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Abstract: Recently, Tahmasebi and Eskandarzadeh introduced a new extended cumulative entropy
(ECE). In this paper, we present results on shift-dependent measure of ECE and its dynamic past
version. These results contain stochastic order, upper and lower bounds, the symmetry property and
some relationships with other reliability functions. We also discuss some properties of conditional
weighted ECE under some assumptions. Finally, we propose a nonparametric estimator of this new
measure and study its practical results in blind image quality assessment.
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1. Introduction

Differential entropy is a basic concept in the field of information theory. The central idea of
information theory revolves around the concept of uncertainty introduced by Shannon [1]. If X is
a random variable representing the lifetime of a system with probability density function (PDF) f ,
then the Shannon entropy of X is given by

H(X) = −
∫ +∞

0
f (x) log f (x)dx. (1)

Later, Rényi [2] introduced another extension of the Shannon entropy that is more flexible than
Shannon entropy and has a wide range of applications in many fields. The Rényi entropy of X,
which we denote by Hα(X), is defined as follows:

Hα(X) =
1

1− α
log

∫ +∞

0
f α(x), α > 0 (α 6= 1). (2)

By replacing the PDF by the survival function F̄ = 1− F in (1), Rao et al. [3] defined an alternate
information measure called the cumulative residual entropy (CRE) given by

E(X) =
∫ +∞

0
F̄(x)Λ(x)dx,
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where Λ(x) = − log F̄(x). Di Crescenzo and Longobardi [4] introduced a new information measure
similar to E(X) as follows:

CE(X) =
∫ +∞

0
F(x)Λ̃(x)dx, (3)

where Λ̃(x) = − log F(x). Recently Di Crescenzo and Toomaj [5] discussed some properties of a
new weighted distribution based on a cumulative entropy (CE) function. Psarrakos and Navarro [6]
generalized the concept of CRE, relating this concept with the mean time between record values
and with the concept of relevation transform, and also considered a dynamic version of this new
measure (for more details see Calí, Longobardi and Psarrakos, [7]). Moharana and Kayal [8] obtained
some results on the weighted extended cumulative residual entropy of k-th upper record values.
Tahmasebi et al. [9] considered a shift-dependent measure of generalized cumulative entropy and
its dynamic version in the case where the weight is a general non-negative function. An important
concept of ordered random variables which arises in many areas of applications is the concept of
record values. Consider the sequence {Xn, n ≥ 1} of independent and identically distributed random
variables with cumulative distribution function (CDF) F and PDF f . An observation Xj is called a
lower record if Xj < Xi for every i < j. For a fixed positive integer k, the sequence {Ln(k), n ≥ 1} of
k-th lower record times for {Xn, n ≥ 1} is defined by Dziubdziela and Kopocinski [10] as follows:

L1(k) = 1, Ln+1(k) = min{j > Ln(k) : Xk:Ln(k)+k−1 > Xk:k+j−1},

where Xj:m denotes the j-th order statistic in a sample of size m. Then Xn(k) := Xk:Ln(k)+k−1 is called a
sequence of k-th lower record values of {Xn, n ≥ 1}. Aditionally, the PDF and CDF of Xn(k), which are
denoted by fn(k) and Fn(k), respectively, are given by

fn(k)(x) =
kn

(n− 1)!
[F(x)]k−1[Λ̃(x)]n−1 f (x), (4)

Fn(k)(x) = [F(x)]k
n−1

∑
i=0

[kΛ̃(x)]i

i!
. (5)

Now, if we define µ̃n,k(x) =
∫ +∞

0 Fn(k)(x)dx, from (5) we obtain

k [µ̃n+1,k(x)− µ̃n,k(x)] =
∫ +∞

0

kn+1

n!
[F(x)]k[Λ̃(x)]ndx. (6)

Tahmasebi and Eskandarzadeh [11] defined a further extension of CE as follows:

CEn,k(X) =
∫ +∞

0

kn+1

n!
[F(x)]k[Λ̃(x)]ndx

= E
(

1
r(Xn+1(k))

