}
, (15)

where the superscript hv in Ehv,n−1/2
i+1/2 represents the passively transported quantity and these are

defined at position x = xi+1/2 and time t = tn−1/2.
We choose one of four available indicators with the largest magnitude at its cell vertices in order

to define the CK indicator at the centroids of each cell. Let

Mi = max
{∣∣∣Eh,n−1/2

i−1/2

∣∣∣ ,
∣∣∣Eh,n−1/2

i+1/2

∣∣∣ ,
∣∣∣Ehv,n−1/2

i−1/2

∣∣∣ ,
∣∣∣Ehv,n−1/2

i+1/2

∣∣∣} . (16)

Then CK indicator at the centroid of ith cell is

Eh,hv,n−1/2
i =



Eh,n−1/2
i−1/2 , if Mi =

∣∣∣Eh,n−1/2
i−1/2

∣∣∣ ,

Eh,n−1/2
i+1/2 , if Mi =

∣∣∣Eh,n−1/2
i+1/2

∣∣∣ ,

Ehv,n−1/2
i−1/2 , if Mi =

∣∣∣Ehv,n−1/2
i−1/2

∣∣∣ ,

Ehv,n−1/2
i+1/2 , otherwise .

(17)

As follows, we extend the discussion of the CK indicator for two-dimensional problems.
The two-dimensional shallow water equations (2D SWE) have the forms of the following system
of equations

ht + (hu)x + (hv)y = 0, (18)
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(hu)t +

(
hu2 +

1
2

gh2
)

x
+ (huv)y = −ghzx, (19)

(hv)t + (huv)x +

(
hv2 +

1
2

gh2
)

y
= −ghzy. (20)

Here, t denotes the time variable, (x, y) represents the coordinate in two dimensions, g is the
acceleration due to gravity, z = z(x, y) is the topography (bed elevation), h = h(x, y, t) denotes the fluid
height, u = u(x, y, t) denotes the fluid velocity along the x-axis, and v = v(x, y, t) denotes the fluid
velocity along the y-axis. We discretise the spatial domain into triangular cells in order to solve the
two-dimensional shallow water equations numerically. We can use the one-dimensional formulation
Equation (10) locally in the computation of the CK indicator in order to define the CK indicator at
the middle point of an edge. For one-dimensional problems, our conjecture is that over the whole
discretised spatial domain, both ∆t and ∆x in Equation (10) can be taken as constants.

In the finite volume method evolution, we recall that ∆t is the time step. We take ∆x = ∆t over
the whole discretised spatial domain and substitute it into in Equation (10) in order to define the CK
indicator for two-dimensional problems. Dependent on fluid velocity, wave propagation velocity,
and the CFL (Courant-Friedrichs-Lewy) number, the values of ∆t may vary from an iteration to another
one. Then one having the largest magnitude of the available indicator values at its edges defines the
CK indicator at the centroid of a cell.

Before we continue to the next section, we provide some remarks here.

Remark 1. The assignment of the maximum indicator to the cell centroid is actually not the only choice. We can
also use a linear interpolation to get the centroid value of the indicator. However, we use the maximum, because
it is better for the indicator to pick a cell to be refined, so that we maintain the solution to be more accurate.
This is important when we are not sure that a cell is to be refined or coarsened, especially if some indicators have
values close to or the same as the tolerance for refinement.

Remark 2. In this paper, we use the triangle centered finite volume scheme. The mesh is constructed using the
uniform bisection of triangles. In iFEM [29,30], the procedure is called UNIFORMBISECT.

Remark 3. For details of our algorithm, we have uploaded our computer codes in GitHub https://github.com/
stoiver/ ifem-shallow-water. These computer codes are used to generate numerical results in the next section.

4. Numerical Tests

In this section, we simulate implementations of the adaptive mesh finite volume method based
on weak local residuals. Numerical flux due to Kurganov, Noelle, and Petrova (KNP) [31] is used.
Quantities are measured in SI units. We implement the well-balanced finite volume method [32].
The numerical flux is described as follows.

We consider the problem stated in Equation (1). The semi-discrete central-upwind scheme for this
problem is

d
dt

q̄j(t) = −
Fj+ 1

2
(t)− Fj− 1

2
(t)

∆x
+ s̄j(t) (21)

where the numerical flux Fj+ 1
2

is given by [31]

Fj+ 1
2
(t) =

a+
j+ 1

2
f (q−

j+ 1
2
)− a−

j+ 1
2

f (q+
j+ 1

2
)

a+
j+ 1

2
− a−

j+ 1
2

+
a+

j+ 1
2
a−

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

[
q+

j+ 1
2
− q−

j+ 1
2

]
. (22)

