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Abstract: We investigate the deformations of the Sasaki–Einstein structures of the five-dimensional
spaces T1,1 and Yp,q by exploiting the transverse structure of the Sasaki manifolds. We consider local
deformations of the Sasaki structures preserving the Reeb vector fields but modify the contact forms.
In this class of deformations, we analyze the transverse Kähler–Ricci flow equations. We produce
some particular explicit solutions representing families of new Sasakian structures.
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1. Introduction

Sasakian geometry is often referred to as an odd-dimensional cousin of Kähler geometry and so
is of independent interest. A Sasakian structure sits beween two Kähler structures, namely the one
on its metric cone and the one on the normal bundle of its Reeb foliation. In physics, a prominent
role is played by Sasaki–Einstein manifolds due to their applications in the so-called AdS/CFT
correspondence.

During the last years, there is a lot of work done on the original AdS/CFT correspondence
in maximally supersymmetric theories. Similar ideas have been applied to theories with less
supersymmetry. Some of them are the gauge/gravity dualities that preserve N = 1 supersymmetry.
They are of the form AdS5 × X5, where X5 is a five-dimensional Sasaki–Einstein manifold [1,2].

The first nontrivial example in the AdS/CFT correspondence with the use of these Sasaki–Einstein
manifolds was made in the case of homogeneous manifold T1,1 [2]. Significant progress has been made
in Sasaki–Einstein backgrounds and their dual field theories when an infinite family of inhomogeneous
metrics on Yp,q ∼= S2 × S3 was found [3]. All these manifolds have a Reeb vector field, which is a
constant norm Killing vector field and, under the AdS/CFT correspondence, is isomorphic to the
R-symmetry of dual field theory. The construction of Reference [3] was immediately generalized to
higher dimensions [4]. For example, AdS4 × X7 is a supersymmetric solution of eleven-dimensional
supergravity that is expected to be dual to a three-dimensional superconformal field theory [5].
However, dimension five is the most interesting physically and the purpose of this work is to investigate
deformations of Sasaki–Einstein structures in the frame of Sasaki–Ricci flow.

In the context of the relationship between the Sasakian structure and the two Kähler structures,
we mention that, in the case of a Sasaki–Einstein manifold, the Riemannian metric cone is Ricci-flat
and the transverse Kähler structure is Kähler–Einstein.

A well-known method for generating Einstein metrics on manifolds is the Ricci flow introduced
by Hamilton in Reference [6]. Recently, the method was applied to Sasaki manifolds in Reference [7].
When one considers the problem of finding a Sasaki–Einstein metric, which is one of the main interests
in physics, it is reduced to the problem of finding a transverse Kähler–Einstein metric. In Reference [8],
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the existence of transverse Kähler–Ricci solitons on compact toric Sasaki manifolds, of which the basic
first Chern form of the normal bundle of the Reeb foliation is positive and the first Chern class of the
contact bundle is trivial, is proven.

In this paper, we investigate the Sasaki–Ricci flow equations on five-dimensional Sasaki–Einstein
spaces T1,1 and Yp,q. For this purpose, we perform deformations of Sasakian structures exploiting the
transverse Kähler structure of Sasaki manifolds. These deformations of Sasaki–Einstein structures have
important implications in holography and string theory [9]. We introduce local complex coordinates
to parametrize the transverse holomorphic structure of the Sasaki–Kähler potential. In spite of the
complexity of the Sasaki–Ricci flow equations, we are able to produce some explicit particular solutions.
The perturbations that do not modify the transverse metric preserve the Sasaki–Einstein structures,
whereas if the transverse metric is changed, the Sasaki structures are preserved but are not Einstein
anymore. Preliminary results concerning the Sasaki–Ricci flow on these spaces have been reported in
References [10–12]. Now, we give some explicit analytical solutions of the Sasaki–Ricci flow equations
and discuss their relevance to the symmetries of the deformed Sasaki structures.

The paper is organized as follows. In the next section, we review fundamentals of Sasaki geometry,
deformations of Sasaki structures, and Sasaki–Ricci flow. In Section 3, we investigate the Sasaki–Ricci
flow equations on the Sasaki–Einstein spaces T1,1 and Yp,q. In the last section, we provide some
closing remarks.