)
, f or n = 1, 2, ..., k ≥ 1, (7)

where r(.) = f (.)
F(.) is the reversed failure rate of F. This new CE is presented on the idea of GCRE

introduced by Psarrakos and Navarro [6]. They named it extended cumulative entropy (ECE).
Non-reference image quality assessment (IQA) methods give quality estimates without prior

knowledge of the reference image, and quality assessment is done based on the test images only. Image
quality approaches largely depend on the intended imaging area. However, making an objective
general quality assessment of image information based on a physical measurement of the image is
interesting. Shannon entropy is classically used as a value to indicate the amount of uncertainty or
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information in a source. Quality and entropy are related issues. However, a barrier to entropy as
the quality indicator is that it can’t distinguish the noise of an image from the desired information.
Hence, Shannon entropy is not a good indicator of image quality by itself. Overcoming this problem is
presented by anisotropy as an appropriate measure of image quality. Degradation processes damage
the directional scene’s information. Hence, anisotropy, as a directionally dependent quality, is reduced
by adding further damage to the image. Using neuroscience research, the local receptive field (LRF)
in the primary visual cortex is highly adaptable to extract local features for visual comprehension,
and simple cells in the LRF can be described as being used for localization and spatial orientation.
In other words, the LRF is very sensitive to changes in intensity and orientation [12]. Therefore, visual
information of an image can be represented by the local intensity and local orientation of the image.
Thus, an image quality index must consider the local intensity and local orientation information
of an image. The anisotropic quality index (AQI) uses Rényi entropy as the basic criterion for the
measuring of the image information content using the local intensity. For this purpose, as a first step
the pseudo-winger distribution of the symmetric neighbors of each pixel at different directions is
calculated. Then the Rényi entropy of the obtained values is computed. Furthermore, AQI calculates
the entropy at different directions in order to consider the local orientation information of an image.
Although it seems that AQI considers the local intensity and local orientation information of an image
for image quality estimation, Rényi entropy only uses the distribution of the local intensity of pixels,
and exact value of pixels are not used. Hence in this paper we propose a novel entropy measure which
considers the distribution and exact value of pixels simultaneously. The results on three test images
show the benefits of the proposed new measure of entropy. For this purpose, we present results on a
shift-dependent measure of ECE and its dynamic past version. We also study the numerical results
of ECE in blind image quality assessment. Therefore, the rest of this paper is organized as follows:
In Section 2, we present some basic properties and the stochastic ordering of a weighted ECE (denoted
by WECE). We also obtain some results from the dynamic version of the WECE. In Section 3, we study
some properties of the conditional WECE. In Section 4, we state some relationships of the WECE
with other concepts of reliability functions. Finally, in Section 5, using the nonparametric estimator of
WECE, numerical results of a blind image quality assessment are presented.

2. Some Results on WECE and Its Dynamic Past Version

In this section, we first present some properties of the WECE and then consider the dynamic past
version of this concept.

Definition 1. Let X be a non-negative random variable with CDF F. Then, the WECE is defined as follows:

CEw
n,k(X) =

∫ +∞

0

kn+1

n!
x[F(x)]k[Λ̃(x)]ndx

= E
(

Xn+1(k)

r(Xn+1(k))

)
. (8)

Furthermore, from (5) we can obtain an alternative expression as

CEw
n,k(X) =

∫ +∞

0
kx[Fn+1(k)(x)− Fn(k)(x)]dx.

Remark 1. Let X be a non-negative absolutely continuous random variable:

i. If X is uniformly distributed in [0, θ], then, CEw
n,k(X) = θ2( k

k+2 )
n+1.

ii. If X has the Fréchet distribution with F(x) = e
−θ
x , then for n > 2 we have

CEw
n,k(X) =

k3θ2

n(n− 1)(n− 2)
= k3CEw

n,1(X).
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iii. If X has an inverse Weibull distribution with F(x) = exp(−( α
x )

β), α, β > 0, then CEw
n,k(X) =

α2k
β+2

β

βn! Γ( nβ−2
β ).

iv. If Y = aX + b, with a > 0 and b ≥ 0, then CEw
n,k(Y) = a2CEw

n,k(X) + abCEn,k(X).

In the following, we prove important properties of the WECE using stochastic ordering. For that
we present the following definition:

Definition 2. Let X and Y be the non-negative random variables with CDFs F and G, respectively, then

1. X is smaller than Y in the usual stochastic order (denoted by X ≤st Y) if P(X ≥ x) ≤ P(Y ≥ x) for all x.
2. X is smaller than Y in the likelihood ration ordering (denoted by X ≤lr Y) if fY(x)

fX(x) is increasing in x;
3. X is smaller than Y in the reversed hazard rate order, denoted by X ≤rhr Y, if rX(x) ≥ rY(x) for all x;
4. X is smaller than Y in the decreasing convex order, denoted by X ≤dcx Y, if E(φ(X)) ≤ E(φ(Y)) for all

decreasing convex functions φ such that the expectations exist;
5. X is smaller than Y in the dispersive order, denoted by X ≤disp Y, if F−1(v)− F−1(u) ≤ G−1(v)−

G−1(u), ∀ 0 < u ≤ v < 1, where F−1 and G−1 are right continuous inverses of F and G, respectively;
6. A non-negative random variable X is said to have a decreasing reversed hazard rate (DRHR) if rX(x) =

f (x)
F(x) is decreasing in x;

7. A non-negative random variable X is said to have a decreasing reversed hazard rate average (DRHRA) if
rX(x)

x is a decreasing function in x > 0. Note that DRHR classes of distributions are included in DRHRA
classes of distributions.

