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Abstract: In this paper, a stochastic model with relapse and temporary immunity is formulated. The
main purpose of this model is to investigate the stochastic properties. For two incidence rate terms, we
apply the ideas of a symmetric method to obtain the results. First, by constructing suitable stochastic
Lyapunov functions, we establish sufficient conditions for the extinction and persistence of this
system. Then, we investigate the existence of a stationary distribution for this model by employing
the theory of an integral Markov semigroup. Finally, the numerical examples are presented to
illustrate the analytical findings.
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1. Introduction

Infectious diseases have always threatened the health of human beings. In recent decades,
mathematicians have tried to study the spread of infectious diseases. Many disease models have
been introduced to understand and analyze epidemics [1–6]. The simplest and best-known one is
the SIR (susceptible, infections, removed) model, where the total population is divided into three
compartments: susceptible (S), infections (I), and removed (R). If the epidemic models are conferred
on temporary immunity, then we can establish SIS (susceptible, infections, susceptible) or SIRS
(susceptible, infections, removed, susceptible) models. These models have been researched widely,
from the deterministic to stochastic perspective [7–16]. However, the recovery of diseases may relapse,
when latent infections reactivate and revert resulting in actively infected people. These types of
diseases can be modeled by the SIRI (susceptible, infections, removed, infections) model [17–20], which
reads as follows 

dS
dt = µ− µS− ϕ(S, I),
dI
dt = ϕ(S, I)− (µ + η)I + γ1R,
dR
dt = η I − (µ + γ1) R,

(1)

where µ denotes the recruitment rate of humans, and we suppose that it is equal to the natural death
rate of humans. η is the recovery rate, γ1 denotes the rate that recovered individuals are reverted to
the infective state. ϕ(S, I) is the transmission function, which is important in order to analyze the
stochastic properties of the model. In such a model, relapse is an important feature of these types of
diseases that occurs in some animals and humans, for instance, tuberculosis and herpes.

Tudor [17] and Ding [20] established SIRI models with a bilinear incidence rate. However, in real
life, the types of incidence rates of the same disease may be different as the environment changes.
Nevertheless, on the basis of what we have studied, few works have been done on epidemic models
with different incidence rates. Thus, we propose a model with a novel type of transmission function,
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ϕ(S, I) = ∑n
i=1 pi ϕi(S, I), where pi (i = 1, 2, . . . , n) denotes the probability of ϕi(S, I)(i = 1, 2, . . . , n)

occurring, and ∑n
i=1 pi = 1.

Taking into account a bilinear incidence rate and the Beddington–DeAngelis incidence
rate, in this regard, we assume ϕ(S, I) = pβ1SI + (1 − p) β2SI

1 + mS + nI , where p represents the
probability of a bilinear incidence rate occurring, the corresponding 1− p is the probability of the
Beddington–DeAngelis incidence rate occurring, and evidently 0 < p < 1. m and n are nonnegative
constants. βi(i = 1, 2) are positive constants, which represent the disease transmission coefficients.
Hence, the corresponding model can be formulated as follows

dS =
[
µ− µS− pβ1SI − (1− p) β2SI

1 + mS + nI + γ2R
]

dt,

dI =
[

pβ1SI + (1− p) β2SI
1 + mS + nI − (µ + η)I + γ1R

]
dt,

dR = [η I − (µ + γ1 + γ2) R] dt,

(2)

where γ2 denotes the per capita immune loss rate of removed.
Stochastic differential equations (SDEs) are ordinary differential equations (ODEs) that include

random processes in their vector fields. In this paper, we establish an SDE system by introducing
terms representing stochastic perturbations into the ODE system (2), which is achieved by letting
βi → βi + σiBi(i = 1, 2). Hence the stochastic epidemic model of system (2) is given by

dS =
[
µ− µS− pβ1SI − (1− p) β2SI

1 + mS + nI + γ2R
]

dt− pσ1SIdB1 − (1− p) σ2SI
1 + mS + nI dB2,

dI =
[

pβ1SI + (1− p) β2SI
1 + mS + nI − (µ + η)I + γ1R

]
dt + pσ1SIdB1 + (1− p) σ2SI

1 + mS + nI dB2,

dR = [η I − (µ + γ1 + γ2) R] dt.

(3)

With the following initial conditions: S(0) > 0, I(0) > 0, R(0) > 0 and S(0) + I(0) + R(0) = 1,
we have

d(S + I + R) = [µ− µ(S + I + R)]dt.

We can also easily show that

S(t) + I(t) + R(t) = 1 for all t > 0.

Therefore, in this paper we can also discuss the following system for (I(t), R(t))
dI =[pβ1(1− I − R)I + (1− p)

β2(1− I − R)I
1 + m(1− I − R) + nI

− (µ + η)I + γ1R]dt,

+ pσ1(1− I − R)IdB1 + (1− p)
σ2(1− I − R)I

1 + m(1− I − R) + nI
dB2,

dR =[η I − (µ + γ1 + γ2)R]dt.

(4)

Precisely, the region Γ1 =
{
(S, I, R) ∈ R3, S + I + R < 1

}
is a positively invariant set of system (3)

and the region Γ2 =
{
(I, R) ∈ R2, I + R < 1

}
is a positively invariant set of system (4).

The symmetric method for differential equations is a popular way to study ordinary differential
equations (ODEs) and partial differential equations (PDEs). In this regard, we apply the ideas of this
method shown in [21,22] to the SDE system.

Unless otherwise specified, throughout this paper, let (Ω,F , {F}t≥0,P) be a complete probability
space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is increasing and right continuous,
while F0 contains all P -null sets). Let R3

+ = {xi > 0, i = 1, 2, 3} ,R2
+ = {xi > 0, i = 1, 2}. Let B(t) be

an Ft -adapted Brownian motion.
The rest of this paper is organized as follows. The existence and uniqueness of the positive solution

of the system (3) are provided in Section 2. In Sections 3 and 4, we explore sufficient conditions for
extinction and persistence results of the epidemic. In Section 5, we use integral Markov semigroup
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theory to study the existence of a unique stationary distribution for system (4). Finally, we present
some numerical simulations to demonstrate our analytical results.