2. Background

In this section, we recall definitions and some basic facts of Sasakian manifolds and their
deformations. We refer to the monograph of Reference [13] for details.

2.1. Sasakian Manifolds

Let (M, g) be a (2n + 1)-dimensional Riemannian manifold, ∇ be the Levi–Civita connection of
the Riemannian metric g, and Ric denote the Ricci tensor of ∇.

Definition 1. A Riemannian manifold (M, g) is Sasakian if its metric cone C(M, ḡ) = R+ ×M with metric
ḡ = dr2 + r2g is Kähler with r as the coordinate on R+ = (0,+∞).

M is a contact manifold with the contact 1-form η such that η ∧ (dη)n 6= 0. There is a canonical
vector field ξ, called Reeb vector field, defined by

η(ξ) = 1 , dη(ξ, X) = 0 (1)

for any vector field X on M.
η defines a 2n-dimensional vector bundle D = ker η over M, and the Sasakian metric g gives an

orthogonal splitting of the tangential bundle TM:

TM = D ⊕ Lξ (2)

where Lξ is the trivial bundle generated by the Reeb vector ξ. The restriction of the Sasaki metric g to
D gives a well-defined Hermitian metric gT , which is in fact Kähler. The metric gT is related to the
Sasakian metric g by

g = gT + η ⊗ η . (3)

We define a tensor a tensor Φ of type (1, 1) satisfying

Φ2 = −I + η ⊗ ξ and g(Φ(X), Φ(Y)) = g(X, Y)− η(X)η(Y) (4)

for any vector fields X, Y on M.
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Concerning the Einstein condition of a (2n+ 1)-dimensional Sasaki manifold (M, g), the following
three conditions are equivalent:

1. g is Einstein with Ricg = 2ng;
2. the metric cone C(M, ḡ) is a Ricci-flat Kähler manifold (i.e. Calabi–Yau manifold); and
3. the transverse Kähler metric gT satisfies RicgT = (2n + 2)gT .

Note that we often refer to 1
2 dη as the Kähler form of the transverse Kähler metric gT .

The transverse Ricci form represents the first Chern class cB
1 , and let us denote by c1(D) the de

Rham cohomology class of D = kerη.
We also recall the Sasakian structure and its transverse structure on local coordinates. Let Uα be

an open covering of M and πα : Uα → Vα ⊂ Cn submersions such that

πα ◦ π−1
β : πβ(Uα ∩Uβ)→ πα(Uα ∩Uβ) (5)

is biholomorphic when Uα ∩Uβ is not empty. One can choose local coordinates charts (z1, · · · , zn) on Vα

and local coordinates charts (x, z1, · · · , zn) on Uα such that ξ = ∂x. We shall use the following notations:

∂x =
∂

∂x
, ∂i =

∂

∂zi , ∂̄j = ∂ j̄ =
∂

∂z̄j . (6)

For the study of the deformations of the Sasaki structures, it is necessary to introduce the basic
forms. A differential r-form α is said to be basic if

ιξ α = 0 , ιξ dα = 0 (7)

where ιξ denotes the inner product. In the system of local coordinates (x, z1, · · · , zn), a basic r-form of
type (p, q) , r = p + q, has the form

α = αi1···ip j̄1··· j̄q dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq , (8)

where αi1···ip j̄1··· j̄q does not depend on x. In particular a function, ϕ is basic if and only if ξ(ϕ) = 0.
Note that, in the chart Uα, we may write

ξ =
∂

∂x
, (9)

η = dx + i
n

∑
j=1

(K,jdzj)− i
n

∑̄
j=1

(K, j̄dz̄j) , (10)

dη = −2i
n

∑
j,k̄=1

K,jk̄dzj ∧ dz̄k , (11)

g = η ⊗ η + 2
n

∑
j,k̄=1

K,jk̄dzjdz̄k , (12)

Φ = −i
n

∑
j=1

[(∂j − iK,j∂x)⊗ dzj] + i
n

∑̄
j=1

(∂ j̄ + iK, j̄∂x)⊗ dz̄j] (13)

where K : U → R is a local basic function called Sasaki potential [14] and K,j =
∂

∂zj K , K,jk̄ =
∂2

∂zj∂z̄k K.
Finally, we introduce the notion of toric Sasaki manifold.