Theorem 1. Let X be an absolutely continuous non-negative random variable with CDF F. If X is DRHRA,
then

CEw
n+1,k(X) ≤ CEw

n,k(X), for n = 1, . . . , k ≥ 1. (9)

Proof. Since the ratio
fn+1(k)(x)
fn+2(k)(x) =

−(n+1)
k log F(x) is increasing in x, it follows that Xn+2(k) ≤st Xn+1(k). This is

equivalent (Shaked and Shanthikumar [13], (p. 4)) to having

E(φ(Xn+2(k))) ≤ E(φ(Xn+1(k))),

for all increasing functions φ such that these expectations exist. Hence, if X is DRHRA and rX is its
reversed hazard rate, then we have

E
(

Xn+2(k)

rX(Xn+2(k))

)
≤ E

(
Xn+1(k)

rX(Xn+1(k))

)
,

and this completes the proof.

Remark 2. Assume that the non-negative random variable X is DRHRA, then we have

CEw
n,k(X) ≤ CEw

n,k+1(X), for n = 1, . . . , k ≥ 1. (10)

Remark 3. Let X and Y be two non-negative random variables with finit functions CEw
n,k(X) and CEw

n,k(Y),
respectively. If X ≤rhr Y and x

rX(x) is an increasing function of x, then

CEw
n,k(X) ≤ CEw

n,k(Y). (11)

Proposition 1. Let X and Y be non-negative random variables with CDFs F and G, respectively. If X ≤disp Y,
then we have

CEw
n,k(X) ≤ CEw

n,k(Y). (12)
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Proof. See Lemma 3 in Klein et al. [14].

Proposition 2. Let X and Y be two independent non-negative random variables with distribution functions F
and G, respectively. If X and Y have log-concave densities, then

CEw
n,k(X + Y) ≥ max

{
CEw

n,k(X), CEw
n,k(Y)

}
. (13)

Proof. See Theorem 3.2 of Di Crescenzo and Toomaj [5].

Proposition 3. Let X be a non-negative absolutely continuous random variable with CDF F. Then,

CEw
n,k(X) ≥

n

∑
i=0

(−1)ikn+1

i!(n− i)!

∫ +∞

0
x[F(x)]i+kdx.

Proof. The proof is similar to that Proposition 4.3 of Di Crescenzo and Longobardi [4].

Proposition 4. Let X be a non-negative random variable with CDF F, then for any k ≥ 1 we have

CEw
n,k(X) ≤ kn+1CEw

n (X),

where CEw
n (X) is the shift-dependent GCE of order n (see Kayal and Moharana [15]).

Assume that X and Y are the lifetimes of two components of a system with joint distribution
function F(x, y). Then the bivariate WECE can be defined as

CEw
n,k(X, Y) =

kn+1

n!

∫ +∞

0

∫ +∞

0
xy[F(x, y)]k[Λ̃(x, y)]ndx dy, (14)

where Λ̃(x, y) = − log F(x, y). Using the binomial expansion in (14), we obtain the following
proposition.

Proposition 5. Let X and Y be the independent random variables with joint distribution function F(x, y),
then using the symmetry property we have

CEw
n,k(X, Y) =

1
k

n

∑
i=0
CEw

n−i,k(X)CEw
i,k(Y) =

1
k

n

∑
i=0
CEw

i,k(X)CEw
n−i,k(Y).

Suppose that X ia a random lifetime of a system with CDF F, then we state that X[t] = (t− X |
X < t) describes the inactivity time of the system. Analogously, we can also consider the dynamic
past version of WECE for X[t] as

CEw
n,k(X; t) =

∫ t

0

kn+1

n!
x
[

F(x)
F(t)

]k
[Λ̃(x)− Λ̃(t)]ndx , t > 0, (15)

for n = 1, 2, . . . , and k ≥ 1. This function is called a weighted dynamic extension cumulative entropy
(WDECE).

Proposition 6. Let X be a non-negative absolutely continuous random variable with CDF F. Then,

i. CEw
n,k(X; ∞) = CEw

n,k(X).
ii.