2. Existence and Uniqueness of the Global Positive Solution

In the following, we discuss the existence and uniqueness of the global positive solution of
system (3) for any initial condition on R+. For further research, this is an important premise.

Theorem 1. There is a unique and positive solution (S(t), I(t), R(t)) of system (3) for any initial condition on
R+. Then the solution remains in Γ1, almost surely.

Proof. As the coefficients of system (3) are locally Lipschitz continuous, there exists a unique solution
on [0, τe], where τe is the explosion time.

Let n0 ∈ N, such that the initial values S(0), I(0), R(0) are all in the interval (1/n0, n0). For any
integer n ≥ n0, we consider the stop-time τn as

τn = inf
{

t ∈ [0, τe) : min{S(t), I(t), R(t)} ≤ 1
n

or max{S(t), I(t), R(t)} ≥ n
}

.

Clearly, τn is increasing as n→ ∞ and less than τe for any n ≥ n0. Set τ∞ = limn→∞ τn. We have
τ∞ ≤ τe. If τ∞ = ∞ a.s. holds, then τe = ∞ a.s. Otherwise, there exist ε ∈ (0, 1) and T ∈ (0, ∞), such
that P (τ∞ ≤ T) ≥ ε. Thus, there exists an integer n1 ≥ n0, such that P (τn ≤ T) ≥ ε for all n ≥ n1.

Let N(t) represent the population size at time t. Thus, N(t) = S(t) + I(t) + R(t). For any n ≥ n1

and t ∈ [0, τn), we have by derivation

dN(t) = [µ− µN(t)]dt.

Then, by the comparison theorem, we obtain

N(t) ≤ 1 + [N(0)− 1]e−µt ≤ M = max{1, N(0)}, ∀t ∈ [0, τk) .

Define a C2-function V1

V1(S, I, R) = (S− 1− log S) + (I − 1− log I) + (R− 1− log R).

Clearly, V1(t) is nonnegative. According to the Itô formula, one has
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LV1 =

(
1− 1

S

) [
µ− µS− pβ1SI − (1− p)

β2SI
1 + mS + nI

+ γ2R
]

+

(
1− 1

I

) [
pβ1SI + (1− p)

β2SI
1 + mS + nI

− (µ + η)I + γ1R
]

+

(
1− 1

R

)
[η I − (µ + γ1 + γ2) R]

+
1
2

p2σ2
1 I2 +

1
2
(1− p)2σ2

2

(
I

1 + mS + nI

)2

+
1
2

p2σ2
1 S2 +

1
2
(1− p)2σ2

2

(
S

1 + mS + nI

)2

= 4µ + η + γ1 + γ2 + pβ1 I + (1− p)
β2 I

1 + mS + nI

+
1
2

p2σ2
1 I2 +

1
2
(1− p)2σ2

2

(
I

1 + mS + nI

)2

+
1
2

p2σ2
1 S2 +

1
2
(1− p)2σ2

2

(
S

1 + mS + nI

)2

−
(

µS + µI + µR +
µ

S
+ γ2

R
S
+ pβ1S + (1− p)

β2S
1 + mS + nI

+γ1
R
I
+ η

I
R

)
≤4µ + η + γ1 + γ2 + pβ1 + (1− p)β2 +

1
2

p2σ2
1 +

1
2
(1− p)2σ2

2 =: Λ.

Here Λ is a generic positive constant. We compute

dV1 = Λdt +
(

1
S
− 1

I

)
pσ1SIdB1(t) +

(
1
S
− 1

I

)
(1− p)

σ2SI
1 + mS + nI

dB2(t).

Integrating over [0, τn ∧ T] and taking the expectation, then

EV1 (S (τn ∧ T) , I (τn ∧ T) , R (τn ∧ T)) ≤ V1(S(0), I(0), R(0)) + ΛT,

which leads to

V1(S(0), I(0), R(0)) + ΛT ≥ E
[
1{τn∧T}V1 (S (τn ∧ T) , I (τn ∧ T) , R (τn ∧ T))

]
≥ ε

{
(n− 1− log n) ∧

(
1
n
− 1− log

1
n

)}
.

Let n→ ∞, and we obtain

∞ > V1(S(0), I(0), R(0)) + ΛT = ∞,

which is a contraction, then, τ∞ = ∞ a.s. This completes the proof.

3. Extinction of the Disease

In this section, we consider the extinction of the disease of the system (4) under some
sufficient assumptions.

Theorem 2. Assume that
R0 < 1, (5)

β1 > pσ2
1 , β2 > (1− p)σ2

2 , (6)
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whereR0 = β1 p + β2(1 − p)
µ + η + 1

2 σ2
1 p2 + 1

2 σ2
2 (1 − p)2 − γ1η

µ + γ1 + γ2

, then for any initial value (I(0), R(0)) in Γ2, the solution

(I(t), R(t)) of system (4) converges to (0, 0) a.s.

Proof. LetR0 < 1 and θ > 1, such that

−kθ , pβ1 + (1− p)β2 −
(

µ + η +
1
2

σ2
1 p2 +

1
2

σ2
2 (1− p)2

)
+

θγ1η

µ + γ1 + γ2
< 0.

Define the stop-time

τ1 = inf
{

t ≥ 0, I(t) ≤ 1
θ

}
.