Definition 2. A Sasaki manifold (M, g) is said to be toric if the Kähler cone manifold C(M) is toric, namely a
(n + 1)-dimensional torus G acts on (C(M), ḡ) effectively as holomorphic isometries.
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2.2. Deformations of Sasaki Structures

Let us assume that (η, ξ, Φ, g) defines a Sasaki structure on M. We deform the Sasakian structure
keeping the Reeb vector field ξ fixed and perturbing the contact form η with a basic function ϕ:

η̃ = η + 2dc
B ϕ . (14)

Here, we introduced the canonical basic Dolbeault operators

∂B =
n

∑
j=1

dzj ∂

∂zj , ∂̄B =
n

∑
j=1

dz̄j ∂

∂z̄j (15)

and dc
B = i

2 (∂̄B − ∂B). Accordingly, the tensor Φ and the metric are modified as follows:

Φ̃ = Φ− (ξ ⊗ (dc
B ϕ)) ◦Φ , (16)

g̃ = dη̃ ◦ (I ⊗ Φ̃) + η̃ ⊗ η̃ . (17)

In Reference [7], the following is proven:

Lemma 1. (M, ξ, η̃, Φ̃, g̃) is also a Saskian structure.

A simple proof can be done using the local frame and by observing that the Sasaki potential K is
replaced by K + ϕ.

Definition 3. A complex vector field X on a Sasaki manifold is called a Hamiltonian vector field if

1. dπα(X) is a holomorphic vector field on Vα and
2. the complex vector field

uX = iη(X) (18)

satisfies

∂̄BuX = − i
2

ι(X)dη . (19)

Such a function uX is called a Hamiltonian function [8].

In the foliation chart on Uα, X is written as

X = η(X)
∂

∂x
+

n

∑
j=i

X j ∂

∂zj − η

(
n

∑
j=i

X j ∂

∂zj

)
∂

∂x
. (20)

Remark 1. If the contact form η is modified according to Equation (14) with a basic function ϕ, the Hamilton
function uX is deformed to uX + Xϕ.

2.3. Sasaki–Ricci Flow

In what follows, we assume cB
1 > 0 and c1 = 0. We consider the flow (ξ, η(t), Φ(t), g(t)) with an

initial condition (ξ, η(0), Φ(0), g(0)) = (ξ, η, Φ, g)

d
dt

gT(t) = −RicT
g(t) + (2n + 2)gT . (21)

This flow is called Sasaki-Ricci flow.
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Let η(t) = η + 2dc
B ϕ(t) with ϕ(t) as a family of basic functions similar to the deformations

considered in Equation (14). The flow can be written as

dϕ

dt
= log det(gT

,i j̄ + ϕ,i j̄)− log det(gT
,i j̄) + (2n + 2)ϕ− h (22)

where h is a basic function. It was proved in Reference [7] that this flow is well posed, preserving the
Sasakian structure of M.

A Sasaki structure (M, ξ, η, Φ, g) with a Hamiltonian holomorphic vector field X is called a
transverse Kähler–Ricci soliton or Sasaki–Ricci soliton if

RicT − (2n + 2)gT = LX gT (23)

where LX stands for the Lie derivative by X. In Reference [8], it is proved that, on any toric Sasaki
manifold, there exists a Sasaki–Ricci soliton.

Remark 2. On a Sasaki–Einstein manifold, choosing the the vector field X proportional to the Reeb vector field,
i.e., X = cξ with c a constant, the Hamilton function uX is c.

3. Sasaki–Ricci Flow on Spaces T1,1 and Yp,q

In what follows, we consider the Sasaki–Ricci flow on five-dimensional Sasaki–Einstein spaces
T1,1 and Yp,q, looking for some explicit solutions of the flow equations.

3.1. Sasaki–Ricci flow on Sasaki–Einstein Space T1,1

The Sasaki–Einstein space T1,1 is one the most renowned examples of homogeneous
Sasaki–Einstein space in five dimensions.

