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Abstract: Motivated by the lubrication processes naturally appearing in numerous industrial
applications (such as steam turbines, pumps, compressors, motors, etc.), we study the lubrication
process of a slipper bearing consisting of two coaxial cylinders in relative motion with an
incompressible micropolar fluid (lubricant) injected in the thin gap between them. The asymptotic
approximation of the solution to the governing micropolar fluid equations is given in the form of a
power series in terms of the small parameter ε representing the thickness of the shaft. The regular
part of the approximation is obtained in the explicit form, allowing us to acknowledge the effects of
fluid’s microstructure clearly through the presence of the microrotation viscosity in the expressions
for the first-order velocity and microrotation correctors. We provide the construction of the boundary
layer correctors at the upper and lower boundary of the shaft along with the construction of the
divergence corrector, allowing us to improve our overall estimate. The derived effective model is
rigorously justified by proving the error estimates, evaluating the difference between the original
solution of the considered problem and the constructed asymptotic approximation.
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1. Introduction

The classical Navier–Stokes model has a serious limitation as it does not take into account the
microstructure of the fluid. In order to overcome this issue, the model of micropolar fluids was
proposed in the 1960s by Eringen in his well-known paper (see [1]). The micropolar fluid model is
based on the introduction of a microrotation field (angular velocity field of rotation) describing effects
such as rotation and shrinking of the fluid particles. As a consequence, a new vector equation derived
from the law of conservation of angular momentum is added to the Navier–Stokes system. In this
way, we obtain a coupled system of partial differential equations that are well suited for modeling
the behavior of various non-Newtonian fluids including liquid crystals, animal blood, muddy fluids,
certain polymeric fluids, and even water at small scales. For this reason, there exist a vast number
of recent results concerning the engineering applications of the model, primarily in biomedicine and
blood flow modeling (see, e.g., [2–5]), as well as a number of papers providing rigorous mathematical
treatment of various effective models for micropolar fluids (see, e.g., [6–11]). A comprehensive survey
of the modern mathematical theory underlying the micropolar fluid model can be found in the
monograph [12].

The study of lubrication problems can be traced back to the pioneering work of Reynolds in
1886 (see [13]), where the thin film flow was treated heuristically without giving a relation between
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the derived model and the Navier–Stokes equations. A formal relation between the Navier–Stokes
equations in a thin domain and the Reynolds equations using asymptotic analysis was provided by
Capriz, Elrod, and Wannier (see [14–16]). Rigorous mathematical treatment of the Reynolds equations
for a flow between two plain surfaces was addressed by Bayada, Chambat, and Cimatti (see [17,18]).
Bourgeat, Mikelić, and Tapiero provided a similar result in [19] with rigorous mathematical treatment
for a non-Newtonian fluid. Furthermore, Assemien, Bayada, and Chambat provided a study of the
weak inertial effects in the asymptotic behavior of a thin film flow (see [20]), while Bourgeat and
Marušić–Paloka justified the nonlinear model for a fast flow through a rough thin domain (see [21,22]).
Moreover, the asymptotic behavior of the viscous flow in an infinite thin layer between two fixed,
plain surfaces was investigated by Nazarov in [23].

The rigorous mathematical treatments of a thin curved pipe stationary flow including an
investigation of the effects of flexion and torsion on the flow were provided by Marušić–Paloka
for a Newtonian fluid (see [24]) and by Pažanin for a micropolar fluid (see [25]). On the other hand,
the nonstationary flows were the subject of investigation by Castineira, Marušić–Paloka, Pažanin, and
Rodriguez for a Newtonian fluid (see [26]) and Pažanin and Radulović for a micropolar fluid (see [27]).
Finally, the rigorous mathematical justification of an asymptotic model for the lubrication problem
with a Newtonian fluid in a curved domain, namely a rotating shaft appearing in real-life situations,
was provided by Duvnjak and Marušić–Paloka (see [28,29]). At this point, it is important to emphasize
that the latter result inspired us to consider the more general case of the lubrication process of a
rotating shaft filled with a non-Newtonian fluid, namely the micropolar fluid. The main advantage of
considering the micropolar fluid is that it takes into account the microstructure of the fluid. Although
a lower-dimensional model for the considered problem was recently formally derived in [30] by the
authors of this paper, the justification of its usage is still missing in the literature. The justification of the
derived model represents the main novelty of this work. By proving the corresponding error estimates,
we provide the order of accuracy of the newly proposed model indicating its range of applicability,
and this represents our main contribution.

In this paper, we consider the lubrication process of a slipper bearing consisting of two coaxial
cylinders in relative motion. One belongs to the shaft, which is rotating with some constant angular
velocity ω, while the other is a lubricated (not perfectly smooth) surface of support. The circular shaft
is of radius R and height l. Between the shaft and the support, there is a thin gap (the domain Cε) of
thickness ε� l, completely filled with an incompressible micropolar fluid (the lubricant). The problem
under consideration is commonly found in various real-life applications primarily including the study
of the optimal design of lubrication devices consisting of slipper bearings. These devices naturally
appear in industrial machinery with a large horse power having high loads and speeds including
steam turbines, pumps, compressors, and motors (see [31]).

In Section 2, we write down the micropolar fluid system of equations posed in the thin domain
Cε. In Section 3, due to the curved geometry of the domain under consideration, we first write our
micropolar fluid system of equations in the cylindrical coordinates. Then, we seek the solution of
our original problem as a power series in terms of the small parameter ε, representing the thickness
of the domain, and derive the explicit expressions for the velocity and microrotation in the regular
part of the expansion. However, as the boundary conditions at the upper and lower part of the shaft
were neglected in the process, we correct the approximation by constructing the boundary layer
correctors. Moreover, as the residual in the divergence equation is not small enough to provide us
with satisfactory error estimates, we construct the divergence corrector as well. Finally, in Section 4,
we estimate, in suitable norms, the difference between the original solution of our problem and the
constructed asymptotic solution in terms of the small parameter ε. In this way, we justify the usage of
the formally derived simplified, effective model. As mentioned above, to the best of our knowledge, a
rigorous mathematical treatment of the lubrication problem of a rotating shaft filled with micropolar
fluid is still missing in the literature, and this represented the motivation to tackle this problem.
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2. Setting of the Problem

Due to the curved geometry of the domain, we describe it using cylindrical coordinates (r, ϕ, z).
We denote by Ξ : R3 → R3 the change of variables Ξ(x1, x2, x3) = (r, ϕ, z) and assume that the film
thickness is εh(ϕ), where ε > 0 is a small positive parameter. The domain of the flow is given by:

Cε = {Σ−1(r, ϕ, z) ∈ R3 : ϕ ∈ 〈0, 2π〉, z ∈ 〈0, l〉, r ∈ 〈R, R + εh(ϕ)〉},

where the function h : 〈0, 2π〉 → 〈0, ∞〉 is of class C2, 2π-periodic, and bounded in the sense 0 < β1 ≤
h(ϕ) ≤ β2, for ϕ ∈ 〈0, 2π〉 (see Figure 1).

Figure 1. The considered domain Cε.

In the following, we assume a low Reynolds number regime.
The flow in Cε is governed by the micropolar fluid system of equations:

− µ∆uε +∇pε = arotwε + fε,

divuε = 0 ,

− α∆wε − β∇divwε + 2awε = arotuε + gε.

(1)

In view of the application we aim to model, we consider the following boundary conditions:

uε = 0 for r = R + εh(ϕ),

uε = ω~eϕ for r = R,

uε = h0

( r− R
ε

, ϕ
)

for z = 0,

uε = hl

( r− R
ε

, ϕ
)

for z = l,

wε = 0 for ∂Cε.

(2)

Here, uε is the velocity field, pε is the pressure, whereas wε represents the microrotation field.
The constants appearing in the system of Equation (1) are given by µ = ν + νr, α = ca + cd, β =

c0 − ca + cd, and a = 2νr, where ν is the Newtonian viscosity, νr is the microrotation viscosity, while
c0, ca, and cd are the coefficients of angular viscosities. The external sources of linear and angular
momentum are given by the functions fε and gε.