We suppose that E(τ1) < ∞. Actually, we assume that I(0) ∈ ( 1
θ , 1) (if not τ1 = 0). Hence, for all

T > 0 and t ≤ T ∧ τ1, one has

I(t) ≥ 1
θ

. (7)

Now, employing Itô’s formula to log I, we have

d log I =
[

pβ1(1− I − R) + (1− p)
β2(1− I − R)

1 + m(1− I − R) + nI
− (µ + η) + γ1

R
I

−1
2

p2σ2
1 (1− I − R)2 − 1

2
(1− p)2σ2

2

(
1− I − R

1 + m(1− I − R) + nI

)2
]

dt

+ pσ1(1− I − R)dB1(t) + (1− p)
σ2(1− I − R)

1 + m(1− I − R) + nI
dB2(t)

≤
[
−(µ + η) + β1 p− 1

2
p2σ2

1 + β2(1− p)− 1
2
(1− p)2σ2

2 + θγ1R
]

dt

+ pσ1(1− I − R)dB1(t) + (1− p)
σ2(1− I − R)

1 + m(1− I − R) + nI
dB2(t),

(8)

where (6) and the monotony of the functions x1 7→ − (µ + γ1 + γ2) + pβ1x1 − 1
2 p2σ2

1 x2
1 , x2 7→

− (µ + γ1 + γ2) + (1− p) β2x2
1 + mx2 + nI −

1
2 (1− p)2σ2

2

(
x2

1 + mx2 + nI

)2
are used. Precisely, according to

assumption (6), the functions x1 and x2 are both increasing on the interval [0, 1]. Combining (8) and
the R-equation, one has

d
[

log I +
θγ1

µ + γ1 + γ2
R
]
≤
[
−(µ + η) + β1 p− 1

2
p2σ2

1 + β2(1− p)− 1
2
(1− p)2σ2

2 +
θγ1η

µ + γ1 + γ2
I
]

dt

+ pσ1(1− I − R)dB1(t) + (1− p)
σ2(1− I − R)

1 + m(1− I − R) + nI
dB2(t)

≤− kθdt + pσ1(1− I − R)dB1(t) + (1− p)
σ2(1− I − R)

1 + m(1− I − R) + nI
dB2(t).

Further,

E
[

log I(T ∧ τ1) +
θγ1

µ + γ1 + γ2
R(T ∧ τ1)

]
≤ log I(0) +

θγ1

µ + γ1 + γ2
R(0)− kθE (T ∧ τ1) ,

which leads to

E (T ∧ τ1) ≤
θγ1

(µ + γ1 + γ2) kθ
− E [log I (T ∧ τ1)]

kθ
.
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Then, letting T → ∞ and using Fatou’s lemma, we have

E (τ1) ≤
θγ1

(µ + γ1 + γ2) kθ
+

log θ

kθ
< ∞.

Therefore, our claim is true. In the next step, we shall show that I(t) goes by 1
θ2 in a finite mean

time. Therefore, we set
τ′1 = inf

{
t ≥ τ1, I(t) > 1

θ

}
,

τ2 = inf
{

t < τ′1, I(t) < 1
θ2

}
.

Hence, for all T > 0 and any t ∈ [τ1, T ∧ τ2] we obtain

1
θ2 ≤ I(t) ≤ 1

θ
. (9)

By using (9), we can also have

d
[

log I +
θ2γ1

µ + γ1 + γ2
R
]
=

[
β1 p + β2(1− p)−

(
µ + η +

1
2

p2σ2
1 +

1
2
(1− p)2σ2

2

)
+

θ2γ1η

µ + γ1 + γ2
I
]

dt

+ pσ1(1− I − R)dB1(t) + (1− p)
σ2(1− I − R)

1 + m(1− I − R) + nI
dB2(t)

≤− kθdt + pσ1(1− I − R)dB1(t) + (1− p)
σ2(1− I − R)

1 + m(1− I − R) + nI
dB2(t).

Integrating over [τ1, T ∧ τ2], one can find

E [log I (T ∧ τ2)] ≤ log I (τ1) +
θ2γ1

µ + γ1 + γ2
R (τ1)− kθE (T ∧ τ2 − τ1) .

Thus we have

E (τ2) ≤ E (τ1) +
θ2γ1

(µ + γ1 + γ2) kθ
+

2 log θ

kθ
< ∞.

By induction, we have the following definitions

τ′n = inf
{

t ≥ τn−1, I(t) > 1
θn−1

}
,

τn = inf
{

t < τ′n, I(t) < 1
θn

}
.

We obtain
E (τn) ≤ E (τn−1) +

θnγ1

(µ + γ1 + γ2) kθ
+

n log θ

kθ
< ∞. (10)

Clearly, (τn) is an increasing sequence. Therefore, τn → τ∞ a.s. We denote Ω′ =
⋂∞

n=1 (τn < ∞),
by (10) and we obtain

P
(
Ω′
)
= P

(
∞⋂

n=1
(τn < ∞)

)
= lim

n→∞
P (τn < ∞) = 1. (11)

We write Ω′ in the following form

Ω′ =
(
(τ∞ < ∞) ∩Ω′

)
∪
(
(τ∞ = ∞) ∩Ω′

)
= (τ∞ < ∞) ∪

(
(τ∞ = ∞) ∩Ω′

)
.

We show that P(τ∞ < ∞) = 0. We assume that P(τ∞ < ∞) > 0. Let ω ∈ (τ∞ < ∞). We obtain
for all n ∈ N∗

I(τn(ω)) =
1
an .
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By extending n to ∞, we obtain I(τ∞(ω)) = 0. Hence, τ0(ω) ≤ τ∞(ω) < ∞, where τ0 =

inf {t > 0, I(t) = 0}. Then
P(τ0 < ∞) ≥ P(τ∞ < ∞) > 0,

which is a contradiction with P(τ0 = ∞) = 1. Then, P(τ∞ < ∞) = 0, furthermore

P((τ∞ = ∞) ∩Ω′) = 1.