The standard metric on this manifold is as follows [15,16]:

ds2(T1,1) =
1
6
(dθ2

1 + sin2 θ1dφ2
1 + dθ2

2 + sin2 θ2dφ2
2) +

1
9
(dψ + cos θ1dφ1 + cos θ2dφ2)

2 (24)

where θi ∈ [0, π), φi ∈ [0, 2π), i = 1, 2, and ψ ∈ [0, 4π). The contact 1-form η is

η =
1
3
(dψ + cos θ1 dφ1 + cos θ2 dφ2) (25)

and the Reeb vector field has the form
ξ = 3

∂

∂ψ
. (26)

The isometries of the metric in Equation (24) form the group SU(2)×U(1)×U(1), with the Reeb
vector field in Equation (26) being one of the Killing vectors.

Writing the metric in Equation (24) as in Equation (3) with the contact form of Equation (25),
we get for the transverse metric

gT =
1
6
(dθ2

1 + sin2 θ1dφ2
1 + dθ2

2 + sin2 θ2dφ2
2) . (27)

As on T1,1, the transverse structure is locally isomorphic to a product S2 × S2; for each S2 sphere,
the complex coordinate zj is related to the spherical coordinates as

zj = tan
θj

2
eiφj , j = 1, 2 . (28)
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The Sasaki potential of the transverse metric gT is

K =
1
3

2

∑
j=1

log(1 + zj z̄j)− 1
6

2

∑
j=1

log(zj z̄j) . (29)

Assuming a deformation of the contact form with a basic function as in Equation (14), the Ricci
flow equation has the following form [11]:

dϕ

dt
= log

(
ϕ11̄ ϕ22̄ − ϕ12̄ ϕ21̄ + cos4 θ1

2
ϕ22̄ + cos4 θ2

2
ϕ11̄ + cos4 θ1

2
cos4 θ2

2

)
− log

(
cos4 θ1

2
cos4 θ2

2

)
+ 6ϕ . (30)

This equation is quite involved, and it is not expected that the general solution can be found.
Instead, we search for particular solutions imposing a factorization of the dependence on the variable t
and angle coordinates as follows:

ϕ(t, θ1, θ2, φ1, φ2) = f (t) · [g1(θ1, φ1) + g2(θ2, φ2)] (31)

where the functions f , g1, g2 are to be determined. Note also that the dependence on the angles
(θ1, φ1) , (θ2, φ2) is separated.

At last, we look for solutions of the form in Equation (31), imposing the following
additional constraints:

∂2 ϕ

∂θ2
1
+

1
sin2 θ1

∂2 ϕ

∂φ2
1
+

1
tan θ1

∂ϕ

∂θ1
= c1 f (t) , (32)

∂2 ϕ

∂θ2
2
+

1
sin2 θ2

∂2 ϕ

∂φ2
2
+

1
tan θ2

∂ϕ

∂θ2
= c2 f (t) , (33)

where cj is some arbitrary real constants.
Owing to these assumptions, the Ricci flow equation in Equation (30) reduces to an ordinary

differential equation for f (t):

d f (t)
dt
· [g1(θ1, φ1) + g2(θ2, φ2)] = log

[
f 2(t)(c1c2) + f (t)(c1 + c2) + 1

]
+ 6 f (t) · [g1(θ1, φ1) + g2(θ2, φ2)] . (34)

Concerning the functions gj, we get the following explicit expressions:

gj(θj, φj) =
1
2

djφ
2
j + hj(θj) (35)

with

hj(θ1) = ej log uj −
dj

2
(log uj)

2 − cj log sin θj (36)

where

uj =
sin θj

1 + cos θj
, j = 1, 2 (37)

and dj, ej , j = 1, 2 are other arbitrary real constants of integration.
As long as cj is 0, we have the following:

Proposition 1. Any metric of the form

g̃ = 1
9

(
dψ + ∑j(cos θj − 3

2 ej +
3
2 dj log tan

θj
2 )dφj +

3
2 ∑j dj

φj
sin θj

dθj

)2
+ 1

6 ∑j

(
dθ2

j + sin2 θjdφ2
j

)
(38)



Symmetry 2020, 12, 330 7 of 11

with arbitrary real constants dj, ej , j = 1, 2, defined on the local chart considered above represents a deformation
of the canonical metric on T1,1. The deformed contact structure remains Sasaki–Einstein with the contact form

η̃ = η − 1
2 ∑

j
ej dφj +

1
2 ∑

j
dj

φj

sin θj
dθj +

1
2 ∑

j
dj log tan

θj

2
dφj . (39)

Moreover, if the constants c1, c2 are 0 , Equation (34) becomes

d f (t)
dt

= 6 f (t) (40)

having the elementary solution with the initial condition f (0) = 0:

f (t) = e6t − 1 . (41)

Remark 3. The presence of the constants dj in Equation (38) entails that the angles φj interfere in the deformed
metric and that the Reeb vector field in Equation (26) remains the only Killing vector. Therefore, the initial toric
symmetry of T1,1 is broken in the deformed Sasaki–Einstein spaces.

