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Abstract: We discuss the tight-binding models of solid state physics with the Z2 sublattice symmetry
in the presence of elastic deformations in an important particular case—the tight binding model of
graphene. In order to describe the dynamics of electronic quasiparticles, the Wigner–Weyl formalism
is explored. It allows the calculation of the two-point Green’s function in the presence of two
slowly varying external electromagnetic fields and the inhomogeneous modification of the hopping
parameters that result from elastic deformations. The developed formalism allows us to consider the
influence of elastic deformations and the variations of magnetic field on the quantum Hall effect.
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1. Introduction

Recently there has been a revival of interest in Wigner–Weyl formalism in both condensed matter
and high energy physics. It was proposed long ago by H. Groenewold [1] and J. Moyal [2], primarily in
the context of one-particle quantum mechanics. The main notions of this formalism are those of
the Weyl symbol of the operator and the Wigner transformation of the functions. Correspondingly,
the formalism accumulated the ideas of H. Weyl [3] and E. Wigner [4]. In quantum mechanics,
the Wigner–Weyl formalism substitutes the notion of the wave function by the so called Wigner
distribution, that is, the function of both coordinates and momenta. The operators of physical quantities
are described by their Weyl symbols (that are also the complex-valued functions of momenta and
coordinates). The product of the operators on the language of Wigner–Weyl formalism becomes
the Moyal product of their Weyl symbols [5,6]. The Wigner–Weyl formalism has been applied to
several problems in quantum mechanics [7,8]. Notice that certain modifications of this formalism were
proposed [9–16], where the main notions were changed somehow.

Let us recall the basic notions of Wigner–Weyl formalism in quantum mechanics with the example
of the one dimensional model. The Wigner distribution W(x, p) is a function of coordinate x and
momentum p. It gives the probability that the coordinate x belongs to the interval [a, b] in the
following way:

P[a ≤ x ≤ b] =
1

2π

∫ b

a

∫ ∞

−∞
W(x, p) dp dx.

Let Â be operator of a certain physical observable. Its Weyl symbol AW(x, p) is defined as the
function in phase space, which gives the expectation value of the given quantity with respect to the
Wigner distribution W(x, p) as follows [2,17]:
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〈Â〉 = 1
2π

∫
AW(x, p)W(x, p) dp dx.

For the pure quantum state, the Wigner function is given by:

W(x, p) =
∫

dy e−ipyψ∗(x + y/2)ψ(x− y/2),

where ψ(x) is the wave function of the state. The formalism is readily generalized to multidimensional
x and p.

The Schrodinger equation in the language of the Wigner–Weyl formalism acquires the form:

i∂tW(x, p, t) = HW(x, p) ∗W(x, p, t)−W(x, p, t) ∗ HW(x, p).

The Moyal product of two functions f and g is given here by:

f ∗ g = f exp
(

i
2
(
←−
∂ x
−→
∂ p −

←−
∂ p
−→
∂ x)

)
g.

The left arrow above the derivative shows that the derivative acts on f while the right arrow
assumes the action of the derivative on g.

The definition of the Weyl symbol of an arbitrary operator Â is:

AW(x, p) =
∫

dy e−ipy〈x + y/2|Â|x− y/2〉.

We denote by HW(x, p) the Weyl symbol of Hamiltonian Ĥ.
The Wigner–Weyl formalism was also modified somehow in order to be applied to quantum field

theory. The analogue of the Wigner distribution was introduced in QCD [18,19]. It has been used in
field-theoretic kinetic theory [20,21] and noncommutative field theories [22,23]. Certain applications
of the Wigner–Weyl formalism were proposed to several fields of theoretical physics including
cosmology [24–26]. Using this formalism, quantum field theory has been discussed in this aspect in
relation to quantum information theory (see [27–29] and references therein).

Wigner–Weyl formalism has been widely applied to the study of nondissipative transport
phenomena [30–35]. Using this formalism it has been shown that the response of nondissipative
currents to the external field strength is expressed through the topological invariants that are robust
to the smooth deformation of the system. This allows the calculation of nondissipative currents for
certain complicated systems within the more simple ones connected to the original systems by a
smooth deformation. Using this method, the absence of the equilibrium chiral magnetic effect [36]
was demonstrated within lattice regularized field theory [34]. The anomalous quantum Hall effect
was studied using Wigner–Weyl formalism for the Weyl semimetals and topological insulators [35].
In addition, Wigner–Weyl formalism allows one to derive the chiral separation effect [37] within lattice
models [30,32]. The same method was also applied to the investigation of the hypothetical color-flavor
locking phase in QCD [33], where the fermion zero modes on vortices were discussed. The scale
magnetic effect [38] has also been investigated using the same technique [31].

Historically the momentum space topological invariants were treated mainly in the context of
condensed matter physics theory [39–43]. They protect gapless fermions on the edges of topological
insulators [44,45] and the gapless fermions in the bulk of Weyl semi-metals [43,46]. The fermion zero
modes of various topological defects in 3He are also governed by momentum space topology [47].
In high energy physics, the topological invariants in momentum space were considered in [46,48–55].
The Wigner–Weyl formalism in [30,32,34,35] was developed in the context of lattice field theory.
The one-particle fermion Green’s function G(p, q) was considered in momentum spaceM (p, q ∈ M).
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It has been shown that the introduction of an Abelian external gauge field A(x) resulting in the Peierls
substitution leads to the following equation:

Q̂(p− A(i∂p)))G(p, q) = δ(p− q).

Here Q̂(p) is the lattice Dirac operator. Notice that in lattice field theory, the imaginary time is
discretized on the same ground as space coordinates.

The Wigner transformation of Green’s function is defined as follows:

GW(x, p) ≡
∫

dq eixqG(p + q/2, p− q/2) (1)

It was shown [30] that for slowly varying external fields it obeys the Groenewold equation:

GW(x, p) ∗QW(x, p) = 1 (2)

with the above defined Moyal product ∗ extended to the D-dimensional vectors of coordinates x and
momentum p. Here QW is the Weyl symbol of operator Q̂(p− A(i∂p)).

In [56–58], the approach of [30,32,34,35] was further developed. In [56], the lattice model with
Wilson fermions was investigated in detail. The precise expression for the Weyl symbol of the Wilson
Dirac operator was derived in the presence of an arbitrarily varying external gauge field. In addition,
the complete iterative solution of the Groenewold equation, Equation (2), was given. As a result the
fermion propagator in the background of the arbitrary external electromagnetic field was calculated.
We refer to [56] for the technical details of the Wigner–Weyl formalism in lattice models, which will be
used in the present paper as well. In [57] it was shown that in the lattice models (i.e., in the tight-binding
models) of solid state physics with essential inhomogeneity (caused by the varying external magnetic
field), the Hall conductance integrated over the whole space is given by a topological invariant in
phase space. This quantity is expressed through the Wigner transformation of the one-fermion Green’s
functions. The expression for the phase space topological invariant repeats the form of the momentum
space topological invariants of [30,44,45,59,60]. The difference is that Green’s functions entering this
expression depend on both momenta and coordinates, and the ordinary product is substituted by the
Moyal product, while the extra integration over the whole space is added (The topological invariants
of [44–46,59,60] repeat the structure of the degree of mapping of the three-dimensional manyfold to
a group of matrices). It has been shown that the value of the topological invariant in phase space
responsible for the Hall conductance is robust to the introduction of disorder. Certain indications were
found that it is also robust to weak Coulomb interactions.

The topological description of the Quantum Hall Effect (QHE) started from the discovery of
the Thouless - Kohmoto - Nightingale - den Nijs (TKNN) invariant [61] defined in two-dimensional
systems. Three dimensional topological invariants for the QHE were considered in [62]. This formalism
allows one to deal with the intrinsic Anomalous Quantum Hall Effect (AQHE) and with the QHE in
the presence of a constant magnetic field [63]. Unfortunately, the formalism that is based on the notion
of Berry curvature does not admit the direct generalization to the QHE in the presence of a varying
external magnetic field and elastic deformations when the system becomes essentially inhomogeneous.
It is widely believed that the total QHE conductance is robust to the introduction of disorder and
weak interactions. Expression for QHE conductivity through one-particle Green’s functions has
been invented in [59,60]. In the presence of interactions the full two-point Green’s function should
be substituted to the corresponding expression. It has been checked in [58], that the leading order
contributions due to the Coulomb interactions do not change expression for AQHE conductivity in
topological insulators. This expression has the form of an integral in momentum space over the certain
composition of the interacting two-point Green’s function. It is worth mentioning, however, that
there is still no proof in a general case to all orders in the perturbation theory that higher order full
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Green’s functions do not give contributions to the QHE. For a discussion of this issue see also [44,45].
The AQHE conductivity discussed in [58] may be applied, in particular, to Weyl semimetals [64–69].

It is difficult to overestimate the role of disorder in the Quantum Hall Effect [63,70–72]. One of its
effects is the elimination of the Hall current from the bulk, and its concentration along the boundary.
The formalism developed in [57] allows one to give an alternative to prove that the total conductance
remains robust to the introduction of disorder in the majority of systems although the total current
remains only along the boundary of the sample. However, for graphene there are certain complications
to be discussed in the Conclusions section. Namely, when the Hall current remains only along the
boundary, the QHE is absent at the half filling (neutrality point). According to the common lore,
the Hall conductance is assumed to be robust to the introduction of weak interactions, at least in the
presence of the sufficient amount of disorder. However, Coulomb interactions are able to give rise to
the fractional QHE [63,72,73] for clean systems at very small temperatures. This, however, is out of the
scope of the present paper.

Graphene [74–82] represents the two-dimensional Weyl semimetal. The low energy physics of
its electronic quasiparticles is described by the massless Dirac equation. Therefore, it allows one
to simulate in the contect of a laboratory certain features of high energy physics that cannot be
observed directly. Examples of such effects are the Schwinger pair production and gravitational
effects in the quantum-mechanical motion of particles. Gravity appears in graphene in the presence
of elastic deformations [79]. One more exceptional feature of graphene is that (unlike the later
discovered three-dimensional Weyl semimetals) it is described with a very good accuracy by the
simple tight-binding model defined on the honeycomb lattice. The investigation of various features
of this model (including the QHE) based on the Wigner–Weyl formalism constitutes the subject of
the present paper. It is worth noting here that many phenomena in graphene can be adequately
treated even with low energy continuum approximation, within appropriate (pseudo-relativistic)
field-theoretical methods [83,84].