Finally, we set ω ∈ (τ∞ = ∞) ∩Ω′, ε > 0, t > 0 and n0 = [− log ε(log θ)−1]. For t > τn0 , there is
n such that n ≥ n0 and τn ≤ t ≤ τn+1. Then

1
θn+1 ≤ I(t) ≤ 1

θn ≤
1

θn0+1 ≤ ε,

which suggests
lim
t→∞

I(t) = 0. (12)

This indicates that I(t) converges to 0 with probability 1. Using Fatou’s lemma and the last
equation of system (4), we obtain

lim sup
t→∞

R(t) ≤ η
∫ ∞

0
lim sup

t→∞
e−(µ+γ1+γ2)u I(t− u)du ≤ η

µ + γ1 + γ2
lim sup

t→∞
I(t),

which implies with (12) that limt→∞ R(t) = 0. a.s. This proof is therefore complete.

4. Persistence in the Mean

Theorem 3. Let (S(0), I(0), R(0)) ∈ Γ1) be an initial value. Assume that

R0
s > 1

holds, where R0
s =

pβ1+
(1−p)β2

1 + m + n
µ+η− γ1η

µ+γ1+γ2
+ 1

2 p2σ2
1+

1
2 (1−p)2σ2

2
. Then, the epidemic of (3) is permanent in the mean.

Precisely, we obtain

lim inf
t→∞

1
t

∫ t

0
S(u)du ≥ µ

µ + pβ1 + (1− p)β2C
a.s.,

lim inf
t→∞

1
t

∫ t

0
I(u)du ≥ µ

pβ1 +
(1−p)β2

1 + m + n

(
1− 1
R0

s

)
a.s.,

lim inf
t→∞

1
t

∫ t

0
R(u)du ≥ µη

(µ + γ1 + γ2)
(

pβ1 +
(1−p)β2

1 + m + n

) (1− 1
R0

s

)
a.s.

Proof. Integrating the first equation of (3) between 0 and t, we obtain

µt− (S(t)− S(0)) =
∫ t

0

(
µS + pβ1SI +

(1− p)β2SI
1 + mS + nI

− γ2R
)

ds

+
∫ t

0
pσ1SIdB1(s) +

∫ t

0

(1− p)σ2SI
1 + mS + nI

dB2(s)

≤
∫ t

0

(
µ + pβ1 I +

(1− p)β2 I
1 + mS + nI

)
Sds

+
∫ t

0
pσ1SIdB1(s) +

∫ t

0

(1− p)σ2SI
1 + mS + nI

dB2(s).
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It is obvious that pβ1SI < pβ1, SI
1 + mS + nI < C, where C is a positive constant. Thus, we have

µt− (S(t)− S(0)) ≤ (µ + pβ1 + (1− p)β2C)
∫ t

0
Sds

+
∫ t

0
pσ1SIdB1(s) +

∫ t

0

(1− p)σ2SI
1 + mS + nI

dB2(s).

Multiplying both sides by 1
t , we obtain

1
t

∫ t

0
Sds ≥ 1

µ + pβ1 + (1− p)β2C

(
µ− S(t)− S(0)

t

)
− 1

µ + pβ1 + (1− p)β2C

(
1
t

∫ t

0
pσ1SIdB1(s) +

1
t

∫ t

0

(1− p)σ2SI
1 + mS + nI

dB2(s)
)

.

Note that
∫ t

0 pσ1SIdB1(s),
∫ t

0
(1−p)σ2SI
1+mS+nI dB2(s) are continuous martingales with finite quadratic

variation. By employing the strong law of large numbers for local martingales, we have

lim
t→∞

S(t)− S(0)
t

+
1
t

∫ t

0
pσ1SIdB1(s) +

1
t

∫ t

0
(1− p)

σ2SI
1 + mS + nI

dB2(s) = 0 a.s.

Hence,

lim
t→∞

1
t

∫ t

0
Sds ≥ µ

µ + pβ1 + (1− p)β2C
a.s.

Then, we define a function F on Γ1

F(S, I, R) = log I +
pβ1 +

(1−p)β2
1 + m + n
µ

S + B log R, (13)

where B is the unique solution to the equation

− (µ + γ1 + γ2) B + 2
√

γ1η
√

B− γ1η

µ + γ1 + γ2
= 0, (14)

given by B = γ1η

(µ+γ1+γ2)
2 . Using (1− I − R)2 ≤ 1 and (8) we infer that

d log I ≥
[

pβ1S + (1− p)
β2S

1 + mS + nI
−
(

µ + η +
1
2

p2σ2
1 +

1
2
(1− p)2σ2

2

)
+ γ1

R
I

]
dt

+ pσ1SdB1(t) +
(1− p)σ2S

1 + mS + nI
dB2(t).

(15)

Additionally, we also have

d
( pβ1 +

(1−p)β2
1 + m + n
µ

S
)
=

[
pβ1 +

(1− p)β2

1 + m + n
− pβ1S− (1− p)β2S

1 + m + n
−

p2β2
1SI

µ
−

p(1− p)β1β2SI SI
1 + m + n

µ

−
p(1− p)β1β2SI SI

1 + mS + nI
µ

−
β2

2(1−p)2SI
(1 + m + n)(1 + mS + nI)

µ
+

γ2(pβ1 +
(1−p)β2

1 + m + n )R
µ

]
dt

−
pβ1 +

(1−p)β2
1 + m + n
µ

pσ1SIdB1(t)−
pβ1 +

(1−p)β2
1 + m + n
µ

(1− p)σ2SI
1 + mS + nI

dB2(t)

≥
[

pβ1 +
(1− p)β2

1 + m + n
− pβ1S− (1− p)β2S

1 + m + n
− (pβ1 + (1− p)β2)

2

µ
I
]

dt

−
pβ1 +

(1−p)β2
1 + m + n
µ

pσ1SIdB1(t)−
pβ1 +

(1−p)β2
1 + m + n
µ

(1− p)σ2SI
1 + mS + nI

dB2(t).