If the constants cj 6= 0, the transverse metric is also modified but the contact structure
remains Sasaki:

Proposition 2. The deformed contact structure with the contact form

η̃ = η +
1
2 ∑

j
cj cos θjdφj =

1
3

(
dψ + (1 +

3
2

cj) cos θjdφj

)
(42)

remains Sasaki with the metric

g̃ =
1
9
[
dψ + ∑

j
(1 +

3
2

cj) cos θjdφj
]2

+
1
6 ∑

j
(1 +

3
2

cj)
(
dθ2

j + sin2 θjdφ2
j
)

. (43)

Regarding other tensors, they can be evaluated using Equations (11)–(13) with the Sasaki potential
K + ϕ. Their explicit expressions are omitted here.

3.2. Sasaki–Ricci flow on Sasaki–Einstein Space Yp,q

The Einstein–Sasaki geometries are the subject of much attention in connection with the
supersymmetric backgrounds relevant to the AdS/CFT correspondence. An interesting class of
inhomogeneous Sasaki–Einstein metrics is represented by the toric structures on S2 × S3 denoted Yp,q,
where q, p are positive integers.

The metric of the Sasaki–Einstein space Yp,q is as follows [16]:

ds2 = 1−y
6 (dθ2 + sin2 θ dφ2) + 1

w(y)q(y)dy2 + w(y)q(y)
36 (dβ− cos θ dφ)2

+ 1
9 [dψ + cos θ dφ + y(dβ− cos θ dφ)]2

(44)

where

w(y) =
2(a− y2)

1− y
,

q(y) =
a− 3y2 + 2y3

a− y2 , (45)

f (y) =
a− 2y + y2

6(a− y2)
.
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The cubic equation

Q(y) = a− 3y2 + 2y3 =
1− y

2
w(y) q(y) = 0 (46)

has three roots y1 ≤ y2 ≤ y3. For any value of the constant a ∈ (0, 1), y ∈ [y1, y2].
The range of the angular coordinates is θ ∈ [0, π] , φ ∈ [0, 2π] , ψ ∈ [0, 2π]. The variable β is

connected with another variable α

α = −1
6
(β + ψ) (47)

which has the range
0 ≤ α ≤ 2π` (48)

where
` =

q
3q2 − 2p2 + p(4p2 − 3q2)1/2 . (49)

The Sasaki–Einstein space Yp,q has the contact form

η =
1
3

dψ +
1
3

y dβ +
1− y

3
cos θ dφ (50)

and the Reeb vector field is
Kη = 3

∂

∂ψ
. (51)

To describe the transverse structure of the Yp,q space, we introduce the following set of local
complex coordinates [17]:

z1 = tan
θ

2
eiφ , (52)

z2 =
sin θ

f1(y)
eiβ (53)

where

f1(y) = exp
(∫ 1

H2(y)
dy
)
=

√
(y− y1)

− 1
y1 (y2 − y)−

1
y2 (y3 − y)−

1
y3 (54)

with

H2(y) =
1
6

w(y) q(y) =
1
3

Q(y)
1− y

. (55)

In terms of the above complex coordinates, the Sasaki–Kähler potential is

K =
1
3

[(
1 +

1
z1z̄1

)
f2(y)

]
+

1
6

ln(z1z̄1) (56)

where

f2(y) = exp
(∫ y

H2(y)
dy
)
=

1√
Q(y)

. (57)

In the case of Yp,q space, the Ricci flow equation is as follows [12]:
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dϕ

dt
= ln

{
ϕ,11̄ ϕ,22̄ − ϕ,12̄ ϕ,21̄ +

[
1
3
(1− y) cos4 θ

2
+

w(y)q(y)
72

cos2 θ

tan2 θ
2

]
ϕ,22̄

+
w(y)q(y)