Symmetry 2020, 12, 334 4 of 21

We also assume that the functions hα ∈ C2(S1), α = 0, l, where:

S1 = {(ρ, ϕ) : ρ ∈ 〈0, h(ϕ)〉, ϕ ∈ 〈0, 2π〉},

are 2π-periodic with respect to ϕ and satisfy the following:

hα(h(ϕ), ϕ) = 0, hα(0, ϕ) = ω~eϕ, α = 0, l,∫ 2π

0

∫ h(ϕ)

0
~ez · h0(ρ, ϕ)dρdϕ =

∫ 2π

0

∫ h(ϕ)

0
~ez · hl(ρ, ϕ)dρdϕ,∫ 2π

0

∫ h(ϕ)

0
ρ~ez · h0(ρ, ϕ)dρdϕ =

∫ 2π

0

∫ h(ϕ)

0
ρ~ez · hl(ρ, ϕ)dρdϕ.

(3)

The problem (1)–(3) admits a unique solution (uε, pε, wε) ∈ H1(Cε)3 × L2(Cε) \R× H1(Cε)3 (see,
e.g., [32]). Our goal in this paper is to investigate the asymptotic behavior of the solution (uε, pε, wε)

as ε→ 0.
In the following section, we first rewrite the micropolar system of Equations (1)–(3) in the

cylindrical coordinates and then construct the formal asymptotic expansion of the solution in the form
of a power series in terms of the small parameter ε.

3. Asymptotic Analysis

Taking into account the curved geometry of the domain, it is appropriate to write our original
problem (1) and (2) in cylindrical coordinates. The micropolar system of equations in cylindrical
coordinates reads (see, e.g., [33]):

− µ
(

∆uε
r −

uε
r

r2 −
2
r2

∂uε
ϕ

∂ϕ

)
+

∂pε

∂r
= a

(1
r

∂wε
z

∂ϕ
−

∂wε
ϕ

∂z

)
+ f ε

r ,

− µ
(

∆uε
ϕ −

uε
ϕ

r2 +
2
r2

∂uε
r

∂ϕ

)
+

1
r

∂pε

∂ϕ
= a

(∂wε
r

∂z
− ∂wε

z
∂r

)
+ f ε

ϕ,

− µ∆uε
z +

∂pε

∂z
= a

(∂wε
ϕ

∂r
+

wε
ϕ

r
− 1

r
∂wε

r
∂ϕ

)
+ f ε

z ,

∂uε
r

∂r
+

1
r

uε
r +

1
r

∂uε
ϕ

∂ϕ
+

∂uε
z

∂z
= 0,

(4)

and:

− α
(

∆wε
r −

wε
r

r2 −
2
r2

∂wε
ϕ

∂ϕ

)
− β

(∂2wε
r

∂r2 −
wε

r
r2 +

1
r

∂wε
r

∂r
− 1

r2

∂wε
ϕ

∂ϕ
+

1
r

∂2wε
ϕ

∂ϕ∂r
+

∂2wε
z

∂z∂r

)
+ 2awε

r

= a
(1

r
∂uε

z
∂ϕ
−

∂uε
ϕ

∂z

)
+ gε

r,

− α
(

∆wε
ϕ −

wε
ϕ

r2 +
2
r2

∂wε
r

∂ϕ

)
− β

r

( ∂2wε
r

∂ϕ∂r
+

1
r

∂wε
r

∂ϕ
+

1
r

∂2wε
ϕ

∂ϕ2 +
∂2wε

z
∂ϕ∂z

)
+ 2awε

ϕ

= a
(∂uε

r
∂z
− ∂uε

z
∂r

)
+ gε

ϕ,

− α∆wε
z − β

(∂2wε
r

∂z∂r
+

1
r

∂wε
r

∂z
+

1
r

∂2wε
ϕ

∂z∂ϕ
+

∂2wε
z

∂z2

)
+ 2awε

z =

= a
(∂uε

ϕ

∂r
+

uε
ϕ

r
− 1

r
∂uε

r
∂ϕ

)
+ gε

z,

(5)
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where the velocity and microrotation field are given in the form:

uε = uε
r~er + uε

ϕ~eϕ + uε
z~ez,

wε = wε
r~er + wε

ϕ~eϕ + wε
z~ez,

and we introduced the differential operator:

∆sε =
∂2sε

∂r2 +
1
r

∂sε

∂r
+

1
r2

∂2sε

∂ϕ2 +
∂2sε

∂z2 ,

for a scalar function sε.

3.1. Asymptotic Expansion

We construct the formal asymptotic expansion of the solution to the problem (1) and (2) in the
following way:

uε ∼ u0(ρ, ϕ, z) + εu1(ρ, ϕ, z) + . . . ,

wε ∼ w0(ρ, ϕ, z) + εw1(ρ, ϕ, z) + . . . ,

pε ∼ 1
ε2 p0(ρ, ϕ, z) +

1
ε

p1(ρ, ϕ, z) + . . . ,

(6)

where ρ = r−R
ε , while the external force functions are given in the form:

fε(ϕ, z) ∼ 1
ε2 f0(ϕ, z) +

1
ε

f1(ϕ, z) + . . . ,

gε(ϕ, z) ∼ 1
ε2 g0(ϕ, z) +

1
ε

g1(ϕ, z) + . . . .

It is important to emphasize that the components f ε
r and gε

r can be neglected due to the small
thickness of the domain in the component ~er. Furthermore, applying the same argument, we can
assume that the external force functions fε and gε are independent of ρ.

In the sequel, we compute the zero-order approximation and first-order correctors of the
approximation given by (6). The procedure is the following: plugging the approximation into the
governing system of Equations (4) and (5), collecting the terms by the same powers of ε, and solving
the obtained recursive sequence of problems.

It is important to note that we will not take into account the boundary conditions at the lower
and upper part of the boundary in the formal derivation of the model, leading to the boundary layer
effects. In order to address those effects as well, we need to construct the boundary layer correctors,
which is done in Section 3.3.

3.2. Regular Part of the Expansion

We plug the asymptotic expansion (6) into the micropolar system of Equations (4) and (5)
and collect terms by the same powers of ε, leading to a recursive sequence of problems. The
computations presented in Section 3.2, which are related to the regular part of the expansion, were
presented by Marušić–Paloka, Pažanin, and Radulović in [30], and we recall them for the sake of the
readers’ convenience.
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3.2.1. Zero-Order Approximation

Collecting the terms by order ε−2, we obtain the following system of equations for the zero-order
approximation for the velocity and pressure (u0, p0):

− µ
∂2u0

r
∂ρ2 +

∂p1

∂ρ
= 0,

− µ
∂2u0

ϕ

∂ρ2 +
1
R

∂p0

∂ϕ
= f 0

ϕ,

− µ
∂2u0

z
∂ρ2 +

∂p0

∂z
= f 0

z ,

(7)

with the boundary conditions:

u0
r (0, ϕ, z) = u0

z(0, ϕ, z) = 0, u0
ϕ(0, ϕ, z) = ω,

u0
r (h, ϕ, z) = u0

ϕ(h, ϕ, z) = u0
z(h, ϕ, z) = 0.

(8)

The incompressibility condition (4)4 yields:

1
ε

:
∂u0

r
∂ρ

= 0,

1 : R
∂u1

r
∂ρ

+ u0
r +

∂u0
ϕ

∂ϕ
+ R

∂u0
z

∂z
= 0.

(9)

We conclude from (7)–(9) that u0
r = 0, p0 = p0(ϕ, z), p1 = p1(ϕ, z), and the solution of (7) and (8) is

given in the form:

u0
ϕ(ρ, ϕ, z) =

1
2µ

(ρ− h)ρ
( 1

R
∂p0

∂ϕ
− f 0

ϕ

)
+ ω

(
1− ρ

h

)
,

u0
z(ρ, ϕ, z) =

1
2µ

(ρ− h)ρ
(∂p0

∂z
− f 0

z

)
.