In graphene, the elastic deformations lead both to the appearance of the emergent gauge field
and emergent gravitational field (see, for example, [53,79,85–89]). The emergent gauge field appears
as the variation of the Fermi point position in momentum space while the emergent gravitational
field comes as the slope’s variation of the dependence of energy on momentum (i.e., the anisotropic
Fermi velocity).

Although our main aim is to investigate the tight-binding model of monolayer graphene, the paper
is organized in such a way, that many of the obtained expressions may be applied to some other
lattice models of solid state physics (though, only the model of graphene from this class describes
quantitatively the really existing physical system). The paper is organized as follows. We start from
the description of the almost arbitrary non-homogeneous lattice model in Section 2. We represent
the formulation of such models in momentum space. Next, we reduce the considered class to the
tight-binding models with the jumps of electrons between only the adjacent lattice sites. This section
ends with the consideration of non-homogeneous tight-binding models with Z2 sublattice symmetry.
The tight-binding model of graphene belongs to this class. However it is much wider, in particular the
tight-binding models defined on rectangular lattices in 2D and 3D remain in this class.

In Section 3, we introduce Wigner–Weyl formalism in nonhomogeneous lattice models with
Z2 sublattice symmetry. We explore the definition of the Weyl symbol of the lattice Dirac operator
(entering the fermion action), which is defined through the integral in momentum space. We calculate
the Weyl symbol of the Dirac operator for the considered models both in the presence of inhomogeneous
hopping parameters and in the presence of the varying external electromagnetic field. Both the
electromagnetic field and the hopping parameters are assumed to vary slowly, i.e., we neglect their
variations on the distance of the lattice spacing. Next, we turn directly to the physics of graphene.
We recall the relation between elastic deformations and the non-homogeneous hopping parameters.
After that, we express the Weyl symbol of the lattice Dirac operator in graphene in the presence of
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elastic deformations and the electromagnetic field through the electromagnetic potential and tensor of
elastic deformations.

In Section 4, we consider the relation between the Weyl symbol of the lattice Dirac operator in the
considered systems and the Wigner transformation of Green’s functions. Additionally, we express the
electric current through the quantities of the Wigner–Weyl formalism.

In Section 5, we again consider the lattice models of the general type. The corresponding
calculations are of course applied to the case of graphene directly. Namely, we extend the results of [56]
for the calculation of the Wigner transformation of the fermion Green’s function (obtained for lattice
Wilson fermions on rectangular lattice) to the case of the non-homogeneous tight-binding models of
the arbitrary form. It is also explained how to reconstruct the Green’s function both in momentum and
coordinate representations from its known Weyl symbol.

In Section 6 we extend the consideration of [57] to the case when elastic deformations are present.
Namely, we prove that for the noninteracting 2D condensed matter model with slowly varying
electromagnetic fields and elastic deformations, the Hall conductivity integrated over the whole area
of the sample is given by the topological invariant in phase space composed of the Wigner transformed
one-particle Green’s function. It is the same topological invariant proposed in [57]. It remains robust
to the smooth modification of the model (if the modification remains local and bounded to the smooth
modification of the Hamiltonian in the limited region of the sample that remains far from its boundary).

In Section 7, we apply the results of the previous sections to the discussion of Hall conductivity
in graphene in the presence of both elastic deformations and inhomogeneous magnetic field.
First, we recall the standard derivation of Hall conductance in the noninteracting 2D models with
constant magnetic field and constant hopping parameters. Next, this standard derivation is extended
to the case of the weakly varying elastic deformations that cause varying hopping parameters that
remain isotropic (i.e., their values are equal for all directions in the given point though they vary
from point to point). We obtain the formula for the Hall conductance that allows one to express
it through the total number of electrons in the occupied energy levels and external magnetic field.
Next, we apply the topological invariant in phase space defined in Section 3 to the consideration of the
QHE in graphene. The very existence of such a representation for the QHE conductance allows one to
prove that it remains robust to the weak elastic deformations of arbitrary form and weak modification
of magnetic field unless the topological phase transition is encountered. Both are assumed to be
localized in the region that remains far from the boundaries of the sample. Finally, in this section we
notice that the elastic deformations in graphene that do not cause the emergent magnetic field give rise
to the isotropic hopping parameters. The corresponding displacement appears to be the analytical
function of the atom coordinates of the unperturbed honeycomb lattice. For the constant external
magnetic field, this allows one to derive the simple relation between the number of electrons in the
occupied branches of spectrum and the value of magnetic field.

In Section 8, we end with the conclusions, discuss the obtained results, and directions for
future research.

Throughout the paper the following notational conventions are used. Latin letters in subscript
a, b, c numerate the spatial components of vectors. The Latin letters in superscript i, j enumerate the
elementary translations. All momenta vectors are bold italic l, k, p, q from the middle of the alphabet,
coordinate vectors are from its end, x, y, u, v. Operators are denoted by the Latin letters with hat Q̂, Ĝ
and their matrix elements of operators by functions of two variables Q(p, q). The Weyl symbols of
operators are denoted by the sub-index W: (Q̂)W ≡ QW .

2. Hamiltonian for the Nonlocal Tight–Binding Model

2.1. General Case

We start our discussion with a general case of the non-local tight-binding model in the presence
of the external electromagnetic field A. The discussion of the present section is applicable, in principle,
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not only to the tight-binding model of graphene, but also to other 2 + 1D and 3 + 1D tight-binding
models of solid state physics.

The Hamiltonian under consideration has the form:

H ≡∑
x,y

Ψ̄(y) f (y, x)ei
∫ y

x dvA(v)Ψ(x)

=
1
|M|2

∫
dpdqdldk Ψ̄(p) f (q, l)Ψ(k)∑

x,y
ei
∫ y

x dvA(v)eiy(q−p)+ix(−l+k)
(3)

and here the sum is over the lattice sites x, y, while f (x, y) is the matrix of hopping parameters.
The lattice is assumed to be infinite, which means that we neglect the finite volume effects as well as
the finite temperature corrections. Thus, the integrals in the second line are over momentum spaceM,
which is the first Brillouin zone specific for the given lattice model.

In the following, we may absorb the electromagnetic field to the definition of f . Therefore, we omit
it temporarily and will restore it in appropriate expressions.

Now let us consider a less general situation of the tight-binding model with the jumps of electrons
between the adjacent sites only—the nearest neighbor approximation. We discuss the case of the
inhomogeneous hopping parameters, which will allow us to discuss elastic deformations. Now,

f (y, x) =
M

∑
j=1

δ(y− (x + b(j))) f (j)(y) (4)

where b(j) are the vectors connecting each atom to its nearest M neighbors, j = 1, ..., M, and f (j)(y) is
the non-uniform varying hopping parameter.

Then,

f (q, l) =
1
|M|

M

∑
j=1

∑
x,y

e−iqx+ilyδ(y− (x + b(j))) f (j)(y)

=
1
|M|

M

∑
j=1

∑
y

e−i(q−l)y+iqb(j)
f (j)(y)

=
M

∑
j=1

f (j)(q− l)eiqb(j)

(5)

and

H =
1
|M|

M

∑
j=1

∫
M

dpdq Ψ̄(p)
[

f (j)(p− q)eiqb(j)
]

Ψ(q). (6)

2.2. The Z2 Sublattice Symmetry

Our next simplification is the consideration of a particular case, when crystal lattice exhibits Z2

sublattice symmetry, i.e., there are two sublattices O1,2 that constitute the crystal, and there is the one
to one correspondence between them generated by shift x→ x + b(j) for any j = 1, ..., M and x ∈ O1

or x→ x− b(j) for x ∈ O2.
The points of those two sublattices are to be considered independently, which gives the sublattice

index α = 1, 2 to Ψ. We identify Ψ(t, x), where x ∈ O1, with Ψ1(t, x), and Ψ(t, x) for x ∈ O2 is
identified with Ψ2(t, x). We set Ψ1(t, x) = 0 for x ∈ O2 and Ψ2(t, x) = 0 for x ∈ O1. Then,

Ψα(p) =
1

|M|1/2 ∑
x∈Oα

Ψα(x)e−ipx, α = 1, 2.
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The inverse transform is similar:

Ψα(x) =
1

|M|1/2

∫
M

dp Ψα(p)eipx, α = 1, 2.

Note, that Brillouin zoneM is the same for both sublattices since both of them are built over the
same basis vectors, and thus have the same periodicity. M is formed as space of vectors p defined by
modulo transformations:

p→ p + g(k)

where g(k) are vectors of inverse lattice that solve the system of equations:

eig(k)m(j1 j2) = 1, j1, j2 = 1, ..., M (7)

while m(j1,j2) = b(j1) − b(j2) form each of the two sublattices O1,2. Then the hoping parameters
f (j) become 2× 2 matrices. Besides, we assume that the spatial hoping parameters are coordinate
dependent,

f (j)
21 (x + b(j)) = −t(j)(x + b(j)), (8)

i.e., the values of t(j) may vary independently but not with time. The diagonal ones are vanishing,
f (j)
11 = f (j)

22 = 0.
The Hamiltonian then receives the form:

H =
M

∑
j=1

∑
x∈O1

y=x+b(j)

(
t(j)(y)Ψ̄2(t, y)Ψ1(t, x) + t(j)(y)Ψ̄1(t, x)Ψ2(t, y)

)
. (9)

In what follows we will omit the temporal argument of the wave function whenever no confusion
is provoked.

3. Weyl Symbol for the Lattice Dirac Operator

3.1. Lattice Dirac Operator

Let us rewrite Equation (9) in the following way:

H = ∑
x∈O1
y∈O2

(Ψ̄1(x), Ψ̄2(y)) H(x, y) (Ψ1(x), Ψ2(y))
T

≡ ∑
x∈O1
y∈O2

(
Ψ̄2(y)H21(y, x)Ψ1(x) + Ψ̄1(x)H12(x, y)Ψ2(y)

) (10)

where

H21(y2, y1) = −
M

∑
j=1

δ
(

y2 − (y1 + b(j))
)

t(j)
(

y1 + y2

2

)
,

y1 ∈ O1

y2 ∈ O2

H12(y1, y2) = H21(y2, y1).