72
f 2
1 (y)

sin2 θ
ϕ,11̄ +

w(y)q(y)
72

cos θ cot
θ

2
f1(y)
sin θ

e−iφ+iβ ϕ,21̄

+
w(y)q(y)

72
cos θ cot

θ

2
f1(y)
sin θ

eiφ−iβ ϕ,12̄ +
w(y)q(y)

216
f 2
1 (y)(1− y) cot2 θ

2

}

− ln
[

w(y)q(y)
216

f 2
1 (y)(1− y) cot2 θ

2

]
+ 6ϕ

(58)

which is more involved than in the case of the Sasaki space T1,1.
Taking into account the complexity of this equation, we look for particular solutions. Using the

same procedure as in the case of the T1,1 space, we assume that the dependence of ϕ on t, z1 and
z2 separates

ϕ = f (t)
[

g1(z1, z̄1) + g2(z2, z̄2)
]

(59)

where the functions f , g1, g2 are to be determined.

Remark 4. Compared to Equation (31), now, it is more convenient to write the separation of variables using
the complex coordinates zj in Equations (52) and (53). In fact the Sasaki–Ricci flow equation in Equation (22)
is written in terms of complex coordinates of the transverse Kähler space. In the case of the T1,1 space,
the correspondence between the complex coordinates and angle coordinates is bijective according to Equation
(28). A separation of variables written in spherical coordinates or complex coordinates is the same. Concerning
the complex coordinates in Equations (52) and (53) describing the transverse structure of the Yp,q space,
the angle variable θ intervenes in both complex coordinates zj. Therefore, to analyze the Ricci flow equation in
Equation (58), the separation assumption that is required is Equation (59).

Some particular exact solutions of the Sasaki–Ricci flow equation can be obtained assuming

ϕ,11̄ = cos4 θ

2
c1 f (t) , (60)

ϕ,22̄ = c2 f (t) , (61)

where c1, c2 are arbitrary constants.
With these assumptions, we get the following for g1:

g1(θ, φ) =
d1

2
φ2 + e1 ln tan

θ

2
− d1

2

(
ln tan

θ

2

)2
− c1 ln sin θ (62)

involving the arbitrary constants c1, d1, e1.
Similarly, for g2, we obtain the following solution:

g2(ρ, β) =
d2

2
β2 + c2ρ2 + e2 ln ρ− d2

2
(ln ρ)2 (63)

where c2, d2, e2 are other arbitrary constants and

ρ =
sin θ

f1(y)
. (64)

As in the case of T1,1 space, for cj 6= 0, the contact structure remains Sasaki–Einstein and we can
state the following:
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Proposition 3. The families of basic functions

ϕ(t) = (e6t − 1)

[
d1

2
φ2 + e1 ln tan

θ

2
− d1

2

(
ln tan

θ

2

)2
+

d2

2
β2 + e2 ln ρ− d2

2
(ln ρ)2

]
, (65)

with dj, ej arbitrary constants, stand as solutions of the transverse Kähler–Ricci flow equation on the
manifold Yp,q.

The corresponding deformed contact structures remain Sasaki–Einstein with the contact forms

η̃ = η +
e6t − 1

2

[
d1φ

sin θ
dθ +

(
−e1 + d1 ln tan

θ

2

)
dφ +

d2β

ρ
dρ + (−e2 + d2 ln ρ)dβ

]
. (66)

Remark 5. We observe that the explicit presence of the coordinated φ, β in the functions g1 of Equation (62)
and g2 of Equation (63) makes the Reeb vector field in Equation (51) the only Killing vector of the deformed
metric. As it is noted in Remark 3, the inceptive toric symmetry is broken during the Ricci flow deformation.

In the case cj 6= 0, we have the following:

Proposition 4. The deformed contact structures with the contact forms

η̃ = η +
f (t)
2

[
c1 cos θ dφ− c2ρ2dβ

]
(67)

with cj arbitrary constants remain Sasaki with the deformed metrics

g̃ = η̃ ⊗ η̃ + gT +
2

∑
j=1

φjj̃dzjdz̃j

= η̃ ⊗ η̃ + gT + f (t)
[ c1

4
(dθ2 + sin2 θ dφ2) + c2(dρ2 + ρ2dβ2)

]
.