Here q+
j+ 1

2
and q−

j+ 1
2

are the right and the left approximate interpolant values of the conserved quantities

at x = xj+ 1
2
, where the interpolant is reconstructed at each time step from the previously computed

https://github.com/stoiver/ifem-shallow-water
https://github.com/stoiver/ifem-shallow-water
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cell averages, q̄j(t). In order to have a stable method, it is necessary that the time step ∆t satisfies the
Courant–Friedrichs–Lewy (CFL) condition [31], that is,

∆t ≤ Cr
L

2 M
(23)

where Cr ≤ 1 is the CFL number and M = maxj

{
|a+

j+ 1
2
|, |a−

j+ 1
2
|
}

. For SWE,

a+
i+ 1

2
= max

u−
i+ 1

2
+

√
g
(

h−
i+ 1

2

)∗
, u+

i+ 1
2
+

√
g
(

h+
i+ 1

2

)∗
, 0

 , (24)

a−
i+ 1

2
= min

u−
i+ 1

2
−

√
g
(

h−
i+ 1

2

)∗
, u+

i+ 1
2
−

√
g
(

h+
i+ 1

2

)∗
, 0

 , (25)

and the variables with star signs are obtained from the hydrostatic reconstruction [32–34]

z∗i+ 1
2

:= max{zi,r, zi+1,l} , (26)

h∗i,r := max{0, hi,r + zi,r − z∗i+ 1
2
} , (27)

h∗i+1,l := max{0, hi+1,l + zi+1,l − z∗i+ 1
2
} . (28)

In one dimension (1D) and one-and-a-half dimensions (1.5D), L is the minimum cell width among all
cells in the whole spatial domain in the corresponding time step. In the two-dimensional (2D) case, L
is the minimum incircle radius of triangle among all the triangular cells in the corresponding time step.
As follows, we provide four numerical tests.

4.1. A One-Dimensional Problem with Topography

As the first numerical test, we consider a one-dimensional problem with topography as studied
by Felcman and Kadrnka [22].

Let us assume that we have a channel of length 25 with topography

z(x) =

{
0.2− 0.05 (x− 10)2 if 8 ≤ x ≤ 12 ,
0 otherwise,

(29)

together with the Dirichlet boundary conditions

hu(0, t) = hu(25, t) = 1.53, h(25, t) = 0.66, (30)

and the initial condition
w(x, 0) = 0.66, u(x, 0) = 0. (31)

The width of the coarsest cell allowed is 0.25. The maximum level of the binary refinement is 5. Cells
with |CK| ≤ 0.1CKtol are coarsened, whereas those with |CK| > CKtol are refined. Two neighbouring
cells are coarsened as long as they are at the same level and have the same parent. The tolerance of the
CK indicator is

CKtol = 0.05 max {|CK|} , (32)

where CK is defined as in Equation (11). The spatial domain is discretised initially into 100 cells.
Figure 1 shows the simulation results when the flow is at the steady state (time t = 100).

We observe that refinement is done by the adaptive method above the parabolic bump, as this region
is rougher than other regions. In addition, refinement is also done close to the right boundary, because
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there is a bore (a static shock) in this region. This means that the adaptive method is successful in
simulating the problem.

0 5 10 15 20 25
0.0
0.2
0.4
0.6
0.8
1.0
1.2

S
ta
g
e

Stage
Bed

0 5 10 15 20 25
0.000000

0.000005

0.000010

0.000015

0.000020

0.000025

C
K

0 5 10 15 20 25
Position

0

1

2

3

4

5

C
e
ll 
le
v
e
l

Figure 1. Flow over a parabolic bump at time t = 100 using the adaptive method. For this figure,
we enforce that the maximum level of refinement is 5.

4.2. A One-Dimensional Dam Break with Passive Tracer

In this simulation, a one-dimensional problem with horizontal topography is considered. We
shall show that our proposed method produces an accurate solution around the rarefaction, the contact
discontinuity, and the shock.

Suppose that we have a dam break problem involving a passive tracer (1.5D dam break problem)
on horizontal topography

z(x) = 0, for x ∈ [−2000, 2000]. (33)

The initial condition is

w(x, 0) =

{
10 if − 2000 < x < 0,
4 if 0 < x < 2000,

(34)

u(x, 0) = 0, v(x, 0) =

{
3 if − 2000 < x < 0,
0 if 0 < x < 2000.