(11)

Note that we define the hoping parameter by its values in the middle of the lattice links,
t(j)
(

y1+y2
2

)
for better readability of consequent formulas.

We will refer to the 2 by 2 matrix operator H as to the lattice Dirac Hamiltonian, although its
geometrical symmetries will only be defined after specifying b(j). Along with Hamiltonian, we also
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introduce the Dirac operator, which enters the action and consequently will be useful for an analysis of
the system’s partition function:

Q ≡ iω− H =

(
iω −H12

−H21 iω

)
. (12)

Let us consider the off-diagonal term 21 in the Hamiltonian. It can be written in terms of the
Fourier transformation as:

H21 =
1
|M|

∫
M

dpdq Ψ̄2(p)H21(p, q)Ψ1(q) (13)

modifying Equation (5) for two sublattices, we have:

H12(q, p) =
1
|M|

M

∑
j=1

∑
y1∈O1
y2∈O2

e−iqy1+ipy2 δ
(

y2 − (y1 + b(j))
)

t(j)
(

y1 + y2

2

)

=
1
|M|

M

∑
j=1

∑
y1∈O1

e−i(q−p)y1+iqb(j)
t(j)
(

y1 + b(j)/2
) . (14)

We can identify now the points y1 + b(j)/2, y1 ∈ O1 with those situated in the middle of the
lattice links along the j-th direction. We call these sets of points by O(j)

1/2. Now we can write,

H21(p, q) =
M

∑
j=1

t(j)(p− q)ei(p+q)b(j)/2 (15)

where
t(j)(p) =

1
|M| ∑

x∈O(j)
1/2

t(j)(x)e−ixp. (16)

Note, that the above expression is simply a Fourier transformation of a function shifted by b(j)/2
since t(j) are only defined in the middle of the links. In this particular case, when t(j)(x) = t(j), i.e., if it
does not depend on x, we obtain:

t(j)(p) = t(j)δ(p mod g(j)).

3.2. The Definition of the Weyl Symbol in Momentum Space

We propose the following definition of the Weyl symbol of operator Â:

(Â)W(x, p) =
∫
M

dq A(p + q/2, p− q/2)eiqx. (17)

Here, the integral is over momentum spaceM, in which the two vectors are equivalent if they
differ by g(j). In particular this means that p± q/2 do not span the whole Brillouin zoneM.

For off-diagonal components of H from the above it gives:

H21,W(x, p) =
∫
M

dq eiqx
M

∑
j=1

t(j)(q) eipb(j)
=

M

∑
j=1

eipb(j)
∫
M

dq t(j)(q)eiqx. (18)

If the hopping parameters are homogeneous, then:

H21,W(x, p) = eipb(j)
t(j).
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On the other hand, when the hopping parameters vary, we use Equation (16):

H21,W(x, p) =
1
|M|

M

∑
j=1

eipb(j)
∑

y∈O(j)
1/2

t(j)(y)
∫
M

dq eiq(x−y)

=
M

∑
j=1

eipb(j)
∑

y∈O(j)
1/2

t(j)(y)F (x− y),

(19)

where
F (x) =

1
|M|

∫
M

dq eiqx. (20)

Notice that for x, y ∈ O(j)
1/2, we have y− x ∈ O and thus, the function F (y− x) vanishes for

all x ∈ O(j)
1/2 except for x = y. However, it remains nonzero and oscillates for all other values of x,

including continuous ones, and gives unity if summed over O(j)
1/2 for any x,

∑
y∈O(j)

1/2

F (x− y) = 1. (21)

Each term of the j-sum in Equation (19) receives a particular form if x ∈ O(j)
1/2 (with the same

value of j):

H(j)
21,W(x, p)

∣∣∣
x∈O(j)

1/2

= eipb(j)
t(j)(x) (22)

However, Equation (19) also defines HW for continuous values of x.
The presence of an external electromagnetic field with a vector potential A may be introduced to

the model via the modification of a hopping parameter in the term H21:

t(j)(x)→ t(j)(x)e
−i
∫ x+b(j)/2

x−b(j)/2
A(y)dy

.

In H12 there should be a complex conjugate substitution:

t(j)(x)→ t(j)(x)e
−i
∫ x−b(j)/2

x+b(j)/2
A(y)dy

From Equation (19) we see that it is simply the Pieirls substitution in the language of Weyl symbols.
Combining this substitution with Equation (12) we get:

QW =
M

∑
j=1

Q(j)
W

where

Q(j)
W (x, p)

∣∣∣
x∈O(j)

1/2

=

(
iω/M −t(j)(x) ei(pb(j)−A(j)(x))

−t(j)(x) e−i(pb(j)−A(j)(x)) iω/M

)
, (23)

and M is the number of the nearest neighbours. Here:

A(j)(x) =
∫ x+b(j)/2

x−b(j)/2
A(y)dy.

For both t(j) and A that almost do not vary at the distances of order of lattice spacing we may use
Equation (23) for arbitrary values of x, and get:
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QW(x, p) =
M

∑
j=1

(
iω/N −t(j)(x) ei(pb(j)−A(j)(x))

−t(j)(x) e−i(pb(j)−A(j)(x)) iω/N

)
. (24)

This approximation corresponds to the situation, when the typical wavelength of electromagnetic
field is much larger than the lattice spacing.

3.3. Elastic Deformation and Modification of Hoping Parameters

Now we are in the position to consider elastic deformations and Wigner–Weyl formalism in
graphene. In this section we discuss the graphene monolayer in the presence of elastic deformations.
The sheet of graphene is parametrized by coordinates xk, k = 1, 2. The displacements of each point
have three components ua(x), where a = 1, 2, 3. The resulting coordinates of the graphene sheet
embedded into three-dimensional space ya are given by:

yk(x) = xk + uk(x), k = 1, 2

y3(x) = u3(x). (25)

In the absence of the displacements, when ua = 0, the graphene is flat. The metric of elasticity
theory is given by:

gik = δik + 2uik, uik =
1
2

(
∂iuk + ∂kui + ∂iua∂kua

)
, a = 1, 2, 3, i, k = 1, 2. (26)

When the distance between the given atom and its neighbor is changed, and the change of the
distance is in δr, then the corresponding hopping parameter is modified as t→ t(1− βδr), where β is
the so-called Gruneisen parameter. As a result the elastic deformations change the spatial hopping
parameters, which enter Equation (11), as follows:

t(j)(x) = t
(

1− βuik(x)b(j)
i b(j)

k

)
. (27)

Here,
{b(j)}3

j=1 = {(−1, 0); (1/2,
√

3/2); (1/2,−
√

3/2)}. (28)

We imply that β|uij| � 1.
The standard expression for the emergent electromagnetic potential has the form:

A1 = − β

a
u12

A2 =
β

2a
(u22 − u11). (29)

For the arbitrarily varying field u we obtain the following expression for QW :

QW(ω, p; τ, x) = iω− t
3

∑
j=1

(
1− βuik(x)b(j)

i b(j)
k

)( 0 ei(pb(j)−A(j)(x))

e−i(pb(j)−A(j)(x)) 0

)
. (30)

4. Green’s Function and the Groenewold Equation

4.1. Appearance of the Moyal Product

Our definition of the Weyl symbol of operator Â in Equation (17) can also be written as:

AW(x, p) =
∫
M

dPeixP
〈

p +
P
2

∣∣∣∣ Â
∣∣∣∣p− P

2

〉
. (31)
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The integral over P is over the Brillouin zoneM, i.e., inM we identify the points that differ by a
vector of reciprocal lattice g(j).

Now let us consider the Weyl symbol (AB)W(x, p) of the product of two operators Â and B̂ such
that their matrix elements

〈
p + q

2

∣∣ Â
∣∣p− q

2
〉

and
〈

p + q
2

∣∣ B̂
∣∣p− q

2
〉

are nonzero only when q remains
in the small vicinity of zero. Then:

(AB)W(x, p) =
∫
M

dP
∫
M

dR eixP
〈

p + P
2

∣∣∣ Â |R〉 〈R| B̂
∣∣∣p− P

2

〉
=

1
2D

∫
M

dPdK eixP
〈

p + P
2

∣∣∣ Â
∣∣∣p− K

2

〉 〈
p− K

2

∣∣∣ B̂
∣∣∣p− P

2

〉
=

2D

2D

∫
M

dqdk eix(q+k)
〈

p + q
2 + k

2

∣∣∣ Â
∣∣∣p− q

2 + k
2

〉 〈
p− q

2 + k
2

∣∣∣ B̂
∣∣∣p− q

2 −
k
2

〉
=
∫
M

dqdk
[
eixq 〈p + q

2

∣∣ Â
∣∣p− q

2
〉]

e
k
2

~∂p−
q
2
~∂p
[
eixk

〈
p + k

2

∣∣∣ B̂
∣∣∣p− k

2

〉]
=

[∫
M

dq eixq 〈p + q
2

∣∣ Â
∣∣p− q

2
〉]

e
i
2 (− ~∂p~∂x+ ~∂x~∂p)

[∫
M

dk eixk
〈

p + k
2

∣∣∣ B̂
∣∣∣p− k

2

〉]
(32)

Here the bra- and ket- vectors in momentum space are defined modulo vectors of reciprocal
lattice g(j), as it is inflicted by the periodicity of the lattice. In the second line we change variables:

P = q + k, K = q− k

q =
P +K

2
, k =

P −K
2

with the Jacobian:

J =

∣∣∣∣∣ 1 1
−1 1

∣∣∣∣∣ = 2D.

This results in the factor 2D in the third line. Here D is the dimension of space. In the present
paper it may be either 2 or 3.

Hence, the Moyal product may be defined similarly to the case of continuous space:

(AB)W(x, p) = AW(x, p)e
i
2 ( ~∂x~∂p− ~∂p~∂x)BW(x, p) (33)

Notice, that for the chosen form of the Wigner transformation on a lattice above the equality is
approximate and works only if the operators Â, B̂ are close to diagonal.