CEw
n,k(X; t) =

kn+1

[F(t)]k
n

∑
i=0

(−1)n−i

i!(n− i)!
[Λ̃(t)]n−i

∫ t

0
x[F(x)]k[Λ̃(x)]idx. (16)
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iii.

∫ t

0
x[F(x)]k[Λ̃(x)]ndx =

n![F(t)]kCEw
n,k(X; t)

kn+1

−
n−1

∑
i=0

(
n
i

)
(−1)n−i[Λ̃(t)]n−i

∫ t

0
x[F(x)]k[Λ̃(x)]idx.

(17)

Proposition 7. Suppose that the non-negative random variable X is DRHRA, then for t > 0 we have

CEw
n+1,k(X; t) ≤ CEw

n,k(X; t) for n = 1, . . . , k ≥ 1.

Proof. We recall that if X is DRHRA, then X[t] is DRHRA and the proof follows from Theorem 1.

Remark 4. Assume that the non-negative random variable X is DRHRA, then we have

CEw
n,k(X; t) ≤ CEw

n,k+1(X; t), for n = 1, . . . , k ≥ 1. (18)

Theorem 2. Let X be a non-negative absolutely continuous random variable with CDF F , then

∂

∂t
CEw

n,k(X; t) = kr(t)[CEw
n−1,k(X; t)− CEw

n,k(X; t)], t > 0. (19)

Proof. The proof is similar to that Theorem 4 of Tahmasebi et al. [9].

Proposition 8. Let X be a non-negative random variable with CDF F, then we have

CEw
n,1(X; t) =

∫ t
0 CE

w
n−1,1(X; x) f (x)dx

F(t)
= E[CEw

n−1,1(X; X) | X < t], t > 0.

Proposition 9. Suppose that the non-negative random variable X is DRHRA, then CEw
n,k(X; t) is increasing

in t > 0 for n = 1, 2, ... and k ≥ 1.

Definition 3. We state that the non-negative random variable X has an increasing WDECE of order n (denoted
by IWDECEn) if CEw

n,k(X; t) is increasing in t.

Remark 5. Let X be a non-negative random variable with CDF F. If X is DRHRA, then it is IWDECEn for
n = 1, 2, . . . and k ≥ 1.

Proposition 10. For k = 1, if X is IWDECEn−1, then it is IWDECEn.

Proof. Suppose that X is IWDECEn−1. Then, by recalling Proposition 8 we have

CEw
n,1(X; t) =

∫ t
0 CE

w
n−1,1(X; x) f (x)dx

F(t)

≤
∫ t

0 CE
w
n−1,1(X; t) f (x)dx

F(t)
= CEw

n−1,1(X; t).

Furthermore, (19) implies that ∂
∂tCE

w
n,1(X; t) ≥ 0 and X is IWDECEn.
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3. Properties of Conditional WECE

Let X be a random variable on a probability space (Ω,F , P) such that E|X| < ∞. We denote
by E(X|G) the conditional expectation of X given sub σ-field G, where G ⊂ F . Here, we define the
conditional WECE and discuss some of its properties.

Definition 4. Suppose that X is a non-negative random variable with CDF F. Then for a given σ-field F ,
the conditional WECE is defined as follows:

CEw
n,k(X|F ) =

kn+1

n!

∫
R+

x[P(X ≤ x|F )]k[− log(P(X ≤ x|F ))]ndx

=
kn+1

n!

∫
R+

x
(
E[I(X≤x)|F ]

)k
[− log(E[I(X≤x)|F ])]ndx.

Lemma 1. Suppose that X is a non-negative random variable with CDF F. If F = {φ, Ω}, then
CEw

n,k(X|F ) = CEw
n,k(X).

Proposition 11. Let X ∈ Lp for some p > 2, then for σ− fields G ⊂ F we have

E(CEw
n,k(X|F )|G) ≤ CEw

n,k(X|G). (20)

Proof. The proof follows by applying Jensen’s inequality for the convex function xk(−logx)n, 0 <

x < 1 as

E(CEw
n (X|F )|G) =

kn+1

n!

∫
R+

xE
[
(P(X ≤ x|F ))k[− logP(X ≤ x|F )]n|G

]
dx

≤ kn+1

n!

∫
R+

x
(
E[E(I(X≤x)|F )|G]

)k
[− logE[E(I(X≤x)|F )|G]]ndx

=
kn+1

n!

∫
R+

x
[
E(I(X≤x)|G)

]k
[− logE(I(X≤x)|G)]ndx,

and the result follows.