(10)

Plugging (10) into (9)2, we obtain the following equation:

R
∂u1

r
∂ρ

+
R
2µ

(ρ− h)ρ
(∂2 p0

∂z2 −
∂ f 0

z
∂z

)
+

1
2µ

∂

∂ϕ

(
(ρ− h)ρ

( 1
R

∂p0

∂ϕ
− f 0

ϕ

))
= − h′

h2 ρω. (11)

Integrating the equation (11) with respect to ρ over 〈0, h(ϕ)〉 and taking into account the boundary
conditions u1

r (0, ϕ, z) = u1
r (h, ϕ, z) = 0, we obtain the Reynolds equation for p0:

Rh3

12

(∂2 p0

∂z2 −
∂ f 0

z
∂z

)
+

1
12

∂

∂ϕ

(
h3
( 1

R
∂p0

∂ϕ
− f 0

ϕ

))
=

h′µω

2
, (12)

endowed with the following boundary conditions:

∂p0

∂z
= λz(ϕ) for z = 0, l,

p0 is 2π periodic in ϕ,
(13)
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where λz(ϕ) are chosen in order to satisfy the compatibility conditions for the boundary layer correctors
and are given in the form (see Section 3.3):

λα(ϕ) = − 12µ

h3(ϕ)

∫ h(ϕ)

0
~ez · hα(ρ, ϕ)dρ + f 0

z (ϕ, α), α = 0, l. (14)

The problem (12)–(14) is well posed due to the condition (3)2 and assuming that f 0
ϕ is 2π-periodic in ϕ

and that f 0
z vanishes in the neighborhood of z = 0 and z = l (see, e.g., [28,29]).

The microrotation zero-order approximation w0 is given as the solution of the following problem:

− α
∂2w0

r
∂ρ2 − β

∂2w0
r

∂ρ2 = 0,

− α
∂2w0

ϕ

∂ρ2 = g0
ϕ, −α

∂2w0
z

∂ρ2 = g0
z ,

w0
r (0, ϕ, z) = w0

ϕ(0, ϕ, z) = w0
z(0, ϕ, z) = 0,

w0
r (h, ϕ, z) = w0

ϕ(h, ϕ, z) = w0
z(h, ϕ, z) = 0.

(15)

We solve it by putting:

w0
r (ρ, ϕ, z) = 0,

w0
ϕ(ρ, ϕ, z) =

1
2α

(h− ρ)ρg0
ϕ,

w0
z(ρ, ϕ, z) =

1
2α

(h− ρ)ρg0
z .

(16)

It is important to emphasize at this point that the expressions for the velocity given by (10) have been
derived in [28,29] for a Newtonian fluid and, as expected, do not feel the effects of the microstructure
of the fluid. Furthermore, the same effects are not present in the expressions for the microrotation
given in explicit form (16). We thus continue our computations in order to capture those effects and try
to compute the higher order correctors.

3.2.2. First-Order Corrector

Collecting the terms by ε−1, we obtain the system of equations for the first-order velocity and
pressure corrector (u1, p1):

− µ
∂2u1

r
∂ρ2 +

∂p2

∂ρ
= 0,

− µ
∂2u1

ϕ

∂ρ2 −
µ

R
∂u0

ϕ

∂ρ
+

1
R

∂p1

∂ϕ
− ρ

R2
∂p0

∂ϕ
= −a

∂w0
z

∂ρ
+ f 1

ϕ,

− µ
∂2u1

z
∂ρ2 −

µ

R
∂u0

z
∂ρ

+
∂p1

∂z
= a

∂w0
ϕ

∂ρ
+ f 1

z ,

u1
r (0, ϕ, z) = u1

ϕ(0, ϕ, z) = u1
z(0, ϕ, z) = 0,

u1
r (h, ϕ, z) = u1

ϕ(h, ϕ, z) = u1
z(h, ϕ, z) = 0.

(17)

From the incompressibility equation (4)4, we obtain:

1 : R
∂u1

r
∂ρ

+
∂u0

ϕ

∂ϕ
+ R

∂u0
z

∂z
= 0,

ε : u1
r + ρ

∂u1
r

∂ρ
+

∂u1
ϕ

∂ϕ
+ R

∂u1
z

∂z
+ ρ

∂u0
z

∂z
= 0.

(18)
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The solution of the problem (17) is given in the following form:

u1
r (ρ, ϕ, z) = − ω

2R
h′

h2 ρ2 +
h′

4Rµ
ρ2
( 1

R
∂p0

∂ϕ
− f 0

ϕ

)
+

1
12µ

ρ2(3h− 2ρ)
( 1

R2
∂2 p0

∂ϕ2 −
1
R

∂ f 0
ϕ

∂ϕ
+

∂2 p0

∂z2 −
∂ f 0

z
∂z

)
,

u1
ϕ(ρ, ϕ, z) =

1
2µR

ρ(ρ− h)
∂p1

∂ϕ
+

1
12R2µ

ρ(h− ρ)(h + 4ρ)
∂p0

∂ϕ
+

ω

2Rh
ρ(ρ− h)

+
1

12µR
ρ(ρ− h)(2ρ− h) f 0

ϕ −
1

2µ
ρ(ρ− h) f 1

ϕ +
a

12αµ
ρ(ρ− h)(h− 2ρ)g0

z ,

u1
z(ρ, ϕ, z) =

1
12Rµ

ρ(ρ− h)(h− 2ρ)
(∂p0

∂z
− f 0

z

)
+

1
2µ

ρ(ρ− h)
∂p1

∂z

− a
12αµ

ρ(ρ− h)(h− 2ρ)g0
ϕ −

1
2µ

ρ(ρ− h) f 1
z .

(19)

Comparing the above expressions for the velocity given by (19) with the ones derived in [28,29] for
a Newtonian fluid, we notice that we have obtained the additional effects we were seeking in the
computation of the first-order corrector. Namely, we observe the influence of the microstructure of the
fluid on the fluid flow, explicitly acknowledged through the presence of the microrotation viscosity
constant a in the derived expressions.

Now, plugging (19) into (18)2 leads to the Reynolds equation for the first-order pressure
corrector p1:

Rh3

12µ

∂2 p1

∂z2 +
1

12µR
∂

∂ϕ

(
h3 ∂p1

∂ϕ

)
=

3h4

24R2µ

∂2 p0

∂ϕ2 +
5h′h3

12R2µ

∂p0

∂ϕ
− 3h′h2

12Rµ
f 0
ϕ

− h4

12µR
∂ f 0

ϕ

∂ϕ
+

h4

24µ

(∂2 p0

∂z2 −
∂ f 0

z
∂z

)
− 2ωh′h

3R

+
h′h2

4µ
f 1
ϕ +

h3

12µ

∂ f 1
ϕ

∂ϕ
+

Rh3

12µ

∂ f 1
z

∂z
,

(20)

which can be rewritten as:

Rh3

12µ

∂2 p1

∂z2 +
1

12µR
∂

∂ϕ

(
h3 ∂p1

∂ϕ

)
=

1
24R2µ

∂

∂ϕ

(
h4 ∂p0

∂ϕ

)
− h4

24µ

∂2 p0

∂z2 −
ωh′h
6R

+
h4

24µ

∂ f 0
z

∂z
+

h′h2

4µ
f 1
ϕ +

h3

12µ

∂ f 1
ϕ

∂ϕ
+

Rh3

12µ

∂ f 1
z

∂z
,

(21)

and endowed with the boundary conditions:

∂p1

∂z
= τz(ϕ) for z = 0, l,

p1 is 2π periodic in ϕ,
(22)

where τz(ϕ) are chosen in order to satisfy the compatibility conditions for the boundary layer correctors
and are given in the form (see Section 3.3):

τα(ϕ) = − 12µ

h3R

∫ h(ϕ)

0
ρ~ez · hα(ρ, ϕ)dρ +

24µ

h3R

∞

∑
k=0

1
(2k + 1)2π2

∂

∂ϕ
[h2 A0

2k+1(ϕ)]

− h
2R

λα(ϕ) +
h

2R
f 0
z (ϕ, α) + f 1

z (ϕ, α),

(23)
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where:

Aα
k (ϕ) =

∫ h(ϕ)

0
sin

kπt
h(ϕ)

(hϕ
α (t, ϕ)− u0

ϕ(t, ϕ, α))dt, (24)

for α = 0, l. The problem (20)–(24) is well posed due to the condition (3)3 and assuming f 0
ϕ, f 1

ϕ are
2π-periodic in ϕ and that the functions f 0

z , f 1
z vanish in the neighborhood of z = 0 and z = l (see,

e.g., [28,29]).
The first-order microrotation corrector w1 is the solution of the following problem:

− α
∂2w1

r
∂ρ2 −

α

R
∂w0

r
∂ρ
− β

∂2w1
r

∂ρ2 −
β

R
∂w0

r
∂ρ
− β

R
∂2w0

ϕ

∂ϕ∂ρ
− β

∂2w0
z

∂z∂ρ
= 0,

− α
∂2w1

ϕ

∂ρ2 −
α

R
∂w0

ϕ

∂ρ
− β

R
∂2w0

r
∂ϕ∂ρ

= −a
∂u0

z
∂ρ

+ g1
ϕ,

− α
∂2w1

z
∂ρ2 −

α

R
∂w0

z
∂ρ
− β

∂2w0
r

∂z∂ρ
= a

∂u0
ϕ

∂ρ
+ g1

z ,

w1
r (0, ϕ, z) = w1

ϕ(0, ϕ, z) = w1
z(0, ϕ, z) = 0,

w1
r (h, ϕ, z) = w1

ϕ(h, ϕ, z) = w1
z(h, ϕ, z) = 0

(25)

leading to:

w1
r (ρ, ϕ, z) = − β

12α(α + β)
ρ(ρ− h)(h− 2ρ)

( 1
R

∂g0
ϕ

∂ϕ
+

∂g0
z

∂z

)
,

w1
ϕ(ρ, ϕ, z) =

a
12µα

ρ(ρ− h)(2ρ− h)
(∂p0

∂z
− f 0

z

)
− 1

2α
ρ(ρ− h)g1

ϕ −
1

12αR
ρ(ρ− h)(h− 2ρ)g0

ϕ,

w1
z(ρ, ϕ, z) = − 1

12αR
ρ(ρ− h)(h− 2ρ)g0

z −
a

12µα
ρ(ρ− h)(2ρ− h)

( 1
R

∂p0

∂ϕ
− f 0

ϕ

)
+

aω

2αh
ρ(ρ− h)− 1

2α
ρ(ρ− h)g1

z .

(26)

We observe that the first-order velocity and microrotation correctors u1 and w1 given in explicit form
by (19) and (26) take into account the effects of the microstructure of the fluid through the presence of
the microrotation viscosity coefficient a in the expressions.

We have thus completed the computations for the regular part of the expansion. Since we have
not taken into account the conditions at the lower and upper part of the boundary in the derivation of
the model, we need to construct the boundary layer correctors in order to acknowledge the boundary
layer effects. This will be addressed in the following section.

3.3. Boundary Layer Correctors

We computed our asymptotic approximation in order to satisfy the boundary conditions at r = R
and r = R + εh(ϕ) given by (2)1, (2)2, and (2)5. However, the conditions at z = 0 and z = l given by
(2)3 and (2)4 were not taken into account in the process, and as a result, the computed asymptotic
approximation did not necessarily satisfy these conditions. For this reason, we needed to construct
boundary layer correctors in the vicinity of z = 0 and z = l.

In the boundary layer near z = 0, we seek the expansion in the following form:

uε ∼ u0(ρ, ϕ, z) + B0(ρ, ϕ, ξ) + ε(u1(ρ, ϕ, z) + B1(ρ, ϕ, ξ)) + . . . ,

wε ∼ w0(ρ, ϕ, z) + W0(ρ, ϕ, ξ) + ε(w1(ρ, ϕ, z) + W1(ρ, ϕ, ξ)) + . . . ,

pε ∼ 1
ε2 p0(ϕ, z) +

1
ε
(p1(ϕ, z) + b0(ρ, ϕ, ξ)) + p2(ρ, ϕ, ξ) + b1(ρ, ϕ, ξ) + . . . ,
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where ρ = r−R
ε and ξ = z

ε is the new dilated variable used to describe the fast changes of the solution
in the boundary layer.

Near z = l, we seek the expansion in the form:

uε ∼ u0(ρ, ϕ, z) + H0(ρ, ϕ, τ) + ε(u1(ρ, ϕ, z) + H1(ρ, ϕ, τ)) + . . . ,

wε ∼ w0(ρ, ϕ, z) + Y0(ρ, ϕ, τ) + ε(w1(ρ, ϕ, z) + Y1(ρ, ϕ, τ)) + . . . ,

pε ∼ 1
ε2 p0(ϕ, z) +

1
ε
(p1(ϕ, z) + h0(ρ, ϕ, τ)) + p2(ρ, ϕ, ξ) + h1(ρ, ϕ, τ) + . . . ,

where τ = z−l
ε .

3.3.1. Zero-Order Approximation

The boundary layer approximation (B0, b0) is the solution of the following system of equations:

− µ∆ρξ B0
r +

∂b0

∂ρ
= 0, −µ∆ρξ B0

ϕ = 0,

− µ∆ρξ B0
z +

∂b0

∂ξ
= 0,

∂B0
r

∂ρ
+

∂B0
z

∂ξ
= 0,

B0(ρ, ϕ, 0) + u0(ρ, ϕ, 0) = h0(ρ, ϕ),

B0(0, ϕ, ξ) = B0(h, ϕ, ξ) = 0,

lim
ξ→∞

B0(ρ, ϕ, ξ) = 0,

(27)

posed in the infinite strip G(ϕ) = 〈0, h(ϕ)〉 × 〈0, ∞〉, where ∆ρξ = ∂2

∂ρ2 +
∂2

∂ξ2 .
Integrating (27)2 over G(ϕ), we obtain the compatibility condition:

0 =
∫ h(ϕ)

0
B0

z(ρ, ϕ, 0)dρ =
∫ h(ϕ)

0
~ez · h0(ρ, ϕ)dρ− λ0(ϕ)

∫ h(ϕ)

0

1
2µ

(ρ− h)ρdρ

+ f 0
z (ϕ, 0)

∫ h(ϕ)

0

1
2µ

(ρ− h)ρdρ,

leading to:

λ0(ϕ) = − 12µ

h3(ϕ)

∫ h(ϕ)

0
~ez · h0(ρ, ϕ)dρ + f 0

z (ϕ, 0).

For every ϕ ∈ 〈0, 2π〉, the system (27) admits unique solutions (B0(·, ϕ, ·), b0(·, ϕ, ·)) ∈ H1(G(ϕ))3 ×
L2(G(ϕ)) \R exponentially decaying as ξ → ∞ (see, e.g., [32]).

The zero-order microrotation boundary layer approximation W0 is given by:

− α∆ρξW0
r − β

(∂2W0
r

∂ρ2 +
∂2W0

z
∂ξ∂ρ

)
= 0, −α∆ρξW0

ϕ = 0,

− α∆ρξW0
z − β

(∂2W0
r

∂ξ∂ρ
− ∂2W0

z
∂ξ2

)
= 0,

W0(ρ, ϕ, 0) + w0(ρ, ϕ, 0) = 0,

W0(0, ϕ, ξ) = W0(h, ϕ, ξ) = 0,

lim
ξ→∞

W0(ρ, ϕ, ξ) = 0.

(28)

For every ϕ ∈ 〈0, 2π〉, the system (28) admits unique solutions W0(·, ϕ, ·) ∈ H1(G(ϕ))3 exponentially
decaying as ξ → ∞ (see, e.g., [32]).
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We treat the boundary layer on the opposite side in much the same way. The boundary layer
zero-order approximations (H0, h0, Y0) are defined on the infinite strip O(ϕ) = 〈0, h(ϕ)〉 × 〈−∞, 0〉,
where τ = z−l

ε . The problem for (H0, h0) is analogous to the one for (B0, b0), while the problem for
Y0 is analogous to the one for W0. The well possedness and exponential decay are analogous as for
(B0, b0) and W0. The expression for λl is given in the form (14).

3.3.2. First-Order Corrector

The first-order velocity and pressure boundary layer corrector (B1, b1) satisfies:

− µ∆ρξ B0
r +

∂b1

∂ρ
=

µ

R
∂B0

r
∂ρ
− a

∂W0
ϕ

∂ξ
,

− µ∆ρξ B1
ϕ =

µ

R
∂B0

ϕ

∂ρ
− 1

R
∂b0

∂ϕ
+ a
(∂W0

r
∂ξ
− ∂W0

z
∂ρ

)
,

− µ∆ρξ B1
z +

∂b1

∂ξ
=

µ

R
∂B0

z
∂ρ

+ a
∂W0

ϕ

∂ρ
,

∂B1
r

∂ρ
+

∂B1
z

∂ξ
= − 1

R

(
B0

r +
∂B0

ϕ

∂ϕ

)
,

B1(ρ, ϕ, 0) + u1(ρ, ϕ, 0) = 0,

B1(0, ϕ, ξ) = B1(h, ϕ, ξ) = 0,

lim
ξ→∞

B1(ρ, ϕ, ξ) = 0.