4.2. Lattice Groenewold Equation

Let us define the Fourier components of field Ψ(τ, x) that depends on both space coordinates x
and imaginary time τ as:

Ψα(τ, x) =
1√

2π|M|1/2

∫
R⊗M

dpdω Ψα(ω, p)eipx, α = 1, 2.

The partition function of the considered models has the form:

Z =
∫

DΨ̄DΨ eS[Ψ,Ψ̄] S[Ψ, Ψ̄] =
∫
R⊗M

dωdD p
2π|M| Ψ̄T(ω, p)Q̂Ψ(ω, p). (34)

As usual, we relate operators Q̂ and Ĝ = Q̂−1 defined in Hilbert spaceH of functions (onR⊗M)
with their matrix elements Q(p, q) and G(p, q), where the D + 1 dimensional vectors consist of the
spatial parts p, q and frequencies pD+1, qD+1:
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Q(p, q) = 〈p|Q̂|q〉, G(p, q) = 〈p|Q̂−1|q〉.

It is implied that the basis of H is normalized as 〈p|q〉 = δ(pD+1 − qD+1)δ
(D)(p − q).

The mentioned operators satisfy:
Q̂Ĝ = 1 (35)

or, equivalently,
〈p|Q̂Ĝ|q〉 = δ(D+1)(p− q).

Equation (34) may be rewritten as follows;

S[Ψ, Ψ̄] =
∫
R⊗M

dD+1 p1√
2π|M|

∫
R⊗M

dD+1 p2√
2π|M|

Ψ̄T(p1)Q(p1, p2)Ψ(p2) (36)

while the Green’s function is:

Gab(k2, k1) =
1
Z

∫
DΨ̄DΨ Wab(k2, k1) eS[Ψ,Ψ̄] (37)

where we introduced the Grassmann-valued Wigner function:

Wab(p, q) =
Ψb(p)√
2π|M|

Ψ̄a(q)√
2π|M|

. (38)

Formally we may also define operator Ŵab ≡ Ŵab[Ψ, Ψ̄], whose matrix elements are equal to the
Wigner function, Wab(p, q) = 〈p|Ŵab[Ψ, Ψ̄]|q〉. Indices a, b enumerate the components of the fermionic
fields and we will omit them for brevity.

We may consider the D + 1 dimensional version of the Wigner transformation of Ĝ in a similar
way to that of Equation (17):

GW(x, p) ≡ GW(τ, x; pD+1, p) =
∫
R

dqD+1

∫
M

dq ei(τqD+1+xq)G(p + q/2, p− q/2). (39)

Its inverse then is:

G(p + q/2, p− q/2) =
1

2π|M|

∫
R

dτ ∑
x∈O1

e−i(τω+xq)GW(τ, x; ω, p). (40)

In the same way the D + 1 dimensional Weyl symbol of Q̂ may be defined. For Q̂ = −∂τ −H we
obtain:

QW(x, p) = iω− HW(x, p)

where HW is the D-dimensional Weyl symbol of the Hamiltonian that was defined above.
For the slowly varying external electromagnetic field and/or in the presence of weak elastic

deformations the function QW(x, p) varies slowly as a function of x on the distances of order of lattice
spacing. As a result, matrix elements

〈
p + q

2

∣∣ Q̂
∣∣p− q

2
〉

and
〈

p + q
2

∣∣ Ĝ
∣∣p− q

2
〉

are both nonzero in the
small vicinity of q = 0. This imposes the bounds on the value of external magnetic field B: It should be
much smaller than 1/a2 (where a is the typical lattice spacing). In practice this means B� 1000 Tesla.
Then we are able to use Equations (33) and (35) becomes a lattice version of the Groenewold equation:

GW(x, p) ∗QW(x, p) = 1 (41)

that is,
1 = GW(x, p)e

i
2 ( ~∂x~∂p− ~∂p~∂x)QW(x, p). (42)
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The Weyl symbol QW of operator Q̂ has been calculated above and is given by Equation (30).
For external fields that vary slowly on the distances of the order of lattice spacing, we are able to
represent it as a function of t(j)(x) and combination p− A(x):

QW(x, p) = QW(t(j)(x), p− A(x)).

4.3. Expression for the Electric Current

Let us consider the variation of the partition functionin Equation (34), corresponding to the
variation of the external field A.

We note first that the action can be written as an operator trace,

S[Ψ, Ψ̄] = Tr
(
Ŵ[Ψ, Ψ̄]Q̂

)
, (43)

where Ŵ[Ψ, Ψ̄] is the Wigner operator corresponding to Equation (38). Vacuum expectation value,
defined in the usual way,

〈Ô〉 = 1
Z

∫
DΨ̄DΨ ÔeS[Ψ,Ψ̄], (44)

gives then for the variation of the action:

〈δS〉 =
∫
R⊗M

dp
2π|M| tr

[
GW(p, x) ∗ ∂pk QW(t(j)(x), p− A(x))

]
δAk(x) (45)

where we used Equation (37) for the expectation value of Ŵ and expressed trace of (almost diagonal)
operators through a trace of their Weyl symbols:

TrÂB̂ = Tr(AW ∗ BW) = ∑
x

∫ dp
(2π)D+1 tr(AW ∗ BW).

Now we obtain:

δlog Z = −
∫
RD+1

dx
∫
R⊗M

dp
2π|M| tr

[
GW(p, x) ∗ ∂pk QW(t(j)(x), p− A(x))

]
δAk(x). (46)

We used that for the slow varying fields:

∑
x∈O1

≈
∫
RD

dx
|V| (47)

where |V| is the volume of the lattice cell. Additionally, we used the following relation between |V|
and |M|:

|V||M| = (2π)D.

The total current, i.e., the current density integrated over the whole volume of the system,
appears as the response to the variation of A(x) integrated over the whole space–time:

〈Jk〉 = −T
∫
RD+1

dx
∫
R⊗M

dp
(2π)D+1 tr

[
GW(p, x)∂pk QW(p, x)

]
(48)

Here T is temperature that is assumed to be small. We rewrite the last equation in the
following way:

〈Jk〉 = − T
(2π)D+1 Tr

[
GW(p, x)∂pk QW(p− A(x))

]
. (49)
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This expression for the total current is a topological invariant, i.e., it is not changed when the
system is modified continuously and provided that there are periodic boundary conditions in space.
Here Tr of a Weyl symbol of an operator stands for integration over whole phase space and summation
over spinor indices, if any:

Tr AW(x, p) ≡
∫
RD+1

dx
∫
R⊗M

dp tr AW(x, p). (50)

5. Calculation of the Green’s Function in the Inhomogeneous Lattice Models

5.1. Calculation of the Wigner Transformation of the Green’s Function

In this section, we propose method of calculation of electronic Green’s function in lattice models.
This method is based on solving the Groenewold equation of Equation (42):

QW ∗ GW = 1 (51)

for the Wigner transformation GW as defined in Equation (39). In the following we use Equation (30)
as the definition of the Weyl transform of Q̂. Let us also introduce the following notation:

←→
∆ =

i
2

(←−
∂ x
−→
∂p −

←−
∂p
−→
∂ x

)
.

The solution may be written as follows:

GW =Q−1
W +

∞

∑
n=1

n

∑
M = 1

∑j k j = n
ki 6= 0

(−1)M

ΠM
i=1ki!

[
...
[

Q−1
W
←→
∆ k1 QW

]
Q−1

W
←→
∆ k2 QW

]
Q−1

W ...
←→
∆ kM QW

]
Q−1

W

=
∞

∑
M=0

[
...
[

Q−1
W (1− e

←→
∆ )QW

]
Q−1

W (1− e
←→
∆ )QW

]
...(1− e

←→
∆ )QW

]
︸ ︷︷ ︸Q−1

W

M brackets

=
∞

∑
M=0

[
...
[

Q−1
W (1− ∗)QW

]
Q−1

W (1− ∗)QW

]
Q−1

W ...(1− ∗)QW

]
︸ ︷︷ ︸Q−1

W

M brackets

(52)

In the first row, the sum may be extended to the values M = n = 0, then the first term will be
equal to Q−1

W . Let us introduce the product operator •, which works as follows being combined with
the star product introduced above:

A • B ∗ C = (AB) ∗ C, A ∗ B • C = (A ∗ B) • C.

In the first equation, ∗ acts both on AB and on C while in the second equation it acts only on A
and B. These rules allow us to write the above equation in a compact way:

GW(x, p) =
∞

∑
M=0

Q−1
W (1− ∗)QW •Q−1

W (1− ∗)QW •Q−1
W ...(1− ∗)QW•︸ ︷︷ ︸Q−1

W

M • −products

=
∞

∑
M=0

(
Q−1

W (1− ∗)QW •
)M

Q−1
W

(53)
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We may write symbolically:

GW(x, p) =
(

1− Q−1
W (1− ∗)QW •

)−1
Q−1

W =
(

Q−1
W ∗QW •

)−1
Q−1

W . (54)

In order to show that Equation (52) is indeed the solution of the Groenewold equation, let us
substitute Equation (55) to the star product GW ∗QW and obtain:

GW ∗QW =
∞

∑
M=0

(
Q−1

W (1− ∗)QW •
)M

Q−1
W ∗QW

= −
∞

∑
M=0

(
Q−1

W (1− ∗)QW •
)M

Q−1
W (1− ∗)QW +

∞

∑
M=0

(
Q−1

W (1− ∗)QW •
)M

= −
∞

∑
M=0

(
Q−1

W (1− ∗)QW •
)M

+
∞

∑
M=0

(
Q−1

W (1− ∗)QW •
)M

=
(

Q−1
W (1− ∗)QW •

)0
= 1

. (55)

5.2. Reconstruction of Fermion Propagator from Its Wigner Transformation

Using the definitions of the Wigner transform in Equation (39) and its inverse in Equation (40),
we find the Green’s function in discrete coordinate space:

G(x1, x2) =
1

2π|M|

∫
R⊗M

dp1dp2 G(p1, p2)eip1x1−ip2x2

=
1

4π2|M|2
∫

dω1dω2

∫
M

dp1dp2

∫
dτ

∑
x∈O1

e−i(p1−p2)x+ip1x1−ip2x2 GW

(
x, p1+p2

2

)
=

1
2π|M|

∫
dω

∫
M

dp ∑
x∈O1

D(x− (x1 + x2)/2|p)GW(x, p)eip(x1−x2).