Lemma 2. Let X, Y and Z be the non-negative random variables. If X → Y → Z is a Markov chain,
then we have

i. CEw
n,k(Z|Y, X) = CEw

n,k(Z|Y),
ii. E[CEw

n,k(Z|Y)] ≤ E[CEw
n,k(Z|X)].

Proof.

(i) By using the Markov property and definition of CEw
n,k(Z|Y, X), the result follows.

(ii) Let G = σ(X) and F = σ(X, Y), then from (20) we have

E[CEw
n,k(Z|X)] ≥ E(E[CEw

n,k(Z|X, Y)|X])

= E[CEw
n,k(Z|X, Y)]

= E[CEw
n,k(Z|Y)],

and the result follows.

Theorem 3. Let X ∈ Lp for some p > 2 be a non-negative random variable with CDF F and F be a σ− field.
Then E(CEw

n,k(X|F )) = 0 if X is F -measurable.
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Proof. Let E(CEw
n,k(X|F )) = 0, then CEw

n,k(X|F ) = 0. By using the definition of CEw
n,k(X|F ) we

conclude that E(I(X≤x)|F ) = 0 or 1. Thus, using the relation (24) of Rao et al. [3], X is F -measurable.
Supposing that X is F -measurable, again using relation (24) of Rao et al. [3], we have P(X ≤ x|F ) = 0
or 1 for almost all x ∈ R+, thus the result follows.

Theorem 4. Let X be a non-negative random variable with CDF F and F be a σ− field, then we have

E(CEw
n,k(X|F )) ≤ CEw

n,k(X), (21)

and the equality holds if, and only if, X is independent of F .

Proof. The inequality (21) follows from (20) by taking F = {φ, Ω}. Assume that X is independent of
F , then clearly

P(X ≤ x | F ) = P(X ≤ x). (22)

By using Definition 4 and (20), we have

E(CEw
n,k(X|F )) = CEw

n,k(X).

Conversely, suppose that there is equality in (21). We put W := P(X ≤ x | F ); since ϕ(w) =

wk[− log w]n is strictly convex and E[ϕ(W)] = ϕ[E(W)], then we have P(X ≤ x | F ) = P(X ≤ x), i.e.,
X is independent of F .

4. Relationships with Other Reliability Functions

In this section, we state some relationships of CEw
n,k(X) and CEw

n,k(X; t) with other concepts such
as the reversed hazard rate function and the weighted mean inactivity time of the random variable
[t− Xn(k) | Xn(k) < t].

Theorem 5. Let X be an absolutely continuous non-negative random variable with PDF f and CDF F. Then
for n ≥ 1 we have

CEw
n,k(X) =

kn+1

n!

∫ +∞

0
r(z)

{∫ z

0
x[F(x)]k[Λ̃(x)]n−1dx

}
dz. (23)

Proof. By (8) and the relation Λ̃(x) =
∫ ∞

x r(z)dz, we have

CEw
n,k(X) =

kn+1

n!

∫ +∞

0

∫ ∞

x
r(z)x[F(x)]k[Λ̃(x)]n−1dzdx.

Using Fubini’s theorem, we obtain

CEw
n,k(X) =

kn+1

n!

∫ +∞

0

∫ z

0
r(z)x[F(x)]k[Λ̃(x)]n−1dxdz,

and the result follows.
Now, we define the weighted mean inactivity time of the random variable [t− Xn(k) | Xn(k) < t]

as follows:

M̃w
n,k(t) =

∑n−1
j=0

∫ t
0

kj

j! x[F(x)]k[Λ̃(x)]jdx

∑n−1
j=0

kj

j! [F(t)]
k[Λ̃(t)]j

. (24)
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M̃w
n,k(t) is analogous to the mean residual waiting time used in reliability analysis (Bdair and

Raqab [16]).

Theorem 6. For a non-negative absolutely continuous random variable X with CEw
n,k(X) < ∞, we have

CEw
n,k(X) =

1
n

n−1

∑
j=0

[kE[M̃w
n,k(X(j+1)k)]− jCEw

j,k(X)].

Proof. From relation (23) and (24), we get

n

∑
j=1

jCEw
j,k(X) =

∫ +∞

0
r(z)

n

∑
j=1

∫ z

0

kj+1

(j− 1)!
x[F(x)]k[Λ̃(x)]j−1dxdz

=
∫ +∞

0
r(z)

n−1

∑
j=0

∫ z

0

kj+2

j!
x[F(x)]k[Λ̃(x)]jdxdz

=
∫ +∞

0
r(z)k2M̃w

n,k(z)

[
n−1

∑
j=0

kj

j!
[F(z)]k[Λ̃(z)]j

]
dz

= k
n−1

∑
j=0

E[M̃w
n,k(X(j+1)k)],

and this completes the proof.