(29)

The compatibility condition for problem (29) is given in the following form:

∫ ∞

0

∫ h(ϕ)

0
− 1

R

(
B0

r +
∂Bϕ

∂ϕ

)
dρdξ =

∫ h(ϕ)

0
B1

z(ρ, ϕ, 0)dρ = − h3

12µ
τ0(ϕ) +

h3

12µ
f 1
z (ϕ, 0),

leading to:

τ0(ϕ) =
12µ

h3R

∫ ∞

0

∫ h(ϕ)

0

(
B0

r +
∂Bϕ

∂ϕ

)
dρdξ + f 1

z (ϕ, 0).

We now obtain:∫ ∞

0

∫ h(ϕ)

0
B0

r dρdξ =
∫ ∞

0

∫ h(ϕ)

0
ρ

∂B0
z

∂ξ
dρdξ

= −
∫ h(ϕ)

0
ρ~ez · h0(ρ, ϕ)dρ− h4

24µ
λ0(ϕ) +

h4

24µ
f 0
z (ϕ, 0),

and: ∫ ∞

0

∫ h(ϕ)

0

∂B0
ϕ

∂ϕ
dρdξ = 2

∞

∑
k=0

1
(2k + 1)2π2

∂

∂ϕ
[h2 A0

2k+1(ϕ)],

where the coefficients Aα
k (ϕ) are given by (see [28,29]):

Aα
k (ϕ) =

∫ h(ϕ)

0
sin

kπt
h(ϕ)

(hϕ
α (t, ϕ)− u0

ϕ(t, ϕ, α))dt, α = 0, l.

For every ϕ ∈ 〈0, 2π〉, the system (29) admits unique solutions (B1(·, ϕ, ·), b1(·, ϕ, ·))
∈ H1(G(ϕ))3 × L2(G(ϕ)) \R exponentially decaying as ξ → ∞ (see, e.g., [32]).
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The first-order velocity and pressure boundary layer corrector W1 at z = 0 satisfies:

− α∆ρξW1
r − β

(∂2W1
r

∂ρ2 +
∂2W1

z
∂ξ∂ρ

)
=

α

R
∂W0

r
∂ρ

+
β

R

(∂W0
r

∂ρ
+

∂2W0
ϕ

∂ϕ∂ρ

)
− a

∂B0
ϕ

∂ξ
,

− α∆ρξW1
ϕ =

α

R
∂W0

ϕ

∂ρ
+

β

R

(∂2W0
r

∂ϕ∂ρ
+

∂2W0
z

∂ϕ∂ξ

)
+ a
(∂B0

r
∂ξ
− ∂B0

z
∂ρ

)
,

− α∆ρξW1
z − β

(∂2W1
r

∂ξ∂ρ
+

∂2W1
z

∂ξ2

)
=

α

R
∂W0

z
∂ρ

+
β

R

(∂W0
r

∂ξ
+

∂2W0
ϕ

∂ξ∂ϕ

)
+ a

∂B0
ϕ

∂ρ
,

W1(ρ, ϕ, 0) + w1(ρ, ϕ, 0) = 0,

W1(0, ϕ, ξ) = W1(h, ϕ, ξ) = 0,

lim
ξ→∞

W1(ρ, ϕ, ξ) = 0.

(30)

For every ϕ ∈ 〈0, 2π〉, the system (30) admits unique solutions W1(·, ϕ, ·) ∈ H1(G(ϕ))3 exponentially
decaying as ξ → ∞ (see, e.g., [32]).

Again, we treat the boundary layer on the opposite side in much the same way. The first-order
boundary layer correctors (H1, h1, Y1) are defined on O(ϕ) = 〈0, h(ϕ)〉 × 〈−∞, 0〉, where τ = z−l

ε .
The problem for (H1, h1) is analogous to the one for (B1, b1), while the problem for Y1 is analogous to
the one for W1. The well possedness and exponential decay results are analogous as for (B1, b1) and
W1. The expression for τl is given in the form (23).

We have thus completed the derivation of our asymptotic solution, which we write down explicitly
in the next section.

3.4. Asymptotic Solution

The asymptotic approximation of the original problem (1)–(3) is now given in the form:

uε
[1] = u0

( r− R
ε

, ϕ, z
)
+ B0

( r− R
ε

, ϕ,
z
ε

)
+ H0

( r− R
ε

, ϕ,
z− l

ε

)
+ ε
(

w1
( r− R

ε
, ϕ, z

)
+ W1

( r− R
ε

, ϕ,
z
ε

)
+ Y1

( r− R
ε

, ϕ,
z− l

ε

))
,

pε
[1] =

1
ε2 p0(ϕ, z) +

1
ε

(
p1(ϕ, z) + b0

( r− R
ε

, ϕ,
z
ε

)
+ h0

( r− R
ε

, ϕ,
z− l

ε

))
+ b1

( r− R
ε

, ϕ,
z
ε

)
+ h1

( r− R
ε

, ϕ,
z− l

ε

)
,

wε
[1] = w0

( r− R
ε

, ϕ, z
)
+ W0

( r− R
ε

, ϕ,
z
ε

)
+ Y0

( r− R
ε

, ϕ,
z− l

ε

)
+ ε
(

w1
( r− R

ε
, ϕ, z

)
+ W1

( r− R
ε

, ϕ,
z
ε

)
+ Y1

( r− R
ε

, ϕ,
z− l

ε

))
,

(31)

where u0, w0, u1, and w1 are given by (10), (16), (19), and (26), p0 and p1 are the solutions of the
Reynolds problems (12)–(14) and (21)–(24), while B0, b0, W0, B1, b1, W1 are the solutions of the
problems (27), (28), (29), (30), and H0, h0, Y0, H1, h1, Y1 are solutions of the analogous problems posed
on the opposite side z = l.

Although we have corrected the boundary layer effects by constructing the appropriate boundary
layer correctors in Section 3.3, the residual in the divergence equation is not small enough to obtain
satisfactory error estimates. In order to correct this, we construct the divergence corrector in the
forthcoming section. In this manner, our overall estimate will be improved, which will be rigorously
addressed in Section 4.
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3.5. Divergence Corrector

In order to improve the accuracy of our approximation, we add the divergence corrector in the
form ε2Ψ(ρ, ϕ, z)~er, where:

Ψ(ρ, ϕ, z) =
1
R

∫ ρ

0

(
u1

r + ρ
∂u1

r
∂ρ

+
∂u1

ϕ

∂ϕ
+ R

∂u1
z

∂z
+ ρ

∂u0
z

∂z

)
(t, ϕ, z)dt.

Now, plugging the approximation given by:

vε =u0
( r− R

ε
, ϕ, z

)
+ B0

( r− R
ε

, ϕ,
z
ε

)
+ H0

( r− R
ε

, ϕ,
z− l

ε

)
+ ε
(

u1
( r− R

ε
, ϕ, z

)
+ B1

( r− R
ε

, ϕ,
z
ε

)
+ H1

( r− R
ε

, ϕ,
z− l

ε

))
− ε2Ψ

( r− R
ε

, ϕ, z
)
~er,

into the divergence equation (4)4, we obtain:

divvε =
1
R

(
1− ρ

R
ε +O(ε2)

)(R
ε

∂u0
r

∂ρ
+

R
ε

∂B0
r

∂ρ
+

R
ε

∂H0
r

∂ρ
+ R

∂u1
r

∂ρ
+ R

∂B1
r

∂ρ
+ R

∂H1
r

∂ρ

)
+

1
R

(
1− ρ

R
ε +O(ε2)

)(
ρ

∂u0
r

∂ρ
+ ρ

∂B0
r

∂ρ
+ ρ

∂H0
r

∂ρ
+ ρε

∂u1
r

∂ρ
+ ρε

∂B1
r

∂ρ
+ ρε

∂H1
r

∂ρ

)
− ε

R2 (R + ρε)
(

1− ρ

R
ε +O(ε2)