(16)
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Moreover,

dB log R =

[
ηB

I
R
− (µ + γ1 + γ2)B

]
dt. (17)

Combining (15)–(17), we have

dF(S, I, R) ≥
[

pβ1 +
(1− p)β2

1 + m + n
−
(

µ + η +
1
2

p2σ2
1 +

1
2
(1− p)2σ2

2

)
− (µ + γ1 + γ2) B

+ (

√
γ1R

I
−
√

Bη I
R

)2 +2
√

γ1ηB− (pβ1 + (1− p)β2)
2

µ
I

]
d t

+

1−
pβ1 +

(1−p)β2
1 + m + n
µ

I

 pσ1SdB1(t) +

1−
pβ1 +

(1−p)β2
1 + m + n
µ

I

 (1− p)σ2S
1 + mS + nI

dB2(t)

≥
[

pβ1 +
(1− p)β2

1 + m + n
−
(

µ + η +
1
2

p2σ2
1 +

1
2
(1− p)2σ2

2

)
− (µ + γ1 + γ2) B

+2
√

γ1ηB− (pβ1 + (1− p)β2)
2

µ
I

]
d t

+

1−
pβ1 +

(1−p)β2
1 + m + n
µ

I

 pσ1SdB1(t) +

1−
pβ1 +

(1−p)β2
1 + m + n
µ

I

 (1− p)σ2S
1 + mS + nI

dB2(t).

By using (14), we have

dF(S, I, R) ≥
[(

pβ1 +
(1− p)β2

1 + m + n

)(
1− 1
R0

s

)
− (pβ1 + (1− p)β2)

2

µ
I

]
dt

+

1−
pβ1 +

(1−p)β2
1 + m + n
µ

I

 pσ1SdB1(t) +

1−
pβ1 +

(1−p)β2
1 + m + n
µ

I

 (1− p)σ2S
1 + mS + nI

dB2(t).

(18)

Integrating the last inequality from 0 to t and multiplying by 1
t , it yields that

F(S(t), I(t), R(t))− F(S(0), I(0), R(0))
t

≥
(

pβ1 +
(1− p)β2

1 + m + n

)(
1− 1
R0

s

)
− (pβ1 + (1− p)β2)

2

µt

∫ t

0
I(u)du +

M1(t)
t

+
M2(t)

t
,

where

M1(t) = pσ1

∫ t

0
S(u)

(
1−

pβ1 +
(1−p)β2
1+m+n

µ
I(u)

)
dB1(u),

and

M2(t) = (1− p)σ2

∫ t

0

σ2S(u)
1 + mS(u) + nI(u)

(
1−

pβ1 +
(1−p)β2
1+m+n

µ
I(u)

)
dB2(u).

Therefore

1
t

∫ t

0
I(u)du ≥

µ(pβ1 +
(1−p)β2
1+m+n )

(pβ1 + (1− p)β2)
2

(
1− 1
R0

s

)
− µ

(pβ1 + (1− p)β2)
2

F(S(t), I(t), R(t))
t

+
µ

(pβ1 + (1− p)β2)
2

F(S(0), I(0), R(0))
t

+
µ

(pβ1 + (1− p)β2)
2

M1t
t

+
µ

(pβ1 + (1− p)β2)
2

M2t
t

.
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Clearly, M1(t),M2(t) are continuous martingales and M1(0) = 0, M2(0) = 0 with their
quadratic variation

[M1](t) = p2σ1
2
∫ t

0

[
S2(u)

(
1−

pβ1 +
(1−p)β2
1+m+n

µ
I(u)

)]2

du <p2σ1
2
(

1 +
pβ1 +

(1−p)β2
1+m+n

µ

)2

t,

[M2](t) =(1− p)2σ2
2
∫ t

0

(
1−

pβ1 +
(1−p)β2
1+m+n

µ
I(u)

)2( S(u)
1 + mS(u) + nI(u)

)2

du

<(1− p)2σ2
2
(

1 +
pβ1 +

(1−p)β2
1+m+n

µ

)2

t.

Hence, by the strong law of large numbers for local martingales, we have

lim
t→∞

1
t

M1(t)
t

= 0 a.s.,

lim
t→∞

1
t

M2(t)
t

= 0 a.s.

Consequently, we have

lim
t→∞

inf 1
t
∫ t

0 I(u)du ≥
µ

(
pβ1+

(1−p)β2
1+m+n

)
(pβ1+(1−p)β2)

2

(
1− 1

R0
s

)
− µ

(pβ1+(1−p)β2)
2 lim

t→∞
sup F(S(t),I(t),R(t))

t a.s. (19)

Clearly,

lim
t→∞

sup
F(S(t), I(t), R(t))

t
≤ lim

t→∞
sup

pβ1 +
(1−p)β2
1+m+n

µt
= 0.

Combining (19), we find the desired result.

lim
t→∞

inf
1
t

∫ t

0
I(u)du ≥

µ

[
pβ1 +

(1−p)β2
1+m+n

]
(pβ1 + (1− p)β2)

2

(
1− 1
R0

s

)
a.s. (20)

Integrating the last equation of (3) and multiplying by 1
t , we obtain

µ + γ1 + γ2

t

∫ t

0
R(s)ds =

η

t

∫ t

0
I(s)ds +

R(0)− R(t)
t

.

As lim
t→∞

R(0)−R(t)
t = 0, using (20), we deduce that

lim
t→∞

inf
1
t

∫ t

0
R(s)ds ≥

ηµ

(
pβ1 +

(1−p)β2
1+m+n

)
(µ + γ1 + γ2)(pβ1 + (1− p)β2)

2

(
1− 1
R0

s

)
.

Hence, we complete the proof.

5. Existence of a Stationary Distribution

In Section 4, we obtain that the persistence in the mean of the system starts from any initial
condition of the invariant region Γ1 on certain conditions. In this section, to better understand the
asymptotic behavior of the diseases shown in the SDE system (4), in the case ofR0

s > 1, we present
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that there exists a stationary distribution of the process (I(t), R(t)). The diffusion matrix of system (4)
is shown as

∑ (i, r) =


(

pσ1(1− i− r)i + (1− p) σ2(1−i−r)i
1+m(1−i−r)+ni

)2

0

0
0

)
.