From (24), we can obtain the following result as

M̃w
n,k(t) =

n−1

∑
j=0

Zw
j,k(t)qj,k(t), (25)

where

Zw
j,k(t) =

∫ t

0
kjx
[

F(x)
F(t)

]k [ Λ̃(x)
Λ̃(t)

]j

dx (26)

and

qj,k(t) =
[Λ̃(t)]j

j!

∑n−1
i=0

ki [Λ̃(t)]i
i!

. (27)

To obtain a connection between M̃w
n,k(t) and CEw

n,k(X; t) we need the following lemma.

Lemma 3. Let X be a non-negative random variable with CDF F. Then we have

Zw
j,k(t) =

j

∑
i=0

j!
(j− i)!

kj−i−1

[Λ̃(t)]i
CEw

i,k(X; t). (28)
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Proof. From (26), we have

Zw
j,k(t) =

∫ t

0
kjx
[

F(x)
F(t)

]k
− log( F(x)

F(t) )

Λ̃(t)
+ 1

j

dx

=
j

∑
i=0

j!
(j− i)!

kj−i−1

[Λ̃(t)]i

∫ t

0

ki+1

i!

[
− log

(
F(x)
F(t)

)]i
x
[

F(x)
F(t)

]k
dx

=
j

∑
i=0

j!
(j− i)!

kj−i−1

[Λ̃(t)]i
CEw

i,k(X; t).

In the following, we can obtain the connection between M̃w
n,k(t) and CEw

n,k(X; t).

Theorem 7. Let X be a non-negative random variable with CDF F, then for n ≥ 1 we have

M̃w
n,k(t) =

n−1

∑
i=0
CEw

i,k(X; t)ηi,k(t),

where

ηi,k(t) =
∑n−i

j=0
kj−1[Λ̃(t)]j

j!

∑n−1
l=0

kl [Λ̃(t)]l
l!

, i = 0, 1, ..., n.

Proof. By (25) and (28), we have

M̃w
n,k(t) =

n−1

∑
i=0

n−1

∑
j=i

j!
(j− i)!

kj−i−1

[Λ̃(t)]i
CEw

i,k(X; t)qj,k(t)

=
n−1

∑
i=0
CEw

i,k(X; t)
∑n−1

j=i
kj−i−1[Λ̃(t)]j−i

(j−i)!

∑n−1
l=0

kl [Λ̃(t)]l
l!

=
n−1

∑
i=0
CEw

i,k(X; t)
∑n−i

j=0
kj−1[Λ̃(t)]j

j!

∑n−1
l=0

kl [Λ̃(t)]l
l!

,

and this completes the proof.

Theorem 8. Let X be a non-negative random variable with CDF F, then for any n ≥ 1 we have

CEw
n,k(X) =

1
n

n−1

∑
i=0

ki+2

i!
E([F(X)]k−1[Λ̃(X)]i M̃w

n,k(X))

− 1
n

n−2

∑
i=0

ki+2

i!
E([F(X)]k−1[Λ̃(X)]i M̃w

n−1,k(X)), (29)

where

M̃w
n,k(t) =

1
Fn(k)(t)

∫ t

0
xFn(k)(x)dx, n = 1, 2, 3, ...

is the weighted mean inactivity time of Xn(k).
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Proof. From (5), we see that

Fn(k)(t)− Fn−1(k)(t) =
[kΛ̃(t)]n−1

(n− 1)!
[F(t)]k.

Substituting this equation in (23) we have

CEw
n,k(X) =

k2

n

∫ +∞

0
r(z)

{∫ z

0
x[Fn(k)(x)− Fn−1(k)(x)]dx

}
dz

=
k2

n

∫ +∞

0
f (z)

{
Fn(k)(z)

F(z)
M̃w

n,k(z)−
Fn−1(k)(z)

F(z)
M̃w

n−1,k(z)

}
dz

=
k2

n

∫ +∞

0
f (z)[F(z)]k−1

{
n−1

∑
i=0

[kΛ̃(z)]i

i!
M̃w

n,k(z)−
n−2

∑
i=0

[kΛ̃(z)]i

i!
M̃n−1,k(z)

}
dz,

(30)

and the result follows.