)(
u1

r + ρ
∂u1

r
∂ρ

+
∂u1

ϕ

∂ϕ
+ R

∂u1
z

∂z
+ ρ

∂u0
z

∂z

)
+

1
R

(
1− ρ

R
ε +O(ε2)

)(
u0

r + B0
r + H0

r + εu1
r + εB1

r + εH1
r − ε2Φ

)
+

1
R

(
1− ρ

R
ε +O(ε2)

)(∂u0
ϕ

∂ϕ
+

∂B0
ϕ

∂ϕ
+

∂H0
ϕ

∂ϕ
+ ε

∂u1
ϕ

∂ϕ
+ ε

∂B1
ϕ

∂ϕ
+ ε

∂H1
ϕ

∂ϕ

)
+

1
R

(
1− ρ

R
ε +O(ε2)

)(
R

∂u0
z

∂z
+

R
ε

∂B0
z

∂ξ
+

R
ε

∂H0
z

∂ξ
+ Rε

∂u1
z

∂z
+ R

∂B1
z

∂ξ
+ R

∂H1
z

∂ξ

)
+

1
R

(
1− ρ

R
ε +O(ε2)

)(
ερ

∂u0
z

∂z
+ ρ

∂B0
z

∂ξ
+ ρ

∂H0
z

∂ξ
+ ε2ρ

∂u1
z

∂z
+ ερ

∂B1
z

∂ξ
+ ερ

∂H1
z

∂ξ

)
.

(32)

Taking into account the relations (9), (18), (27)2, (29)4 and the analogous divergence equation relations
for the boundary layer correctors H0 and H1 at z = l, Equation (32) reduces to:

divvε =
1
R

(
1− ρ

R
ε +O(ε2)

)(
ρε

∂B1
r

∂ρ
+ ρε

∂H1
r

∂ρ

)
− ε

R2

(
− ρ2 ε2

R
+O(ε2)

)(
u1

r + ρ
∂u1

r
∂ρ

+
∂u1

ϕ

∂ϕ
+ R

∂u1
z

∂z
+ ρ

∂u0
z

∂z

)
+

1
R

(
1− ρ

R
ε +O(ε2)

)(
εB1

r + εH1
r − ε2Φ

)
+

1
R

(
1− ρ

R
ε +O(ε2)

)(
ε

∂B1
ϕ

∂ϕ
+ ε

∂H1
ϕ

∂ϕ

)
+

1
R

(
1− ρ

R
ε +O(ε2)

)(
ε2ρ

∂u1
z

∂z
+ ερ

∂B1
z

∂ξ
+ ερ

∂H1
z

∂ξ

)
,

(33)

where ||Φ||L∞(Cε) ≤ C. Using a simple change of variables, we finally obtain from (33) the
following estimate:

||divvε||L2(Cε)
≤ Cε2. (34)
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We now completed the derivation of our model. We constructed the formal part of the expansion,
the boundary layer correctors at the lower and upper part of the boundary, and the divergence corrector.
In the next section, we aim to justify the usage of the model derived in the present section rigorously.
This will be achieved by providing the error estimates in suitable norms for the difference between the
solution of our original problem and the constructed asymptotic approximation.

4. Justification of the Derived Model

In this section, we provide the rigorous justification of the derived lower dimensional model
by estimating the difference between the solution of our original problem (1)–(3) and the computed
asymptotic solution given by (31) via error estimates in suitable norms.

We first recall the following technical results proved in [28,29].

Lemma 1.
There exists a constant C > 0 such that:

||φ||L2(Cε)
≤ Cε||∇φ||L2(Cε)

, (35)

for any φ ∈ H1(Cε)3 such that φ = 0 for r = R + εh.

Lemma 2.
There exists φ ∈ H1(Cε)3 such that:

div φ = F ∈ L2(Cε),

φ = κ~eϕ for r = R, κ = const.,

φ = 0 for r = R + εh,

φ = ηε for z = 0, ηε(r, ϕ) = η
( r− R

ε
, ϕ
)

,

φ = δε for z = l, δε(r, ϕ) = δ
( r− R

ε
, ϕ
)

,

where η, δ ∈ H1/2(S1)
3, S1 = {(ρ, ϕ) : 0 < ρ < h(ϕ), ϕ ∈ 〈0, 2π〉}, η, δ = κ~eϕ for r = R, η, δ = 0 for

r = R + εh, and the identity holds:

∫ R+εh

R

∫ 2π

0
r~ez · ηε −

∫ R+εh

R

∫ 2π

0
r~ez · δε =

∫ l

0

∫ R+εh

R

∫ 2π

0
rF,

and the estimate:

||φ||H1(Cε)
≤ C

(1
ε
||F||L2(Cε)

+
1√

ε

(
||η||H1/2(S1)

+ ||δ||H1/2(S1)
+ |κ|

))
. (36)

We now define dε as the solution of the problem:

divdε = divRε in Cε,

dε = Rε on ∂Cε,

where Rε = uε − vε. We now obtain from (36) the following estimate:

||dε||H1(Cε)
≤ C

(1
ε
||divvε||L2(Cε)

+
1√

ε

(
||η||H1/2(S1)

+ ||δ||H1/2(S1)

))
, (37)
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where η(r, ϕ) = ε2Ψ( r−R
ε , ϕ, 0)~er −H0( r−R

ε , ϕ,− l
ε )− εH1( r−R

ε , ϕ,− l
ε ) and

δ(r, ϕ) = ε2Ψ( r−R
ε , ϕ, l)~er −B0( r−R

ε , ϕ, l
ε ) −εB1( r−R

ε , ϕ, l
ε ), meaning that:

||η||H1/2(S1)
≤ Cε2, ||δ||H1/2(S1)

≤ Cε2. (38)

We now obtain from (34), (38), and (37) the estimate:

||dε||H1(Cε)
≤ Cε. (39)

The main result of this section can be stated as follows:

Theorem 1.
Let (uε, pε, wε) be the solution of the problem (1)–(3) and (uε

[1], pε
[1], wε

[1]) the asymptotic approximation given
by (31). Then, the following estimates hold:

1√
|Cε|
||uε − uε

[1]||L2(Cε)
≤ Cε3/2,

1√
|Cε|
||wε −wε

[1]||L2(Cε)
≤ Cε2,

1√
|Cε|
||ε2(pε − pε

[1])||L2(Cε)
≤ Cε3/2.

(40)

Remark 1. The estimates in the norm || · ||L2(Cε)
would be worthless because the domain Cε is shrinking,

implying ||φ||L2(Cε)
→ 0 for any bounded φ ∈ C(R3). For this reason, we express the error estimate in the

rescaled norm ||φ|| = |Cε|−1/2||φ||L2(Cε)
.

Proof. The asymptotic approximation w[1]
ε satisfies the following system of equations:

− α∆wε
[1] − β∇divwε

[1] + 2awε
[1] = arotuε

[0] + gε + ξε in Cε,

wε
[1] = 0 for r = R, R + εh(ϕ),

wε
[1] = ηε

0 for z = 0, wε
[1] = ηε

l for z = l,

where ||ξε||L2(Cε)
= O(ε1/2), ||ηε

0||H1/2(S1)
, ||ηε

l ||H1/2(S1)
= O(exp(−σ/ε)), σ = const. > 0, and we

denote:
uε
[0] = u0

( r− R
ε

, ϕ, z
)
+ B0

( r− R
ε

, ϕ,
z
ε

)
+ H0

( r− R
ε

, ϕ,
z− l

ε

)
.

Introducing the difference:
sε = wε −wε

[1],

we deduce the following system of equations:

− α∆sε − β∇divsε + 2asε = arot(uε − u[0]
ε )− ξε,

sε = 0 for r = R, R + εh(ϕ),

sε = −ηε
0 for z = 0, sε = −ηε

l for z = l.

(41)

We obtain from Lemma 2 the existence of a function Dε with the same trace as sε on ∂Cε satisfying
the estimate:

||∇Dε||H1(Cε)
≤ C exp(−σ/ε)). (42)
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We now multiply Equation (41) by s∗ = sε −Dε and integrate over Cε to obtain:

α
∫
Cε

|∇s∗|2 + β
∫
Cε

(divs∗)2 + 2a
∫
Cε

|s∗|2 =a
∫
Cε

rot(uε − u[0]
ε )s∗ − α

∫
Cε

∇s∗∇Dε

− β
∫
Cε

divDεdivs∗ − 2a
∫
Cε

s∗Dε −
∫
Cε

ξεs
∗.