(68)

In this case, the function f (t) obeys a differential equation without a simple, explicit solution.
Again, making use of Equations (11)–(13), we can evaluate other tensors which describe the

deformed contact structures.

4. Discussion

In this paper, we examine the Kähler structures of the Sasaki manifolds. We perform deformations
of the contact structures fixing the Reeb vector field ξ but vary the contact form η by means of smooth
basic functions.

The Sasaki–Ricci flow equations are quite involved, but eventually, we are able to produce some
particular explicit analytical solutions representing deformations of the Sasaki–Einstein spaces T1,1

and Yp,q.
The deformations considered in this paper can be compared with the so-called β or TsT

deformations of Sasaki–Einstein manifolds considered in Reference [9].
In Reference [18], the constants of geodesic motion in spaces T1,1 and Yp,q were explicitly

constructed. The angles ψ, φ1, φ2 and ψ, β, φ are cyclic variables for geodesic motion in spaces T1,1

and Yp,q, respectively. Consequently, the geodesic motion in these spaces are completely integrable.
We note that, in the deformed Sasaki metrics considered in the present paper, some of the angles are no
longer cyclic variables and the complete integrability is lost. It would be interesting to investigate the
Hamiltonian holomorphic vector fields in connection with the integrability and action-angle variables
on the perturbed Sasaki–Einstein spaces.

It is worth extending the study of deformations of contact structures and the Sasaki–Ricci flow on
higher dimensional Sasaki–Einstein spaces.
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Finally, we note the relevance of contact Hamiltonian systems in irreversible thermodynamics,
statistical physics, systems with dissipation, etc. (see, e.g., Reference [19] for a recent review of
applications of contact Hamiltonian dynamics in various fields).
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14. Godliński, M.; Kopczyński, W.; Nurowski, P. Locally Sasakian manifolds. Class. Quantum Grav. 2000, 17,

L105. [CrossRef]
15. Candelas, P.; de la Ossa, X.C. Comments on conifolds. Nucl. Phys. B 1990, 342, 246. [CrossRef]
16. Martelli, D.; Sparks, J. Toric geometry, Sasaki-Einstein manifolds and a new infinite class of AdS/CFT duals.

Commun. Math. Phys. 2006, 262, 51. [CrossRef]
17. Burrington, B.A.; Liu, J.T.; Mahato, M.; Pando Zayas, L.A. Towards supergravity duals of chiral symmetry

breaking in Sasaki-Einstein cascading quiver theories. JHEP 2005, 7, 19. [CrossRef]
18. Babalic, E.M.; Visinescu, M. Complete integrability of geodesic motion in Sasaki-Einstein toric Yp,q spaces.

Mod. Phys. Lett. A 2015, 33, 1550180. [CrossRef]
19. Bravetti, A. Contact Hamiltonian dynamics: The concept and its use. Entropy 2017, 19, 535. [CrossRef]

c© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0370-2693(98)00809-0
http://dx.doi.org/10.1016/S0550-3213(98)00654-3
http://dx.doi.org/10.1088/0264-9381/21/18/005
http://dx.doi.org/10.4310/ATMP.2004.v8.n4.a3
http://dx.doi.org/10.4310/ATMP.2004.v8.n6.a3
http://dx.doi.org/10.4310/jdg/1214436922
http://dx.doi.org/10.1142/S0129167X10006331
http://dx.doi.org/10.4310/jdg/1264601036
http://dx.doi.org/10.1007/JHEP12(2011)051
http://dx.doi.org/10.1142/S0217751X18450148
http://dx.doi.org/10.1088/0264-9381/17/18/101
http://dx.doi.org/10.1016/0550-3213(90)90577-Z
http://dx.doi.org/10.1007/s00220-005-1425-3
http://dx.doi.org/10.1088/1126-6708/2005/07/019
http://dx.doi.org/10.1142/S0217732315501801
http://dx.doi.org/10.3390/e19100535
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Sasakian Manifolds
	Deformations of Sasaki Structures
	Sasaki–Ricci Flow

	Sasaki–Ricci Flow on Spaces T and Y
	Sasaki–Ricci flow on Sasaki–Einstein Space T
	Sasaki–Ricci flow on Sasaki–Einstein Space Y

	Discussion
	References