(56)

It is assumed that pi = (ωi, pi) and x = (τ, x). Here,

D(y|p) = 1
|M|

∫
M

dp1dp2

∫
RD

dq e−iqyδ(p− (p1 + p2)/2)δ(q− (p1 − p2))

=
1
|M|

∫
M

dp1dp2 e−i(p1−p2)yδ(p− (p1 + p2)/2).
(57)

Notice, that function D(y|p) is not equal to the lattice delta function.
In this particular case, when both hopping parameters and the external electromagnetic field vary

slowly, we may substitute the sum over x by an integral, and D(y|p) by δ(y). This gives:

G(x1, x2) ≈
1

2π|M|

∫
R⊗M

dp GW((x1 + x2)/2, p)eip(x1−x2). (58)

6. Total Hall Conductance as the Topological Invariant in Phase Space

6.1. Derivation in the Framework of Wigner–Weyl Formalism

We discuss here the case when D = 2 and slightly modify the derivation presented in [57]. Let us
start from Equation (49) for the electric current. We represent the electromagnetic potential as a sum of
the two contributions:

A = A(M) + A(E)
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where A(E) is responsible for the electric field while A(M) is responsible for the magnetic field.
The former is assumed to be weak, and we will keep in Equation (49) the term linear in A(E).

The Groenewold equation for GW may be solved iteratively. We will keep in this solution the
terms linear in A(E) and in its first derivative. The zeroth order term (that does not contain A(E) at all)
is denoted G(0)

W . Then,

GW ≈ G(0)
W + G(0)

W ∗ (∂pm QW Am) ∗ G(0)
W . (59)

Next, we further expand the second term in derivatives of A and write symbolically:

GW ≈ G(0)
W + G(1)

W + G(2)
W (60)

where,

G(1)
W = (G(0)

W ∗ ∂pm Q(0)
W ∗ G(0)

W )A(E)
m

G(2)
W =

i
2
(G(0)

W ∗ ∂pm QW ∗ ∂pl G
(0)
W )∂xl A(E)

m − i
2
(∂pl G

(0)
W ∗ ∂pm Q(0)

W ∗ G(0)
W )∂xl A(E)

m

=
i
2
(G(0)

W ∗ ∂pl Q
(0)
W ∗ G(0)

W ∗ ∂pm Q(0)
W ∗ G(0)

W )F(E)
lm (61)

where we used that ∂pl G
(0)
W = −G(0)

W ∗ ∂pl Q
(0)
W ∗ G(0)

W . The QW does not depend on the derivatives of
A, therefore, it is given by:

QW = Q(0)
W + ∂pm Q(0)

W A(E)
m (62)

Upon the substitution of Equations (60) and (62) in Equation (49) the terms proportional to A(E)

(i.e., with no derivatives) cancel each other. The remaining term proportional to the field strength
F(E) is:

Tr
(

G(2)
W ∂kQ(0)

W

)
=

i
2

Tr
(
(G(0)

W ∗ ∂pl Q
(0)
W ∗ G(0)

W ∗ ∂pm Q(0)
W ∗ G(0)

W )F(E)
lm ∂kQ(0)

W

)
=

i
2

Tr
(
(G(0)

W ∗ ∂pl Q
(0)
W ∗ G(0)

W ∗ ∂pm Q(0)
W ∗ G(0)

W ∗ ∂kQ(0)
W )F(E)

lm

)
.

(63)

Here we assume that the periodic boundary conditions in space are imposed in the absence
of the electric field. Then the star may be inserted to the product inside the integral: G(2)

W ∂kQ(0)
W →

G(2)
W ∗ ∂kQ(0)

W . We come to the following representation of the average Hall current (i.e., the Hall current
integrated over the whole area of the sample divided by this area A) in the presence of electric field
along the x2 axis:

〈J1〉 =
N
2π

E2

Here,

N =
Tεijk

A 3! 4π2 Tr

[
GW(x, p) ∗ ∂QW(x, p)

∂pi
∗ ∂GW(x, p)

∂pj
∗ ∂QW(x, p)

∂pk

]
A(E)=0

(64)

with Tr defined in Equation (50). This expression forN is a topological invariant in phase space, i.e., it is
not changed if the system is modified smoothly within a finite region distant from the boundary of the
sample or from infinity if the sample is infinite. This may be checked via the direct consideration of a
variation of Equation (64) with respect to the variation of QW .

Note that Equation (64) is distinct and has a wider application than the classical TKNN
invariant [61] since it is also applicable to non homogeneous systems.
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6.2. From Topological Invariant in Phase Space Expressed Through GW , QW to the Standard Expression for
Hall Conductance

In the previous section we showed that Hall conductance (i.e., the conductivity integrated over
the whole area of the sample) is given by σxy = N/2π where N is the topological invariant in phase
space. Our derivation is applicable to the general case of the inhomogeneous one-particle Hamiltonian
including the case when elastic deformations are present. Our next purpose is to bring Equation (64)
to the conventional expression for the Hall conductance in the case, when the non-interacting charged
fermions have HamiltonianH.

First of all, one may show that Equation (64) is equivalent to the following representation for N
in terms of the Green’s ’s function written in momentum representation:

N =
T (2π)3

A 3! 4π2 εijk

∫ 4

∏
l=1

d3 p(l) tr
[

G(p(1), p(2))
(
[∂

p(2)i
+ ∂

p(3)i
]Q(p(2), p(3))

)
×
(
[∂

p(3)j
+ ∂

p(4)j
]G(p(3), p(4))

)(
[∂

p(4)k
+ ∂

p(1)k
]Q(p(4), p(1))

)]
A=0

. (65)

This may be proved noticing that the functional trace of a product of two operators is expressed
through their Weyl symbols as follows:

TrÂB̂ = Tr(AW ∗ BW) =
∫

d3x
∫ d3 p

(2π)3 tr(AW ∗ BW).

Again, we need the matrix elements
〈

p + q
2

∣∣ Â
∣∣p− q

2
〉

and
〈

p + q
2

∣∣ B̂
∣∣p− q

2
〉

to be nonzero only
when q remains in the small vicinity of zero. Applying this formula several times to Equation (64) we
come to Equation (65).

Secondly, for non-interacting fermions described byH with energy eigenstates |n〉: H|n〉 = En|n〉,
function Q(p(1), p(2)) in momentum space has the following form:

Q(p(1), p(2)) ≡ 〈p(1)|Q̂|p(2)〉 =
(

δ(2)(p(1) − p(2))iω(1) − 〈p(1)|H|p(2)〉
)

δ(ω(1) −ω(2)) (66)

where p = (p1, p2, p3) = (p, ω). At the same time:

G(p(1), p(2)) = ∑
n

1
iω(1) − En

〈p(1)|n〉〈n|p(2)〉δ(ω(1) −ω(2))

This way we obtain:

N = − i (2π)2

8π2A ∑
n,k

∫
R

dω
4

∏
l=1

d2 p(l)εij

tr
[ 1
(iω − En)2 〈p

(1)|n〉〈n|p(2)〉
(
[∂

p(2)i
+ ∂

p(3)i
]〈p(2)|H|p(3)〉

)
1

(iω − Ek)
〈p(3)|k〉〈k|p(4)〉

(
[∂

p(4)j
+ ∂

p(1)j
]〈p(4)|H|p(1)〉

)]
A=0

.

One may represent:

[∂
p(4)j

+ ∂
p(1)j

]〈p(4)|H|p(1)〉 = i〈p(4)|Hx̂j − x̂jH|p(1)〉 = i〈p(4)|[H, x̂j]|p(1)〉.

By operator x̂ we understand i∂p acting on the wavefunction written in momentum representation:

x̂jΨ(p) = 〈p|x̂j|Ψ〉 = i∂pj〈p|Ψ〉 = i∂pj Ψ(p).
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Then, for example,

x̂jδ
(2)(q− p) = 〈p|x̂j|q〉 = i∂pj〈p|q〉 = i∂pj δ

(2)(p− q) = −i∂pj〈q|p〉.

Therefore, we can write
x̂j|p〉 = −i∂pj |p〉.

Notice, that the sign minus here is counter-intuitive because the operator x̂ is typically associated
with +i∂p. We should remember, however, that with this latter representation the derivative acts on p
in the bra-vector 〈p| rather than on p in |p〉. Above we have shown that the sign is changed when the
derivative is transmitted to p of |p〉.

Thus we have:

N =
i (2π)2

8π2A ∑
n,k

∫
R

dω εij
〈n|[H, x̂i]|k〉〈k|[H, x̂j]|n〉
(iω − En)2(iω − Ek)

= −2i (2π)3

8π2A ∑
n,k

εij
θ(−En)θ(Ek)

(Ek − En)2 〈n|[H, x̂i]|k〉〈k|[H, x̂j]|n〉. (67)

The last expression is just the conventional expression for the Hall conductance (multiplied by
2π) for the given system. Notice, that it is valid for the slowly varying electromagnetic potential only
(the potential almost does not vary at the distance of order of lattice spacing). Then operator x̂ = i ∂

∂p
has the meaning of the coordinate operator.

7. Integer Quantum Hall Effect in the Presence of Varying Magnetic Field and
Elastic Deformations

7.1. Constant Magnetic Field and Constant Hopping Parameters

In this subsection we repeat the standard derivation of the Hall conductance in the noninteracting
2D models with a constant magnetic field perpendicular to the surface, and constant hopping
parameters. It is assumed here that the magnetic field B is sufficiently weak, so that |B|a2 � 1,
where a is the lattice spacing. Then the Hall conductivity may be represented as N/(2π), where N is
given above in Equation (67).