(43)

We estimate the terms on the right-hand side of (43) using Poincaré’s inequality (35) and (39) and (42):∣∣∣ ∫
Cε

rot(uε − uε
[0])s

∗
∣∣∣ ≤ C||∇(uε − uε

[0])||L2(Cε)
||s∗||L2(Cε)

≤ Cε(||∇(uε − vε − dε)||L2(Cε)
+ ||∇(vε − uε

[0])||L2(Cε)
)||∇s∗||L2(Cε)

+ Cε||∇dε||L2(Cε)
||∇s∗||L2(Cε)

≤ Cε(||∇(uε − vε − dε)||L2(Cε)
+ Cε1/2)||∇s∗||L2(Cε)

,∣∣∣ ∫
Cε

∇s∗∇Dε
∣∣∣ ≤ ||∇s∗||L2(Cε)

||∇Dε||L2(Cε)
≤ C exp(−σ/ε)||∇s∗||L2(Cε)

,∣∣∣ ∫
Cε

divDεdivs∗
∣∣∣ ≤ ||∇Dε||L2(Cε)

||∇s∗||L2(Cε)
≤ C exp(−σ/ε)||∇s∗||L2(Cε)

,∣∣∣ ∫
Cε

s∗Dε
∣∣∣ ≤ ||s∗||L2(Cε)

||Dε||L2(Cε)
≤ Cε2 exp(−σ/ε)||∇s∗||L2(Cε)

,∣∣∣ ∫
Cε

ξεs
∗
∣∣∣ ≤ ||ξε||L2(Cε)

||s∗||L2(Cε)
≤ Cε3/2||∇s∗||L2(Cε)

.

(44)

We now obtain from (43) and (44) the estimate:

||∇s∗||2L2(Cε)
≤ Cε||∇(uε − vε − dε)||L2(Cε)

+ Cε3/2,

leading to:

||∇sε||L2(Cε)
≤ ||∇s∗||L2(Cε)

+ ||∇Dε||L2(Cε)
≤ Cε||∇(uε − vε − dε)||L2(Cε)

+ Cε3/2. (45)

The problem satisfied by (vε, pε
[1]) is given by the following system of equations:

− µ∆vε +∇pε
[1] +∇p2 = arotwε

[0] + fε + Eε in Cε,

divvε = πε in Cε,

vε = ω~eϕ for r = R, vε = 0 for R + εh(ϕ),

vε = h0 + r0 for z = 0, vε = hl + rl for z = l,

where ||Eε||L2(Cε)
= O(ε1/2), ||πε||L2(Cε)

= O(ε2), ||r0||H1/2(S1)
= O(ε2), ||rl ||H1/2(S1)

= O(ε2), and we
denote:

wε
[0] = w0

( r− R
ε

, ϕ, z
)
+ H0

( r− R
ε

, ϕ,
z
ε

)
+ Y0

( r− R
ε

, ϕ,
z− l

ε

)
.

Denoting the differences:
Rε = uε − vε, rε = pε − p[1],

we obtain the following system of equations:

− µ∆Rε +∇rε −∇p2 = arot(wε −wε
[0])− Eε,

divRε = −πε,

Rε = 0 for r = R, R + εh(ϕ),

Rε = −r0 for z = 0, Rε = −rl for z = l.

(46)
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We now multiply (46)1 by R∗ = Rε − dε and integrate over Cε to obtain:

µ
∫
Cε

|∇R∗|2 ≤ a
∫
Cε

rot(wε −wε
[0])R

∗ − µ
∫
Cε

∇dε∇R∗ −
∫
Cε

EεR∗. (47)

We handle the terms on the right-hand side of (47) using Poincaré’s inequality (35) and the estimate (39):∣∣∣ ∫
Cε

∇dε∇R∗
∣∣∣ ≤ ||∇dε||L2(Cε)

||∇R∗||L2(Cε)
≤ Cε||∇R∗||L2(Cε)

,∣∣∣ ∫
Cε

rot(wε −wε
[0])R

∗
∣∣∣ ≤ C||∇(wε −wε

[0])||L2(Cε)
||R∗||L2(Cε)

≤ C(||∇(wε −wε
[1])||L2(Cε)

+ ||∇(wε
[1] −wε

[0])||L2(Cε)
)||R∗||L2(Cε)

≤ Cε||∇sε||L2(Cε)
||∇R∗||L2(Cε)

+ Cε3/2||∇R∗||L2(Cε)
,∣∣∣ ∫

Cε

EεR∗
∣∣∣ ≤ ||Eε||L2(Cε)

||R∗||L2(Cε)
≤ Cε3/2||∇R∗||L2(Cε)

.

(48)

Taking into account (45), for sufficiently small ε, we obtain from (47) and (48):

||∇R∗||L2(Cε)
≤ Cε. (49)

Now, using the estimate (39), from (49), we get:

||∇Rε||L2(Cε)
≤ ||∇R∗||L2(Cε)

+ ||∇dε||L2(Cε)
≤ Cε,

leading to:

||∇(uε − uε
[1])||L2(Cε)

≤ ||∇(uε − uε
[1] + ε2Ψ~er)||L2(Cε)

+ ||∇(ε2Ψ~er)||L2(Cε)

≤ ||∇Rε||L2(Cε)
+ Cε3/2 ≤ Cε.

(50)

From (45) and (49), we directly deduce:

||∇sε||L2(Cε)
≤ ε||∇R∗||L2(Cε)

+ Cε3/2 ≤ Cε3/2. (51)

Now, we obtain easily from (50) and (51) the estimates:

1√
Cε
||∇(uε − uε

[1])||L2(Cε)
≤ Cε3/2,

and:
1√
Cε
||sε||L2(Cε)

≤ Cε2,

yielding (40)1 and (40)2.
Now, let d∗ be the solution of:

divd∗ = rε − p2 in Cε,

d∗ = 0 on ∂Cε.
(52)

Assuming that
∫
Cε
(rε − p2) = 0, it follows from Lemma 2 that there exists at least one solution of the

problem (52) satisfying the estimate:

||∇d∗||L2(Cε)
≤ C

ε
||(rε − p2)||L2(Cε)

. (53)
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Multiplying (46)1 by d∗, we obtain:

||rε − p2||2L2(Cε)
≤ µ

∫
Cε

∇R∗∇d∗ − a
∫
Cε

rot(wε −wε
[0])d

∗ +
∫
Cε

Eεd∗ + µ
∫
Cε

∇dε∇d∗. (54)

We estimate the right-hand side of (54) using Poincaré’s inequality (35) and the estimates (39), (49),
(51), and (53) as follows:∣∣∣ ∫

Cε

∇Rε∇d∗
∣∣∣ ≤ ||∇R∗||L2(Cε)

||∇d∗||L2(Cε)
≤ C||rε − p2||L2(Cε)

,∣∣∣ ∫
Cε

rot(wε −wε
[0])d

∗
∣∣∣ ≤ Cε||∇(wε −wε

[0])||L2(Cε)
||∇d∗||L2(Cε)

≤ Cε(||∇(wε −wε
[1])||L2(Cε)

+ ||∇(wε
[1] −wε

[0])||L2(Cε)
)||∇d∗||L2(Cε)

≤ Cε||∇sε||L2(Cε)
||∇d∗||L2(Cε)

+ Cε3/2||∇d∗||L2(Cε)

≤ Cε1/2||rε − p2||L2(Cε)
,∣∣∣ ∫

Cε

Eεd∗
∣∣∣ ≤ ||Eε||L2(Cε)

||d∗||L2(Cε)
≤ Cε1/2||rε − p2||L2(Cε)

,∣∣∣ ∫
Cε

∇dε∇d∗
∣∣∣ ≤ ||∇dε||L2(Cε)

||∇d∗||L2(Cε)
≤ C||rε − p2||L2(Cε)

.