(35)

The width of the coarsest cell allowed is set to be 250. The maximum level of the binary refinement is
set to be 10. We take

CKtol = 0.01 max {|CK|} , (36)

where CK is defined as in Equation (17). The spatial domain is discretised initially into 16 uniform cells.
We may use the same numerical flux formulation for all three (transport, momentum, and mass)

equations in order to solve this problem numerically. However, we choose to use the standard flux
formulation (Kurganov, Noelle, and Petrova (KNP) [31]) only to mass and momentum equations so
that we obtain a more accurate solution at the contact discontinuity of the passive tracer solution.
The passive transport flux is

Fhv
i+1/2 =

{
Fh

i+1/2vi , if Fh
i+1/2 ≥ 0,

Fh
i+1/2vi+1 , otherwise,

(37)
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where Fh
i+1/2 is the mass flux at x = xi+1/2. This passive transport flux is the upwind flux based on

v(x) as proposed by Bouchut [35]. Two neighbouring cells are coarsened as long as they are at the
same level and have the same parent. Cells with |CK| ≤ 0.1CKtol are coarsened, whereas those with
|CK| > CKtol are refined.
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Figure 2. Flow with passive tracer at time t = 90 after dam break. CK is defined as in Equation (17).
‘Ana sol’ means the analytical solution. ‘Num sol’ is the numerical solution. Both solutions coincide.

A representative of our simulation is Figure 2, where at this time, the number of cells is
2748. This figure shows the flow with passive tracer at time t = 90. In these results, the contact
discontinuity remains sharp. In addition, rarefaction and shock occuring in the water surface solution
are well-resolved. This indicates that our adaptive method indeed leads to a very accurate solution
over the whole region. Recall that contact discontinuities are much harder to resolve than shocks,
and numerical solutions are diffusive around contact discontinuities generally [17,36].

4.3. A Planar Dam Break in Two Dimensions

Suppose that we have all (x, y) in [−1, 1]× [−1, 1] as the spatial domain. The initial condition is
given by

w(x, y, 0) =

{
0.5 if x < 0,
0.2 if otherwise,

(38)

v(x, y, 0) = 0, u(x, y, 0) = 0. (39)

The domain is discretised initially into 2048 triangular cells. We simulate this problem with the time
step being taken in such a way that the CFL condition is satisfied and the method is stable. We stop the
simulation at time t = 0.2. We have five different areas of cells after coarsening or refinement, because the
maximum level of refinement and coarsening is set to be 2. That is, an original initial triangular cell can be
coarsened or refined up to two level coarser or two level finer. The CK tolerance is CKtol = 0.5 max {|CK|}
(see Section 3 about how to compute CK indicator for a two-dimensional problem). Cells having CK
smaller than CKtol are candidates for coarsening; otherwise for refinement. We use the iFEM algorithm to
do the coarsening and refinement. The data structure and description of iFEM can be found in a technical
report authored by Chen [29] and a research paper written by Chen and Zhang [30].
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Before we proceed, let us recall the mesh adaptivity algorithm in iFEM, where an illustrative
example is given in Figure 3. Suppose that initially we have the nodes N1, N2, N3, N4 which are the
coordinates (0, 0), (1, 0), (1, 1), (0, 1), respectively. The elements are initially set to be two triangles
with the nodes [N2, N3, N1] as triangle T1 = T1[N2, N3, N1] and the nodes [N4, N1, N3] as triangle
T2[N4, N1, N3], as shown in the left subfigure of Figure 3. The order of the nodes in a triangle is
started from the node in front of the longest edge followed by other nodes in the counter-clockwise
direction. Suppose that we want to refine the area around the node N3, that is, the area around the
coordinates (1, 1). Triangle T1[N2, N3, N1] is bisected, so the node N5 having coordinates (0.5, 0.5) is
created. The bisection of triangle T1[N2, N3, N1] becomes the new T1[N5, N2, N3] and T3[N5, N1, N2].
To maintain the conformity, triangle T2[N4, N1, N3] is also bisected into the new T2[N5, N4, N1] and
T4[N5, N3, N4]. This lead to the subfigure shown in the middle of Figure 3. For the next refinement,
we use the same procedure. As we want to refine the area around the node N3, triangle T1[N5, N2, N3]

is bisected into new triangles T1[N6, N5, N2] andT5[N6, N3, N5]; and triangle T4[N5, N3, N4] is bisected
into new triangles T4[N7, N5, N3] and T6[N7, N4, N5]. (Note that the coarsening algorithm is the reverse
of this refinement algorithm.)

Representatives of the results of our simulation are illustrated in Figures 4 and 5. Figure 4 shows
results at time t = 0.2 the scaled CK indicator |CK|/ max {|CK|} and the water surface. At this time
(t = 0.2), the number of triangles is 1656. Figure 5 depicts the corresponding momentum and mesh.
We see from these results that in order to get an accurate solution, the numerical method achieves
refinements around the rarefaction and the shock.
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34
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1 2

34

5

1

2

3

4

5

6

1 2

34
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7

Figure 3. Example of refining the mesh twice around the northeast corner node N3(1, 1) of the domain.
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Figure 4. The left subfigure is the water surface and the right one is |CK|/ max {|CK|} at time t = 0.2
after the planar dam is broken.
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Figure 5. The left subfigure is the x-momentum and the right one is the corresponding mesh at time
t = 0.2 after the planar dam is broken.