Remark 6. For a non-negative absolutely continuous random variable X with CEw
n,k(X) < ∞, we have

CEw
n,k(X) =

k
n

{
n−1

∑
i=0

E
(

M̃w
n,k(Xi+1(k))

)
−

n−2

∑
i=0

E
(

M̃w
n−1,k(Xi+1(k))

)}
. (31)

5. Application of CEw
n,k(X) in Blind Image Quality Assessment

Suppose that X1, X2, ..., Xm is a random sample of size m from CDF F(x). If X(1) ≤ X(2) ≤
... ≤ X(m) represent the order statistics of X1, X2, ..., Xm, then the empirical measure of F(x) for
i = 1, 2, ..., m− 1 is defined as

F̂m(x) =


0, x < X(1),
i
m , X(i) ≤ x < X(i+1),
1, x ≥ X(m).

Thus the empirical measure of CEw
n,k(X) is obtained as

CEw
n,k(F̂m) =

kn+1

n!

∫ +∞

0
x[F̂m(x)]k

(
− log F̂m(x)

)n dx

=
kn+1

n!

m−1

∑
i=1

n

∑
j=0

(−1)j
(

n
j

)
Ui

(
i
m

)k
[log i]j[log m]n−j, (32)

where Ui =
X2
(i+1)−X2

(i)
2 . Note that CEw

n,k(F̂m) → CEw
n,k(F) as m → ∞ (see Theorem 14 of

Tahmasebi et al. [9]). In the following example we present applications of CEw
n,k(F̂m) in blind image

quality assessment.

Example 1 (Blind Image Quality Assessment). In this example a modified anisotropic image quality (AIQ)
measure based on the WECE is used as a blind image quality index, which we call WECE-AIQ. The old AIQ is
based on the using of Rényi entropy and the normalized pseudo-Wigner distribution [17]. We call this measure
Rényi-AIQ. Dataset [18,19] is used in this example for blind image quality assessment. The dataset contains
distorted images of three grayscale reference images: a horse, a harbor and a baby (Figure 1). The size and pixel
values of the images are 512× 512 and in the range 0–255, respectively. The reference images are distorted using

“flat allocation”; quantization of the LH sub-bands of a 5-level DWT of the image with equal distortion contrast
at each scale (FLT), baseline JPEG compression (JPG), baseline JPEG-2000 compression (JP2), JPEG-2000+DCQ
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compression (DCQ), Gaussian blur filter (BLR) and additive Gaussian white noise (AGWN). These distortions
are utilized to reference images in three levels: low quality (LQ), mid quality (MQ) and good quality (GQ).
In this example, WECE is used instead of Rényi entropy for the estimation of the AIQ metric, and k and n are
selected as 2 and 4 for WECE, respectively. For the assessment of the Rényi-AIQ and WECE-AIQ metrics,
some full-reference image quality metrics are needed: PSNR, WSNR, a weighted SNR [20], a universal quality
index (UQI) [21], a noise quality measure (NQM) [22], a structural similarity metric (SSIM) [23], a visual
information fidelity (VIF) metric [24] and a visual SNR (VSNR) [18]. A bigger value of each of these metrics
indicates a better quality of an image. The values of these metrics are available for images of the database used
in this example [19]. Note that only gray scale images are considered in this example. For color images, only
spatial structures cannot properly demonstrate the quality of an image. Visual damage caused by distortion of
the image’s color must be considered. Therefore, a criterion for color distortion must be used. The color image
can be decomposed into different color spaces such as RGB, CIE, YCbCr, YIQ, HIS etc. [25]. LMN space, with
the optimized weights that are suitable for the human visual system (HVS), can be a good choice [25]. L is the
luminance channel for evaluating the structure distortions of the images, and M and N are two chrominance
channels which are used to characterize the image quality degradation caused by color distortions. an image
quality metric is applied on the L channel for structure distortions measurement and on the M and N channels
for color distortions measurement. The values of Rényi-AIQ, WECE-AIQ and full-reference metrics are depicted
in Table 1. The biggest value of Rényi-AIQ and WECE-AIQ metrics are shown using bold numbers for each
image. The performance of WECE-AIQ and Rényi-AIQ is measured using the times in which a full-reference
criterion of the selected image of each approach is larger than in the other approaches. It can be seen from
Table 1 which WECE-AIQ displayed a better performance than Rényi-AIQ for the “Horse (GQ)”, “Horse (LQ)”,
“Harbor (GQ)”, “Harbor (MQ)” and "Harbor (LQ)" images. This shows that the quality of the selected images
using the WECE-AIQ metric is better than the ones which were selected using the Rényi-AIQ metric. For visual
analysis of the results of Table 1, corresponding images with the biggest values of Rényi-AIQ and WECE-AIQ
metrics are shown in Figures 2–4. It can be seen that in most cases, the visual quality of images which were
selected using the WECE-AIQ metric was higher than the ones which were chosen using Rényi-AIQ. For more
analysis of the results of Table 1, Spearman’s rank correlation coefficient (SRCC) was used in this example [26].
The results of this measure are shown in Table 2. Table 2 shows the SRCC between full-reference and blind
image quality metrics for each image. Bold numbers show the bigger SRCC value of each full-reference metrics.
In general, the Spearman’s rank correlation coefficient range is [−1, 1]. In this example, each blind image quality
metric that has a bigger Spearman’s rank correlation coefficient value than others is more useful for image quality
assessment. Table 2 shows that for all images, the performance of WECE-AIQ was better than Rényi-AIQ.
Additionally, the performance of WECE-AIQ for the harbor image was better than for the horse and baby image.
The corresponding SRCC values of WECE-AIQ for the harbor image were positive in most cases. This shows
that the quality ranks of images, which are selected using WECE-AIQ, are very similar to the quality ranks of
full-reference metrics. Hence it seems that WECE-AIQ has worked much more effectively than Rényi-AIQ on
the harbor image. Indeed, none of the full-reference image quality metric had a high correlation with the HVS.
The accuracy of each one depends on the distortion type, context and texture of the distorted image. Therefore in
general, the quality of a distorted image is evaluated using some of the full-reference image quality criteria. For
further investigation of this subject, the Spearman’s rank correlation coefficients (SRCCs) between each of the
full-reference criterions of the horse image are illustrated at Table 3. Contrary to what was expected, it is seen
that the correlation between the full-reference criteria was not high in most cases. Additionally, as can be seen in
Table 2, the correlation of Rényi-AIQ and WECE-AIQ with the full-reference image quality criteria was not high.
This is due to the fact that each criterion evaluates the distorted image from a different point of view compared
with the others. For example, PSNR calculates the difference between the distorted and reference images, while
SSIM is based on the structural similarity between them. Indeed, none of the full-reference image quality criteria
consider all of the properties of HVS. Therefore, in this research the performance of Rényi-AIQ and WECE-AIQ
have been evaluated using the correlation between them and all of the full-reference image quality criteria.
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Figure 1. Referenecs of horse, harbor and baby images (a, b and c, respectively).