As the diffusion matrix is degenerate and dissatisfies the uniform ellipticity condition, we can not
directly prove the asymptotic stability using Khasminskii’s theorem [23]. To handle this situation, we
apply the integral Markov semigroup theory, presented in [14,24,25].

Now, we consider the space (Γ2,B(Γ2), m), where B(Γ2) is the σ-algebra of Borel subsets of Γ2

and m is the Lebesgue measure on (Γ2,B(Γ2)). Throughout this section, we denote the transition
probability function for the diffusion process (I(t), R(t)), i.e.,

P(t, i0, r0, B) = P((I(t), R(t)) ∈ B|I(0) = i0, R(0) = r0).

In Theorem 4, we show the absolute continuity of the transition function of the degenerate
diffusion processes, as described by the Stratonovich equation, using the Hörmander condition, given
in [26]. Let K(t, i, r, i0, r0) be the density of P(t, i0, r0, .). For any t ≥ 0, the operator P(t) can be defined
as follows

P(t)g(i, r) =
∫

Γ2

K(t, i, r, i0, r0)g(i, r)m(di, dr), g ∈ D.

Hence, according to system (4), we define the integral Markov semigroup {P(t)}t≥0.

Theorem 4. The transition probability function P(t, i0, r0, .) of the solution (I(t), R(t)) of system (4), has a
density K(t, i, r, i0, r0) ∈ C∞(R, Γ2, Γ2).

Proof. Denote a(x) and b(x) two vectors fields defined on Rn, then the Lie bracket [a, b](x) is
presented as

[a, b]j(x) =
n

∑
k=1

[
ak

∂bj

∂xk
(x)− bk

∂aj

∂xk
(x)
]

,

j = 1, . . . , n. We write the Itô system (4) as the Stratonovitch SDE(
dI
dR

)
=

(
a1(I, R)
a2(I, R)

)
dt +

(
pσ1(1− I − R)I + (1− p) σ2(1−I−R)I

1+m(1−I−R)+nI
0

)
◦ dB(t), (21)

where
a1(I, R) = pβ1(1− I − R)I + (1− p) β2(1−I−R)I

1+m(1−I−R)+nI − (µ + η)I + γ1R,

a2(I, R) = η I − (µ + γ1 + γ2)R.

Let a(I, R) = (a1(I, R), a2(I, R))′ and b(I, R) = (pσ1(1 − I − R)I + (1 −
p) σ2(1−I−R)I

1+m(1−I−R)+nI , 0)′. By direct calculation, we obtain det([a, b](I, R), b(I, R)) =

η(pσ1(1− I − R)I + (1− p) σ2(1−I−R)I
1+m(1−I−R)+nI )

2 > 0 for any [I, R] ∈ Γ2. Accordingly, the vectors
[a, b](I, R) and b(I, R) span the space Γ2. By employing the Hörmander theorem, the probability
function P(t, i0, r0, .) has a density K(t, i, r, i0, r0) ∈ C∞(R, Γ2, Γ2).

Now we use the approach given in [24,25] to verify that K is positive. We fix a function φ ∈
C([0, T], R). Consider the system of differential equations below{

İφ(t) = a1(Iφ(t), Rφ(t)) + (pσ1(1− Iφ(t)− Rφ(t))Iφ(t) + (1− p) σ2(1−Iφ(t)−Rφ(t))Iφ(t)
1+m(1−Iϕ(t)−Rϕ(t))+nIϕ(t)

ϕ(t),

Ṙφ(t) = a2(Iφ(t), Rφ(t)),
(22)
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with the initial condition Iφ(0) = i0, Rφ(0) = r0 and let Di0,r0,φ be the Frechét derivative of the

function h→
(

Iφ+h(T)
Rφ+h(T)

)
from C([0, T], R) to R2. The derivative Di0,r0,φ could be found as follows.

Let E(t) = a′(Iφ(t), Rφ(t)) + φ(t)b′(Iφ(t), Rφ(t)), where a′ and b′ are the Jacobian of a(I, R) and
b(I, R), respectively. Denote Q(t, t0), for 0 ≤ t0 ≤ t ≤ T, as the function satisfying Q(t0, t0) = I,
∂Q
∂t (t, t0) = E(t)Q(t, t0). Then

Di0,r0,φh =
∫ T

0
Q(T, s)b(Iφ(s), Rφ(s))h(s)ds.

If, for some φ ∈ C([0, T], R), the derivative Di0,r0,φ has rank 2, thenK(t, i, r, i0, r0) > 0 for i = Iφ(T)
and r = Rφ(T).

Theorem 5. For each (i0, r0) ∈ Γ2 and φ ∈ C([0, T],R), the derivative Di0,r0,φ has rank 2.

Proof. Let ε ∈ (0, T) and h = 1[T−ε,T]. By a first-order Taylor series approximation, we obtain

Q(T, s) = 1− E(T)(T − s) + o(T − s). Then Di0,r0,φh = εe − 1
2 ε2E(T)e + o(ε2) where e =

(
1
0

)
.

By computation we have

E(T)e =

 p(β1 + φσ1)ϕφ(t) + (1− p)(β2 + φσ2)(
ϕφ(t)

1+mρφ(t))+nIφ(t)
− (n−m)ρφ(t)Iφ(t)

(1+mρφ(t))+nIφ(t))
2 − (µ + η)

η

 .

where ϕφ(t) = 1− 2Iφ(t)− Rφ(t) and ρφ(t) = 1− Iφ(t)− Rφ(t). Therefore, e and E(t)e are linearly
independent and the derivative Di0,r0,φ has rank 2.

Now we verify the positivity of K. Hence, we investigate the controllability of the region Γ2.