4.4. A Radial Dam Break in Two Dimensions

Suppose that we have the spatial domain as all (x, y) in [−1, 1]× [−1, 1]. The initial condition is
given by

v(x, y, 0) = 0, u(x, y, 0) = 0, (40)

w(x, 0) =

{
1 if x2 + y2 < 0.25,
0.5 if otherwise.

(41)

The time step is taken in such a way that the CFL condition is satisfied and the method is stable. The
domain is discretised initially into 2048 triangular cells. We stop the simulation at time ∆t = 0.05. The
maximum level of coarsening and refinement is 2. That is the original initial triangular cells can be
refined or coarsen twice at the maximum. As a result, we have five different areas of cells. The NEP
tolerance is CKtol = 0.5 max {|CK|}. Cells having absolute CK smaller than CKtol are candidates for
coarsening, while otherwise are candidates for refinement.

Figures 6 and 7 show representatives of our simulation results. At time t = 0.05, Figure 6 depicts
the scaled CK indicator |CK|/ max {|CK|} and the water surface. At this time (t = 0.05), the number
of triangles is 2168. Figure 7 shows the corresponding momentum and mesh. Like in the case of
the planar dam simulation, we observe that refinements occur around the rarefaction and the shock
leading to an accurate solution.
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Figure 6. The left subfigure is the water surface and the right one is |CK|/ max {|CK|} at time t = 0.05
after the radial dam is broken.
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Figure 7. The left subfigure is the x-momentum and the right one is the corresponding mesh at time
t = 0.05 after the radial dam is broken.

Before we conclude the paper, we provide some remarks as follows.

Remark 4. The tolerance for the weak local residuals is a matter of choice to the users of the proposed method.
If the tolerance is too strict, then the refinement will be excessive, but if the tolerance is too loose then the
mesh will be too coarse. We indicate that the tolerance is about 5% of the maximum weak local residual for the
refinement and 0.5% of the maximum weak local residual for the refinement. That is, if a cell has the value of
residual which is larger than 5% of the maximum weak local residual, then the cell must be refined as long as
the cell area has not reached the minimum value of the allowed area. If a cell has the value of residual which is
smaller than 0.5% of the maximum weak local residual, then the cell must be coarsened as long as the cell area
has not reached the maximum value of the allowed area. However, once again, the tolerance is a matter of choice
of the users.

Remark 5. For the first order method, if a cell is bisected, then each of the two new cells has the same quantity
values as those of the original cell. That is, suppose that the triangle T is bisected into two triangles T1 and T2.
The quantity qT1 of the triangle T1 and the quantity qT2 of the triangle T2 are the same as the quantity qT of the
original triangle T. In mathematical formulas

qT1 = qT and qT2 = qT . (42)

For the second order method, if a cell is bisected, then quantities of each of the two new cells should
be computed using proportional values of the linear reconstruction of the quantities of the original cell after
implementing a slope limiter.

If two cells are coarsened, then the new cell has quantity values that are computed from the quantity values
of the two old cells with respect to area-based weights. That is, supposed that two triangles T1 and T2 are
coarsened to be the triangle T. The quantity of the triangle T is computed as

qT =
‖T1‖
‖T‖ qT1 +

‖T2‖
‖T‖ qT2 (43)

where ‖T‖ means the area of the triangle T. In all of our 1D, 1.5D, and 2D cases in this paper,

‖T1‖
‖T‖ =

‖T2‖
‖T‖ =

1
2

. (44)
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5. Conclusions

We have developed weak local residual formulations according to Constantin and Kurganov, so
that they can be implemented as smoothness or refinement indicator to adaptive mesh finite volume
methods used to solve shallow-water-type equations. Our formulation has been shown to be successful
in the numerical tests for one-, one-and-a-half-, and two-dimensional problems. In the present work,
the tolerance of the indicator for refinement and coarsening are chosen manually without a fixed rule.
Future work would probably examine how to set this tolerance based on a fixed rule which can be
applied for general problems. It could also investigate our conjecture that both the time step and the
cell width in the formulation of CK indicator can be taken as constants.

Solving the 2D SWE involving topography using the adaptive method with the WLR indicators
could be a big continuation topic of research. This is because we have to deal with balancing the
discrete SWE as well as balancing the WLR. In this paper, we have limited our scope to solving the
shallow water equations using the proposed adaptive method for all 1D, 1.5D, and 2D cases, where
for the 1.5D and 2D cases, we have not included the topography. The inclusion of topography in the
1.5D and 2D cases could be a future research direction. Research results in this paper are limited to
first order methods. Extending our adaptive method to second order methods is also a possible future
research direction. In addition, optimising the computer programming codes of the adaptive method
could be investigated further.
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