In order to calculate the value ofN we decompose the coordinates x1, x2 in relative coordinates ξi
(with bounded values) and center coordinates Xi (the unbounded part):

x̂1 = ξ̂1 + X̂1, x̂2 = ξ̂2 + X̂2 (68)

where,

ξ̂1 = − p̂2 − Bx1

B
, X̂1 =

p̂2

B
(69)

ξ̂2 = − p̂1

B
, X̂2 =

p̂1 − Bx2

B
. (70)

Then the commutation relations follow:

[ξ̂1, ξ̂2] =
i
B

, [X̂1, X̂2] = −
i
B

, [ξ̂i, X̂j] = 0 ∀i, j. (71)

Since the Hamiltonian is a function of ξi only (in Landau gauge)

H ≡ H(ξ1, ξ2), (72)

its commutator with Xj vanishes:
[H, X̂1] = [H, X̂2] = 0. (73)
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We use these relations to obtain:

N = −2i (2π)3

8π2A ∑
n,k

[ 1
(Ek − En)2 〈n|[H, ξ̂i]|k〉〈k|[H, ξ̂ j]|n〉

]
A=0

εij θ(−En)θ(Ek)

=
2iπ
A ∑

n,k
εij

[
〈n|ξ̂i|k〉〈k|ξ̂ j|n〉

]
A=0

θ(−En)θ(Ek)

=
2iπ
A ∑

n

[
〈n|[ξ̂1, ξ̂2]|n〉

]
A=0

θ(−En)

= − 2iπ
A B ∑

n
〈n|n〉θ(−En).

(74)

Momentum p2 is a good quantum number, and it enumerates the eigenstates of the Hamiltonian:

H|n〉 = H( p̂1, p̂2 − Bx̂1)|p2, m〉 = Em(p2)|p2, m〉, m ∈ Z.

We assume that the size of the system is L× L. This gives,

N = − (2π)

A ∑
m

∫ dp2L
2π

1
B

θ(−Em(p2)). (75)

Average value 〈x〉 = py/B plays the role of the center of orbit, and this center should belong to
the interval (−L/2, L/2). This gives,

N = N sign(−B). (76)

HereA = L2 is the area of the system while N is the number of occupied branches of the spectrum.
In conventional systems they are counted from the neutrality point, and this way we come to the
standard expression for the Hall conductance of the fermionic system in the presence of constant
magnetic and electric fields. On the other hand, in the exact treatment of the honeycomb lattices
(e.g., for graphene) the levels are to be counted from the edge of the band. This introduces into
consideration levels with large negative Chern numbers [90]. As a result, close to half filling the
conductivity is given by the ‘Dirac-Landau level index’ [91] counted from zero energy.

However, our approximation in Equation (47) is probably valid only up to |EF| ∼ t, i.e., in the
region between the innermost van Hove singularities [91]. Thus we cannot correctly take into account
the above mentioned deep lying levels. On the other hand, for the constant magnetic field in the
absence of elastic deformations their contribution is known as it cancels precisely that of N/(2π)

at the half filling. We denote this term by σ
(0)
xy = N (0)/(2π), and the final expression for the Hall

conductivity becomes:

σxy =
N
2π
− σ

(0)
xy , (77)

which we can also rewrite as:

σxy =
N′

2π
sign(−B) (78)

where N′ is counted from the half filling (the LLL being occupied contributes with the factor 1/2).

7.2. Constant Magnetic Field and Weakly Varying Hopping Parameters

Let us consider the case when:
t(j)(x) = t(j)

0 ex f ,



Symmetry 2020, 12, 317 20 of 29

(with some constant spatial vector f ) for specific Hamiltonian, which we define by its Weyl symbol:

HW(x, p) =
M

∑
j=1

(
−µ/N t(j)(x) ei(pb(j)−A(j)(x))

t(j)(x) e−i(pb(j)−A(j)(x)) −µ/N

)
(79)

and here µ is the chemical potential. As above, we decompose the coordinates x1, x2 into relative
coordinates ξi and the center coordinates Xi using Equation (68). We still have the commutation
relations in Equation (71). However, since t(j)(x) now depend on coordinates, the Hamiltonian does
not commute anymore with X1, X2. Instead we have:

HW ∗ XW,j − XW,j ∗ HW =
i

2B
εji fi (HW − µ). (80)

Here,

X̂1 =
p̂2

B
, X̂2 =

p̂1 − Bx̂2

B
(81)

and XW,i is their Weyl symbols. This gives,

HX̂j − X̂jH =
i

2B
εji fi (H− µ). (82)

Then for n 6= k we obtain:
〈n|HX̂j − X̂jH|k〉 = 0

and we come again to Equation (74)

N = − 2π

A B ∑
n
〈n|n〉θ(−En) = −

2π

B
ρ (83)

where now ρ is the average density of occupied states.
If we require, in addition, that t(j) does not depend on y and depends on x only, then momentum

py is still a good quantum number, and Equation (75) is applicable. As above, we will obtain:

N = N sign(−B). (84)

Recall that A = L2 is the area of the system while N is the number of the occupied branches of
spectrum. One can see, that in the presence of constant magnetic field and the hopping parameters
that depend on x1 and do not depend on x2 (i.e., t(j)(x) = t(j)

0 ex1 f1) the Hall conductivity is given by
the same standard value as for the constant hopping parameters. Here we also assume that weak
elastic deformations are not able to modify the contribution σ

(0)
xy of the deep Landau Levels, so that

Equation (77) remains valid, and we come finally to the conductivity (averaged over the area of the
sample) as:

σxy =
N′

2π
sign(−B), (85)

where the number of occupied branches of spectrum N′ is counted from the half-filling.

7.3. Weak Variations of Magnetic Field and Hopping Parameters

Without elastic deformations the constant external magnetic field results in the appearance of
Landau Levels. Each Landau level is highly degenerate. Weak elastic deformations result in the
appearance of the emergent gauge field and anisotropic Fermi velocity. Both emergent gauge field
and anisotropic Fermi velocity vary in space. The latter may be interpreted, in addition, as the
emergent gravitational field (see [80,81]). Both emergent fields result in a certain modification of
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the band structure. It is discussed, for example, in [82], where particular cases were considered.
In these particular cases the elastic deformations modify the Fermi velocity and degeneracy of Landau
Levels. In a general case it is expected that the degeneracy of the Landau Levels may be lifted by
both spatial variations of magnetic field and elastic deformations, so that the energy levels become
thick. The overall number of the one-electron states in each Landau Level may be affected as well.
When the elastic deformations and variations of magnetic field become more strong, we expect that the
band structure may be modified more crucially. In particular, certain Landau Levels may merge and
form the common strip of the states. The gaps between different strips may disappear and, possibly,
appear again in the different ranges of energies if the variations of fields become stronger.

In Section 7.1 we considered a constant magnetic field and hopping parameters. It was noticed
there that although the deep LL of the honeycomb lattices (those near the edge of the band) could not
be taken correctly in our approximation, their contribution was known and could be used, given by
the value of Equation (64) at half filling. Since those levels are deep, they cannot be affected by weak
elastic deformations and weak variations of magnetic field, which modify only the contributions of the
energy levels sufficiently close to half filling.

Let us suppose, that the magnetic field is slowly varying in the limited region of the sample,
such that it approaches constant value B close to the boundary of the sample. Then we come to the
following result valid in the presence of varying elastic deformations as well. The total average Hall
conductivity (i.e., the Hall conductivity integrated over the area A of the sample and divided by this
area) has the form of:

σxy =
1

2π

(
N −N (0)

)
(86)

where N is the topological invariant in phase space:

N =
T

A 3! 4π2 εijk

∫
RD+1

dx
∫
R⊗M

dp tr

[
GW(p, x) ∗ ∂QW(p, x)

∂pi
∗ ∂GW(p, x)

∂pj
∗ ∂QW(p, x)

∂pk

]
. (87)

In graphene, N (0) is the value of Equation (87) at half filling and unlike N it is to be calculated
with a constant magnetic field and without elastic deformations.

The value of N may be affected by variations of magnetic field and by elastic deformations.
The resulting Hall conductivity becomes vanishing at half filling when those variations of magnetic
field are sufficiently weak as well as the elastic deformations. At the same time, we do not have any
reasons to suppose that the sufficiently strong elastic deformations/variations of magnetic field cannot
lead to the deviation of Hall conductivity from zero at half filling.

7.4. Analytical Elastic Deformations In Graphene

In graphene, the relation between t, A, and u is given by [79],

t(j)(x) = t[1− βukl(x)b(j)
k b(j)

l ], A1 = − β

a
u12 A2 =

β

2a
(u22 − u11). (88)

With elementary translations given by Equation (28), the nontrivial part of t(j) is:

ukl(x)b(j)
k b(j)

l =
a2

4

 4u11

u11 + 2
√

3u12 + 3u22

u11 − 2
√

3u12 + 3u22

 . (89)

Requiring that,
t(1)(x) = t(2)(x) = t(3)(x), (90)
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is consistent with Section 7.2, thus we come to the Cauchy–Riemann conditions:

∂u1

∂x1
=

∂u2

∂x2
,

∂u2

∂x1
= −∂u1

∂x2

that is h(z) ≡ u1(z) + iu2(z) is analytic as a function of z = x1 + ix2. (There is another solution of (90)

∂1u1 = −2− ∂2u2, ∂1u2 = ∂2u1,

which however brakes the smallness condition β|uij| � 1.)
In this case we have a vanishing emergent gauge field, while up to the terms linear in the

derivatives of the hopping parameters the results of Section 7.2 give:

N = −2π

B
ρ (91)

where ρ is the average density of occupied states. On the other hand, the results of Section 7.2 ensure
that any weak variations of both hopping parameters and magnetic field give:

N = −N sign B

where N is the number of occupied Landau Levels (now instead of the degenerate Landau level
we may have the energy band parametrized by certain parameters). Comparing this result with
Equation (91) we obtain:

ρ =
|B|
2π

N

for the elastic deformations given by an analytical function of coordinates (i.e., when the emergent
magnetic field is absent).