Theorem 6. For each (I0, R0) ∈ Γ2 and for almost every (I1, R1) ∈ Γ2, there exists T > 0, such that
K(T, I1, R1, I0, R0) > 0.

Proof. Fixed (i0, r0), (i1, r1) ∈ Γ2. Without a loss of generality, we assume that r1 < r0. Now we show
that there is a control function φ and T > 0 such that Iφ(0) = i0, Rφ(0) = r0, Iφ(T) = i1, Rφ(T) = r1.
We first consider the following ODEs

Ẋ1 = −(µ + γ1 + γ2)X1,
Ẏ1 = η − (µ + γ1 + γ2 + η)Y1,
X1(0) = Y1(0) = r0,

(23)

with positive solutions X1 and Y1. We define the function R1(t), as follows

R1(t) = X1(t) +
i0

1− r0
(Y1(t)− X1(t)).

Thus, we have
R1(0) = r0, Ṙ1(0) = ηi0 − (µ + γ1 + γ2). (24)

Furthermore

Ṙ1(t) = −(µ + γ1 + γ2)R1(t) +
λi0

1− r0
(1−Y1(t)),

= η − (µ + γ1 + γ2 + η)R1(t) +
η(1− i0 − r0)

1− r0
(X1(t)− 1).
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As X1(t), Y1(t) ∈ (0, 1) for all t ≥ 0. Then

− (µ + γ1 + γ2)R1(t) < Ṙ1(t) < η − (µ + γ1 + γ2 + η)R1(t). (25)

Similarly, we consider X2 and Y2 the solutions of the ODEs
Ẋ2 = −(µ + γ1 + γ2)X2,
Ẏ2 = η − (µ + γ1 + γ2 + η)Y2,
X2(0) = Y2(0) = r1.

(26)

Then, the function

Z(t) = X2(t) +
i1

1− r1
(Y2(t)− X2(t)),

verifies the following
Z(0) = r1, Ż(0) = ηi1 − (µ + γ1 + γ2)r1. (27)

Now, we choose a differentiable function, R3(t) = Z(t− T), where T is a sufficiently large number,
such that

X1(t) ≤ R3(t) ≤ Y1(t), ∀t ∈ [T − ε, ε], (28)

where ε is a small enough positive number. Hence, from (27) and (28) we get that for all t ∈ [T − ε, T],
R3(t) verifies

− (µ + γ1 + γ2)R3(t) < Ṙ3(t) < η − (µ + γ1 + γ2 + η)R3(t), (29)

R2(T) = r1, Ṙ2(T) = ηi1 − (µ + γ1 + γ2)r1. (30)

Finally, we define a function R2(t) on [ε, T − ε] such that X1(t) ≤ R2(t) ≤ Y1(t), then we have

− (µ + γ1 + γ2)R2(t) < Ṙ2(t) < η − (µ + γ1 + γ2 + η)R2(t). (31)

In addition, we choose R2(t) appropriate to define the C1-function Rφ as follows

Rφ(t) =


R1(t), 0 ≤ t ≤ ε,
R2(t), ε ≤ t ≤ T − ε,
R3(t), T − ε ≤ t ≤ T.

Hence the function Rφ, constructed above, possesses the properties below

Rφ(0) = r0, Rφ(t) = r1,

Ṙφ(0)=ηi0 − (µ + γ1 + γ2)r0, Ṙφ(T) = ηi1 − (µ + γ1 + γ2)r1,

− (µ + γ1 + γ2)Rφ(t) < Ṙφ(t) < η − (µ + γ1 + γ2 + η)Rφ(t).

(32)

Now, we define the function Iφ(t) on the interval [0, T] by

Iφ(t) =
1
η
(Ṙφ(t) + (µ + γ1 + γ2)Rφ(t)).

Thus, we can deduce from (32) that 0 < Iφ(t) + Rφ(t) < 1 for all t ∈ [0, T]. After that, we choose
the control function φ(t) as follows

φ(t) =
İφ(t)− a1(Iφ(t), Rφ(t))

[(pσ1(1− Iφ(t)− Rφ(t)) + (1− p) σ2(1−Iφ(t)−Rφ(t))
1+m(1−Iφ(t)−Rφ(t))+nIφ(t)

]Iφ(t)
.
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Therefore, with the above determinate continuous function φ, (Iφ(t), Rφ(t)) is the solution to
system (22). Furthermore, from (32) and the chosen of Iφ(t), we find that this solution satisfies

(Iφ(0), Rφ(0)) = (i0, r0), (Iφ(T), Rφ(T)) = (i1, r1).

This completes the proof.

Theorem 7. IfR0
s > 1, then the semigroup {P(t)}t≥0 is asymptotically stable. This indicates that there exists

a unique density K∗(i, r), such that∫ ∫
Γ2

|K(t, i, r, i0, r0)−K∗(i, r)|didr = 0 f or all (i0, r0) ∈ Γ2.

Proof. First, we construct a positive C2-function V2 and a closed set ∆ ⊂ Γ2 such that

sup
(I,R)∈Γ2\∆

LV2(I, R) < 0,

where L is the differential operator related to the system (4) and ∆ = (α1, α2)× (α3, α4) ⊂ Γ2 in which
α, α1, α2, α3, and α4 are positive constants to be chosen later. Then the semigroup {P(t)}t≥0 is not
sweeping from the set ∆. It is clear that the function fu,v(x) = u log x− vx, u, v > 0 has its maximum
at u

v . Using the definition of F(S, I, R) in (13), we can easily deduce that

F(I, R) + a log R = log I +
pβ1 +

(1−p)β2
1 + m + n
µ

(1− I − R) + B log R + a log R

= f
1,

pβ1+
(1−p)β2

1 + m + n
µ

(I) + f
B+a,

pβ1+
(1−p)β2

1 + m + n
µ

(R) +
pβ1 +

(1−p)β2
1 + m + n
µ

≤ f
1,

pβ1+
(1−p)β2

1 + m + n
µ

 µ

pβ1 +
(1−p)β2

1 + m + n

+ f
B+a,

pβ1+
(1−p)β2

1 + m + n
µ

(
µ(B + a)

pβ1 +
(1−p)β2

1 + m + n

)
+

pβ1 +
(1−p)β2

1 + m + n
µ

.