(55)

We now obtain from (54) and (55):
||rε − p2||L2(Cε)

≤ C. (56)

Finally, we have from (56):

||rε||L2(Cε)
≤ ||rε − p2||L2(Cε)

+ ||p2||L2(Cε)
≤ C,

providing:
1√
Cε
||ε2rε||L2(Cε)

≤ Cε3/2,

thus obtaining the estimate (40)3.

We thus provided the rigorous justification of the model derived in Section 3 via error estimates
in suitable norms. In the final section, we provide the main highlights and the contribution of our
work, as well as possible further extensions of the research presented in this paper.

5. Conclusions

In this paper, using the methods of rigorous asymptotic analysis, we derived and justified the
effective model describing the lubrication process of a rotating shaft with incompressible micropolar
fluid. As we considered the lubrication process in a curved geometry naturally appearing in various
real-life applications, our results were relevant in the modeling of lubrication devices consisting of a
slipper bearing. These devices naturally appear in industrial machinery primarily including steam
turbines, pumps, compressors, and motors. The computed asymptotic approximation given in the
form of a powers series in terms of the small parameter ε, representing the thickness of the shaft,
acknowledges the effects of the fluid’s internal structure through the presence of the microrotation
viscosity a. We can verify this by looking at the derived explicit expressions (19) and (26) for the
velocity and microrotation first-order correctors.

The main contribution of this paper is twofold. Firstly, in order to improve the accuracy of the
derived asymptotic approximation (not necessarily satisfying the boundary conditions at the lower and
upper boundary of the shaft), we constructed the boundary layer correctors for the velocity, pressure,
and microrotation. Moreover, as the residual in the divergence equation was not small enough, to
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provide satisfactory error estimates, we also constructed the divergence corrector. In this way, our
overall estimates were improved.

Secondly, the derived model was rigorously justified by proving the error estimates, evaluating
the difference between the original solution of the problem and the derived asymptotic approximation
in suitable norms. We strongly believe that the derived model could prove useful in industrial
applications, in particular ones including the study of the optimal design of lubrication devices in the
industrial machinery mentioned above.

Finally, it would be natural to consider the thermal effects on the lubrication process of a rotating
shaft with micropolar fluid as a possible further extension of the research presented in this paper.
More precisely, one can consider the thermodynamic closure of the problem (1)–(3) by adding the heat
equation to the problem, namely:

−k∆Tε = (uε · ∇)Tε,

where Tε denotes the fluid temperature, while k is the thermal conductivity. Employing a similar
asymptotic approach as here, it is reasonable to expect that one can derive and rigorously justify a
lower dimensional model for the above-mentioned problem, allowing us to observe the thermal effects
on the lubrication process clearly.

Another possibility for further research is to consider the lubrication process of a rotating shaft
with a time-dependent micropolar fluid flow. The governing non-stationary micropolar fluid system
of equations is given by (see, e.g., [6] and [27]):

∂uε

∂t
− µ∆uε +∇pε = arotwε + fε,

divwε = 0,

∂uε

∂t
− α∆wε − β∇divwε + 2awε = arotuε + gε.

Our goal in this case would be to derive an asymptotic model taking into account additional effects
involving time. More precisely, we would need to obtain an asymptotic approximation where the
effect of the time derivative would be explicitly acknowledged in the derived expressions.

This will be the subject of our future work.
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27. Pažanin, I.; Radulović, M. Asymptotic analysis of the nonsteady micropolar fluid flow through a curved
pipe. Appl. Anal. 2018, 1–48. [CrossRef]
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29. Duvnjak, A.; Marušić–Paloka, E. Correctors for Reynolds equation describing the process of lubrication of
a rotating shaft. In Trends in Applications of Mathematics to Mechanics; Loss, G., Gues, O., Nouri, A., Eds.;
2000; pp. 272–281. Available online: https://books.google.com.hk/books?hl=en&lr=&id=up1vdhnE90YC&
oi=fnd&pg=PA272&dq=Correctors+for+Reynolds+equation+describing+the+process+of+lubrication+
of+a+rotating+shaft&ots=mpLTiU0q74&sig=3Ht8V_E1AK_U5SAQGBNjbsh-_xk&redir_esc=y&hl=zh-
CN&sourceid=cndr#v=onepage&q=Correctors%20for%20Reynolds%20equation%20describing%20the%
20process%20of%20lubrication%20of%20a%20rotating%20shaft&f=false (accessed on 11 February 2020).

http://dx.doi.org/10.1016/j.camwa.2018.07.047
http://dx.doi.org/10.1137/110837772
http://dx.doi.org/10.1002/zamm.200700136
http://dx.doi.org/10.1080/00036811.2010.549483
http://dx.doi.org/10.1016/j.na.2015.03.008
http://dx.doi.org/10.1016/j.na.2015.05.018
http://dx.doi.org/10.1007/BF02414514
http://dx.doi.org/10.1090/qam/109552
http://dx.doi.org/10.1090/qam/37146
http://dx.doi.org/10.1007/BF01442229
http://dx.doi.org/10.1090/qam/917014
http://dx.doi.org/10.3233/ASY-1994-9301
http://dx.doi.org/10.1142/S0218202598000160
http://dx.doi.org/10.1007/BF00970660
http://dx.doi.org/10.1007/s00245-001-0021-y
http://dx.doi.org/10.1155/2011/127070
http://dx.doi.org/10.1002/zamm.201800154
http://dx.doi.org/10.1080/00036811.2018.1553036
https://books.google.com.hk/books?hl=en&lr=&id=up1vdhnE90YC&oi=fnd&pg=PA272&dq=Correctors+for+Reynolds+equation+describing+the+process+of+lubrication+of+a+rotating+shaft&ots=mpLTiU0q74&sig=3Ht8V_E1AK_U5SAQGBNjbsh-_xk&redir_esc=y&hl=zh-CN&sourceid=cndr#v=onepage&q=Correctors%20for%20Reynolds%20equation%20describing%20the%20process%20of%20lubrication%20of%20a%20rotating%20shaft&f=false
https://books.google.com.hk/books?hl=en&lr=&id=up1vdhnE90YC&oi=fnd&pg=PA272&dq=Correctors+for+Reynolds+equation+describing+the+process+of+lubrication+of+a+rotating+shaft&ots=mpLTiU0q74&sig=3Ht8V_E1AK_U5SAQGBNjbsh-_xk&redir_esc=y&hl=zh-CN&sourceid=cndr#v=onepage&q=Correctors%20for%20Reynolds%20equation%20describing%20the%20process%20of%20lubrication%20of%20a%20rotating%20shaft&f=false
https://books.google.com.hk/books?hl=en&lr=&id=up1vdhnE90YC&oi=fnd&pg=PA272&dq=Correctors+for+Reynolds+equation+describing+the+process+of+lubrication+of+a+rotating+shaft&ots=mpLTiU0q74&sig=3Ht8V_E1AK_U5SAQGBNjbsh-_xk&redir_esc=y&hl=zh-CN&sourceid=cndr#v=onepage&q=Correctors%20for%20Reynolds%20equation%20describing%20the%20process%20of%20lubrication%20of%20a%20rotating%20shaft&f=false
https://books.google.com.hk/books?hl=en&lr=&id=up1vdhnE90YC&oi=fnd&pg=PA272&dq=Correctors+for+Reynolds+equation+describing+the+process+of+lubrication+of+a+rotating+shaft&ots=mpLTiU0q74&sig=3Ht8V_E1AK_U5SAQGBNjbsh-_xk&redir_esc=y&hl=zh-CN&sourceid=cndr#v=onepage&q=Correctors%20for%20Reynolds%20equation%20describing%20the%20process%20of%20lubrication%20of%20a%20rotating%20shaft&f=false
https://books.google.com.hk/books?hl=en&lr=&id=up1vdhnE90YC&oi=fnd&pg=PA272&dq=Correctors+for+Reynolds+equation+describing+the+process+of+lubrication+of+a+rotating+shaft&ots=mpLTiU0q74&sig=3Ht8V_E1AK_U5SAQGBNjbsh-_xk&redir_esc=y&hl=zh-CN&sourceid=cndr#v=onepage&q=Correctors%20for%20Reynolds%20equation%20describing%20the%20process%20of%20lubrication%20of%20a%20rotating%20shaft&f=false


Symmetry 2020, 12, 334 21 of 21
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