8. Conclusions and Discussions

In the present paper we proceeded with the development of Wigner–Weyl formalism
for tight-binding models of solid state physics (or, equivalently, for the lattice regularized
quantum field theory). We extended the previous works made in this direction [30–35,56–58].
The developed technique was applied to the class of inhomogeneous models that include, in particular,
the tight-binding model of graphene in the presence of both inhomogeneous magnetic field and
nontrivial elastic deformations. It is worth mentioning that the majority of our results may be
applied to other models of solid state physics. Apart from the family of two-dimensional honeycomb
lattice materials (graphene, germanene, silicene, etc), all rectangular lattice crystals, both in two and
three dimensions could be treated with developed methods, if described within nearest-neighbor
approximation. In these cases the electrons may jump only between the nearest neighbors, and there
is the Z2 sublattice symmetry. The lattice consists of the two sublattices O1 and O2. For each x ∈ O1

site x + b(j) ∈ O2 with fixed vectors b(j), where j = 1, 2, ..., M. For the honeycomb lattice M = 3,
for the 2D rectangular lattice M = 4, for the 3D rectangular lattice M = 8. Among the mentioned
models only the two-dimensional model on the honeycomb lattice sufficiently and accurately describe
the real system (graphene). Therefore, the emphasis is on the application to the physics of graphene.
The particular interest in our study was the consideration of the arbitrarily varying external magnetic
field and nonhomogeneous elastic deformations.

We obtained the following main results:
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1. We calculated the Weyl symbol of the lattice Dirac operator (i.e., the operator Q̂ that enters the
action ∑x,y Ψ̄xQx,yΨy) in the presence of both elastic deformations and slowly varying external
electromagnetic field:

QW = iω− t ∑
j

(
1− βukl(x)b(j)

k b(j)
l

)( 0 ei(pb(j)−A(j)(r))

e−i(pb(j)−A(j)(r)) 0

)
(92)

where uij is the tensor of elastic deformations while,

A(j)(x) =
∫ x+b(j)/2

x−b(j)/2
A(y)dy.

It was assumed that the variation of electromagnetic field A(x) at the distances of order of the
lattice spacing may be neglected. In practice this corresponded to magnetic fields B that obeyed
Ba2 � 1. In practice this bound read B� 1000 Tesla. Additionally, we required that the typical
wavelenth of the external electromagnetic field was much larger than the lattice spacing. This did
not allow the use of Equation (92) for matter interacting with the X-rays with the wavelengths of
the order of several Angstroms and smaller;

2. The Wigner transformation of the electron propagator in the presence of the slowly
varying magnetic field and arbitrary elastic deformations may be calculated using the
following expression:

GW(x, p) = ∑
M=0...∞

[
...
[

Q−1
W (1− e

←→
∆ )QW

]
Q−1

W (1− e
←→
∆ )QW

]
...(1− e

←→
∆ )QW

]
︸ ︷︷ ︸Q−1

W

M brackets
(93)

where
←→
∆ =

i
2

(←−
∂ x
−→
∂p −

←−
∂p
−→
∂ x

)
;

3. The electron propagator in the presence of a slowly varying electromagnetic field and elastic
deformations may be expressed through the Wigner transformed Green’s function as follows:

G(x1, x2) ≈
1

2π|M|

∫
dpGW((x1 + x2)/2, p)e−ip(x1−x2) (94)

where |M| is the area of the Brillouin zone.
4. The total average Hall conductivity (i.e., the Hall conductivity integrated over the area of the

sample and divided by this area) in the presence of varied weak magnetic field B � 1/a2 and
elastic deformations had the form of:

σxy =
N
2π
− N

(0)

2π
(95)

where N is the topological invariant in phase space, which is the generalization of the classical
TKNN invariant [61] since it is also applicable to non homogeneous systems:

N =
T

A 3! 4π2 εijk

∫
RD+1

dx
∫
R⊗M

dp tr

[
GW(p, x) ∗ ∂QW(p, x)

∂pi
∗ ∂GW(p, x)

∂pj
∗ ∂QW(p, x)

∂pk

]
, (96)

here A is the area of the sample. For the conventional systems, like those with the one particle
Hamiltonian p2/2m (in the absence of magnetic field), when the spectrum was bounded from
below, N (0) = 0, but in graphene it was given by the value of N at half filling (with a constant
magnetic field and without elastic deformations). Thus, in the presence of a constant magnetic
field at half filling the Hall conductivity vanished. The value of N (0) originated from the
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contribution of the deep Landau Levels was not affected by variations of magnetic field and by
elastic deformations. At the same time, the value of N may, in principle, be affected by them.
The resulting expression worked for the magnetic field slowly varying in the limited region of the
sample, such that it approached constant value B close to the boundary of the sample. The applied
electric field resulted from the electric potential varying in space. The latter may be considered
also as a variation in space of chemical potential or Fermi energy. Voltage U appeared as the
difference of the Fermi energy between the edges of the sample. Then the Hall current is given by:

Ixy =
N −N (0)

2π
U (97)

(Recall that we used the relativistic system of units. To obtain expression for the Hall current in an
ordinary system of units we have to multiply the above expression by the unity of conductance e2

h̄ );
5. The above mentioned representation of the average Hall conductivity through the topological

invariant in phase space allowed us to prove that in graphene it was robust to both sufficiently
weak variations of magnetic field and sufficiently weak elastic deformations. It is worth
mentioning that both mentioned variations of magnetic field and elastic deformations were
to be concentrated within the finite region far from the boundary of the sample. Under these
conditions Equation (96) was not changed for the smooth variations of lattice Hamiltonian (for
the proof see Appendix D in [57]);

6. The special case of elastic deformations was considered, when the emergent gauge field in
graphene was absent. It was shown that the corresponding deformations were given by the
arbitrary analytical functions of coordinates. Namely, the condition of the absence of emergent
gauge field was equivalent to the Riemann–Cauchy conditions for the displacement function ui,
i = 1, 2. As a result the function u(z) = u1(z) + iu2(z) appeared to be an analytical function of
z = x1 + ix2, where xi were the coordinates of the carbon atoms in the unperturbed honeycomb
lattice. Under these circumstances for the constant magnetic field B the Hall current was given by:

Ixy = −N′U
2π

sign B (98)

where U is voltage while N′ is the number of occupied Landau Levels (counted from the half
filling). Now unlike the case of the unperturbed graphene the Landau Levels may already not
be degenerated.

It is worth mentioning that our results were obtained in the absence of both disorder and Coulomb
interactions. In the presence of disorder the Hall current density is pushed towards the boundary.
However, its total value is generally believed to remain the same. This is proved, at least, in the absence
of elastic deformations when the magnetic field is homogeneous It appears that the neutrality point
(when chemical potential is in the middle of the Lowest Landau Level) corresponds to vanishing Hall
conductivity. Again, the Landau Levels (LL) participate in the QHE being counted from the neutrality
point. This occurs now because close to the boundary, the branches of energy spectrum above and
below the neutrality point behave differently. Energies of those branches above the neutrality point are
increased while energies of the branches situated below it are decreased. As a result there is no crossing
of the energy levels with the Fermi level on the boundary at neutrality point [72], and, consequently,
there are no gapless edge states that are to be the carriers of the Hall current. This shows that weak
disorder does not cause a jump in the value of total conductance. The average conductivity (the
conductivity integrated over the area of the sample divided by this area) is given by σxy = N′

2π sign B,
where N′ is the number of occupied electronic energy levels counted from the half filling. Therefore,
for graphene, N′ may be both negative and positive. Moreover, for the chemical potential just above
zero only half of the Lowest Landau Level contributed to the Hall conductance. Therefore, in this
case N′ = 1

2 gsgv = 4
2 = 2. We also supposed that weak variations of magnetic field and weak

elastic deformations do not change this property, and the value of the average Hall conductivity
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should remain the same until the topological phase transition to the state with a different value of Hall
conductivity is encountered. For sufficiently strong elastic deformations and/or variations of magnetic
field the very notion of Landau Levels may lose its sense, but the values of Hall conductivity may still
remain nonzero.

We expected that the Hall current would be robust to the weak Coulomb interactions (at least in
the presence of a sufficient amount of disorder) although the detailed investigation of this issue is still
to be performed (see [58] and references therein), especially in the presence of elastic deformations and
variations of magnetic field. At the same time, the clean samples of graphene (very weak disorder)
exhibit the Fractional Quantum Hall Effect (FQHE) due to the Coulomb interactions. The investigation
of this issue remains out of the scope of the present paper although we expect that Equation (96) may
still be related somehow to the description of the FQHE.

We suppose that the results obtained here may be used further in the investigation of various
properties of graphene. In particular, Equations (92) and (93) determined electron propagator in the
complete tight-binding model in the presence of both elastic deformations and slowly varying external
electromagnetic field. This propagator may be used in those investigations of transport properties
that require use of the complete tight-binding model, i.e., when the low energy effective continuum
field theory of graphene is not sufficient for the solution of a particular problem. Since the form of the
obtained expressions is rather complicated, and the result of Equation (93) is represented in the form
of the infinite series, the practical applications of the obtained formulas are likely to require certain
numerical techniques.

We also expect that the practical calculation of Hall conductivity using Equation (96) may
require the application of certain numerical procedures. The possible problem to be solved using this
expression is the calculation of Hall conductivity in the presence of varying magnetic field and/or
varying elastic deformations. For the constant external magnetic field and without elastic deformations
the result for the Hall conductance is well known. According to our results, weak elastic deformations
and weak variations of magnetic field could not affect the value of the total Hall current. However,
when the variations become stronger, the system may undergo a topological phase transition to the
state with different value of Hall conductance. We may determine the critical values of magnetic
field variation and/or deformation tensor variation using the direct evaluation of an integral in
Equation (96). Both numerical and analytical methods of this evaluation await for their development.

It is worth mentioning, that the simplified version of Equation (96) (discussed in [30]) that
appeared when GW did not depend on coordinates, represents the generator of the co-homology group
H(3)(M), whereM is momentum space. Equation (96) also awaits for the interpretation using the
language of algebraic topology. At the present moment we noticed only that this topological invariant
certainly played a role in the classification of the homotopic classes of maps G :M⊗R → GL(2, C),
whereR is the coordinate space with certain boundary conditions whileM is momentum space.

We would like to notice again, that the theory presented here is valid for the slowly varying
potentials, which is consistent with the requirement Ba2 � 1. It would be interesting to extend the
Wigner–Weyl formalism to the precise consideration of the tight-binding model of graphene in the
presence of strong magnetic fields B ∼ 1/a2. Another challenge is an extension of our results to the
investigation of the fractional Hall effect.