Hence,

V2(I, R) = f
1,

pβ1+
(1−p)β2

1 + m + n
µ

(
µ

pβ1 +
(1−p)β2

1 + m + n

)
+ f

B+a,
pβ1+

(1−p)β2
1 + m + n

µ

(
µ(B + a)

pβ1 +
(1−p)β2

1 + m + n

)
+

pβ1 +
(1−p)β2

1 + m + n
µ

+ 1

− F(I, R)− a log R > 0.

Combining (18) and the differential operator L, we have

LV2(I, R) ≤ −
(

pβ1 +
(1− p)β2

1 + m + n

)(
1− 1
R0

s

)
+

(pβ1 + (1− p)β2)
2

µ
I + a(µ+γ1 +γ2)−

aη I
R

. (33)

Let (I, R) ∈ Γ2 \ ∆. We consider the following four cases:

• If I < a1. In this case, we choose a1 and a to be sufficiently small, such that

LV2(I, R) ≤ −
(

pβ1 +
(1− p)β2

1 + m + n

)(
1− 1
R0

s

)
+

(pβ1 + (1− p)β2)
2

µ
a1 + a(µ + γ1 + γ2) < 0.

• If a1 ≤ I < 1 and R < a3, we choose a3 to be sufficiently small, such that

LV2(I, R) ≤ (pβ1 + (1− p)β2)
2

µ
a1 + a(µ + γ1 + γ2)−

aηa1

a3
< 0.
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• If a2 ≤ I < 1− a3 and a3 ≤ R < 1− a2, we choose a2 < 1 to be sufficiently close to 1, such that

LV2(I, R) ≤ (pβ1 + (1− p)β2)
2

µ
a1 + a(µ + γ1 + γ2)−

aηa2

1− a2
< 0.

• If a1 ≤ I < 1− a4 and a4 ≤ R < 1− a1, we choose a4 < 1 to be sufficiently close to 1 and a to be
sufficiently small, such that

LV2(I, R) ≤ −
(

pβ1 +
(1−p)β2

1 + m + n

)
(1− 1

R0
s
) + (pβ1+(1−p)β2)

2

µ a1(1− a4) + a(µ + γ1 + γ2) < 0.

Then, with the above appropriate choice on the five parameters, we conclude that

LV2(I, R) < 0, ∀(I, R) ∈ Γ2 \ ∆,

as intended. We complete the proof of this theorem.

6. Numerical Simulations

We simulate the system (3) for various parameter sets to verify the main theoretical results raised
in this paper. For simplicity, we choose the following parameters η = 0.1, p = 0.3.

Example 1. Figure 1 presents a single path of the solution (S(t), I(t), R(t)) to the stochastic system (3) with
initial condition (0.7, 0.2, 0.1) for the parameters β1 = β2 = 0.3, σ1 = σ2 = 0.5, γ1 = 0.04, γ2 = 0.01,
m = 0.25, n = 0.3, whereR0 = 0.8415 < 1. Then the disease of system (4) will die out.

Example 2. Figure 2 presents the solution (S(t), I(t), R(t)) to system (3) with an initial conditions
(0.7, 0.2, 0.1) for the parameters µ = 0.3, β1 = β2 = 0.6, σ1 = σ2 = 0.2, γ1 = 0.2, γ2 = 0.1, m = 0.15,
n = 0.2, where R0

s = 1.2983 > 1. Then from Theorem 4 the disease of system (3) is permanent in mean,
and admits a stationary distribution.

Example 3. Figure 3 presents the results of SDE (3) with initial conditions (0.7, 0.2, 0.1) for γ1 = 0, 0.5, 1,
and the other parameters are the same as in Example 2. Then we have 1 < R0

s (0) = 1.1932 < R0
s (0.5) =

1.3794 < R0
s (1) = 1.4437. Therefore, a relapse can increase the incidence of the disease.
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Figure 2. Paths of the solution to the system (3) using the data of Example (1).
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Figure 3. Paths of the solution to the system (3) using the data of Example 3.

7. Conclusions

In this paper, we focus on the principle properties of a stochastic epidemic model with relapse and
temporary immunity. The highlight of this paper is that, considering that the incidence rate of diseases
may change as the environment changes, we put forward a new version of the transmission function
ϕ(S, I) = ∑n

i=1 pi ϕi(S, I), ∑n
i=1 pi = 1. We assume ϕ(S, I) = pβ1SI + (1− p) β2SI

1 + mS + nI (0 < p < 1),
and this transmission function indicates that, in different environments, the disease has two different
incidence rates, which are the bilinear incidence rate and the Beddington–DeAngelis incidence rate.
Moreover, if the incidence rate of this disease is only the bilinear incidence rate, then p = 1. In contrast,
if p = 0, this implies that the disease has only one incidence, which is the Beddington–DeAngelis
incidence rate. Therefore, our assumptions are both mathematically and biologically reasonable.
The extinction result shows that the disease will die out almost surely whenR0 < 1. Then we obtain
that the disease persists in the mean when R0

s > 1, and there exists a stationary distribution for the
stochastic model in the meantime (see Figure 2). We also mention that a relapse can increase the risk of
diseases, asR0 increases with the relapse rate γ1 (see Figure 3).

There are also many related problems to be solved with further investigation. For example:

- The long-time behavior of the system (3) whenR0
s = 1.

- If there exists a thresholdR∗, whenR0
s < R∗ < R0, for the behavior of the system (3).

In order to make this model more reasonable, we can also investigate delay stochastic differential
equation models, control stochastic differential equation models, and impulsive stochastic differential
equation models of system (2) for further work. The approaches are shown in [27–41].
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