The authors are grateful for the ideas and comments, as well as the collaboration in the adjacent
fields, of M. Suleymanov, Xi Wu, and Chunxu Zhang. M.A.Z. is indebted for the valuable discussions
to G.E.Volovik.

Author Contributions: Authors contribute equally to this work.

Funding: The present research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.



Symmetry 2020, 12, 317 26 of 29

References

1. Groenewold, H.J. On the Principles of elementary quantum mechanics. Physica 1946, 12, 405–460,
doi:10.1016/S0031-8914(46)80059-4.

2. Moyal, J.E. Quantum mechanics as a statistical theory. Proc. Philos. Soc. 1949, 45, 99–124.
3. Weyl, H. Quantenmechanik und Gruppentheorie. Z. Fur Phys. 1927, 46, 1–46, doi:10.1007/BF02055756.
4. Wigner, E.P. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 1932, 40, 749–759,

doi:10.1103/PhysRev.40.749.
5. Ali, S.T.; Englis, M. Quantization Methods: A Guide for Physicists and Analysts. Rev. Math. Phys. 2005,

17, 391–490, doi:10.1142/S0129055X05002376.
6. Berezin, F.A.; Shubin, M.A. Colloquia Mathematica Societatis Janos Bolyai; North-Holland: Amsterdam,

The Netherlands, 1972; p. 21.
7. Curtright, T.L.; Zachos, C.K. Quantum Mechanics in Phase Space. Asia Pac. Phys. Newsl. 2012, 1, 37,

doi:10.1142/S2251158X12000069.
8. Zachos, C.; Fairlie, D.; Curtright, T. Quantum Mechanics in Phase Space; World Scientific: Singapore, 2015.
9. Cohen, L. Generalized Phase-Space Distribution Functions. J. Math. Phys. 1966, 7, 781–781,

doi:10.1063/1.1931206.
10. Agarwal, G.S.; Wolf, E. Calculus for Functions of Noncommuting Operators and General Phase-Space

Methods in Quantum Mechanics. II. Quantum Mechanics in Phase Space. Phys. Rev. D 1970, 2, 2187–2205,
doi:10.1103/PhysRevD.2.2187.

11. Sudarshan, E.C. Sudarshan Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical
Light Beams. Phys. Rev. Lett. 1963, 10, 277–279, doi:10.1103/PhysRevLett.10.277.

12. Glauber, R.J. Coherent and Incoherent States of the Radiation Field. Phys. Rev. 1963, 131, 2766–2788,
doi:10.1103/PhysRev.131.2766.

13. Husimi, K. Some Formal Properties of the Density Matrix. Proc. Phys. Math. Soc. Jpn. 1940, 22, 264–314.
14. Agarwal, G.S.; Wolf, E. Calculus for Functions of Noncommuting Operators and General Phase-Space

Methods in Quantum Mechanics. I. Mapping Theorems and Ordering of Functions of Noncommuting
Operators. Phys. Rev. D 1970, 2, 2161–2186, doi:10.1103/PhysRevD.2.2161.

15. Cahill, K.E.; Glauber, R.J. Glauber Ordered Expansions in Boson Amplitude Operators. Phys. Rev. 1969,
177, 1882–1902, doi:10.1103/PhysRev.177.1857;.

16. Buot, F.A. Nonequilibrium Quantum Transport Physics in Nanosystems; World Scientific: Singapore, 2009.
17. Lax, M. Quantum Noise. XI. Multitime correspondence between Quantum and Classical stochastic processes.

Phys. Rev. 1968, 172, 350–361, doi:10.1103/PhysRev.172.350.
18. Lorce, C.; Pasquini, B. Quark Wigner distributions and orbital angular momentum. Phys. Rev. D 2011,

84, 014015,
19. Elze, H.T.; Gyulassy, M.; Vasak, D. Transport equations for the QCD Quark Wigner Operator. Nucl. Phys. B

1986, 706, 276, doi:10.1016/0550-3213(86)90072-6.
20. Hebenstreit, F.; Alkofer, R.; Gies, H. Schwinger pair production in space and time-dependent electric

fields: Relating the Wigner formalism to quantum kinetic theory. Phys. Rev. D 2010, 82, 105026,
doi:10.1103/PhysRevD.82.105026.

21. Calzetta, E.; Habib, S.; Hu, B.L. Quantum Kinetic Field Theory in curved space-time: Covariant Wigner
function and Liouville-Vlasov equation. Phys. Rev. D 1988, 37, 2901, doi:10.1103/PhysRevD.37.2901.

22. Bastos, C.; Bertolami, O.; Dias, N.C.; Prata, J.N. Weyl-Wigner formulation of noncommutative quantum
mechanics. J. Math. Phys. 2008, 49, 072101, doi:10.1063/1.2944996.

23. Dayi, O.F.; Kelleyane, L.T. Wigner functions for the Landau problem in noncommutative spaces. Mod. Phys.
Lett. A 2002, 17, 1937, doi:10.1142/S0217732302008356.

24. Habib, S.; Laflamme, R. Wigner function and decoherence in quantum cosmology. Phys. Rev. D 1990,
42, 4056, doi:10.1103/PhysRevD.42.4056.

25. Chapman, S.; Heinz, U.W. HBT correlators: Current formalism versus Wigner function formulation.
Phys. Lett. B 1994, 340, 250, doi:10.1016/0370-2693(94)01277-6.

26. Berry, M.V. Semi-classical mechanics in phase space: A study of Wigner’s function. Philos. Trans. R. Soc.
Lond. A 1977, 287, 0145, doi:10.1098/rsta.1977.0145.



Symmetry 2020, 12, 317 27 of 29

27. Bastos, C.; Bernardini, A.; Santos, J. Probing phase-space noncommutativity through quantum mechanics
and thermodynamics of free particles and quantum rotors. Physica A 2015, 438, 340–354.

28. Bernardini, A.E.; Bertolami, O. Non-classicality from the phase-space flow analysis of the Weyl-Wigner
quantum mechanics. Eur. Phys. Lett. 2017, 120, 20002.

29. Bernardini, A.E. Testing nonclassicality with exact Wigner currents for an anharmonic quantum system.
Phys. Rev. A 2018, 98, 052128.

30. Zubkov, M.A.; Khaidukov, Z.V. Topology of the momentum space, Wigner transformations, and a chiral
anomaly in lattice models. JETP Lett. 2017, 106, 166, doi:10.1134/S0021364017150139.

31. Chernodub, M.N.; Zubkov, M.A. Scale magnetic effect in Quantum Electrodynamics and the Wigner-Weyl
formalism. Phys. Rev. D 2017, 96, 056006, doi:10.1103/PhysRevD.96.056006.

32. Khaidukov, Z.V.; Zubkov, M.A. Chiral Separation Effect in lattice regularization. Phys. Rev. D 2017,
95, 074502, doi:10.1103/PhysRevD.95.074502.

33. Zubkov, M.A. Momentum space topology of QCD. Ann. Phys. 2018, 393, 264, doi:10.1016/j.aop.2018.04.016.
34. Zubkov, M.A. Absence of equilibrium chiral magnetic effect. Phys. Rev. D 2016, 93, 105036,

doi:10.1103/PhysRevD.93.105036.
35. Zubkov, M.A. Wigner transformation, momentum space topology, and anomalous transport. Ann. Phys.

2016, 373, 298, doi:10.1016/j.aop.2016.07.011.
36. Kharzeev, D.E. The Chiral Magnetic Effect and Anomaly-Induced Transport. Prog. Part. Nucl. Phys. 2014,

75, 133, doi:10.1016/j.ppnp.2014.01.002.
37. Metlitski, M.A.; Zhitnitsky, A.R. Anomalous Axion Interactions and Topological Currents in Dense Matter.

Phys. Rev. D 2005, 72, 045011.
38. Chernodub, M.N. Anomalous Transport Due to the Conformal Anomaly. Phys. Rev. Lett. 2016, 117, 141601.
39. Hasan, M.Z.; Kane, C.L. Topological Insulators. Rev. Mod. Phys. 2010, 82, 3045–3067.
40. Qi, X.L.; Zhang, S.C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110.
41. Volovik, G.E. Topology of Quantum Vacuum; Draft for Chapter in Proceedings of the Como Summer School on

Analogue Gravity. Lecture Notes in Physics, 870, 343-383 (2013)
42. Volovik, G.E. Quantum phase transitions from topology in momentum space. In Quantum Analogues:

From Phase Transitions to Black Holes and Cosmology; Unruh, W.G., Schutzhold, R., Eds.; Springer Lecture
Notes in Physics; Springer, Berlin/Heidelberg, Germany, 2007; Volume 718, pp. 31–73,

43. Volovik, G.E. Topological invariants for Standard Model: From semi-metal to topological insulator. JETP Lett.
2010, 91, 55, doi:10.1134/S0021364010020013.

44. Gurarie, V. Single-particle Green’s functions and interacting topological insulators. Phys. Rev. B 2011,
83, 085426.

45. Essin, A.M.; Gurarie, V. Bulk-boundary correspondence of topological insulators from their Green’s functions.
Phys. Rev. B 2011, 84, 125132.

46. Volovik, G.E. The Universe in a Helium Droplet; Clarendon Press: Oxford, UK, 2003.
47. Volovik, G.E. Topological Superfluids, ZhETF, 156(4), 700-706 (2019), arXiv 2016, arXiv:1602.02595
48. Nielsen, H.B.; Ninomiya, M. Absence of neutrinos on a lattice: I-Proof by homotopy theory. Nucl. Phys. B

1981, 185, 20.
49. So, H. Induced topological invariants by lattice fermions in odd dimensions. Prog. Theor. Phys. 1985,

74, 585–593.
50. Ishikawa, K.; Matsuyama, T. Magnetic field induced multi component QED in three-dimensions and

quantum Hall effect. Z. Phys. C 1986, 33, 41–45.
51. Kaplan, D.B. Method for simulating chiral fermions on the lattice. Phys. Lett. B 1992, 288, 342–347.
52. Golterman, M.F.L.; Jansen, K.; Kaplan, D.B. Chern-Simons currents and chiral fermions on the lattice.

Phys. Lett. B 1993, 301, 219–223.
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