Figure 2. Best quality images that were selected using the Rényi-AIQ metric from GQ, MQ and LQ
distorted horse images (a, c and e, respectively), and best quality images that were selected using the
WECE-AIQ metric from GQ, MQ and LQ distorted horse images (b, d and f, respectively).
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Figure 3. Best quality images that were selected using the Rényi-AIQ metric from GQ, MQ and LQ
distorted harbor images (a, c and e, respectively), and best quality images that were selected using the
WECE-AIQ metric from GQ, MQ and LQ distorted harbor images (b, d and f, respectively).
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Figure 4. Best quality images that were selected using the Rényi-AIQ metric from GQ, MQ and LQ
distorted baby images (a, c and e, respectively), and best quality images that were selected using the
WECE-AIQ metric from GQ, MQ and LQ distorted baby images (b, d and f, respectively).

Table 1. Comparison of full-reference and blind image quality indexes.

Image Distortion
Full-Reference Image Quality Metric Blind Image Quality Metric

SSIM VIF NQM UQI PSNR VSNR Rényi-AIQ WECE-AIQ

Horse
(GQ)

FLT 0.933 0.570 19.391 0.833 28.983 20.597 0.00503661 0.00128575

JPG 0.970 0.572 33.125 0.694 29.003 30.095 0.00564478 0.00114628

JP2 0.946 0.427 30.446 0.656 28.870 27.700 0.0064663 0.00124661

DCQ 0.962 0.508 31.849 0.685 28.891 36.342 0.00577385 0.00112959

BLR 0.974 0.637 38.456 0.816 29.056 26.884 0.00565214 0.0013568

AGWN 0.907 0.559 29.675 0.659 28.822 28.584 0.00399926 0.00072772
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Table 1. Cont.

Image Distortion
Full-Reference Image Quality Metric Blind Image Quality Metric

SSIM VIF NQM UQI PSNR VSNR Rényi-AIQ WECE-AIQ

Horse
(MQ)

FLT 0.903 0.513 17.146 0.799 26.734 17.934 0.0054712 0.0011785

JPG 0.926 0.374 28.033 0.589 26.701 23.736 0.0069904 0.0014497

JP2 0.895 0.289 26.124 0.558 26.545 23.230 0.0057527 0.0013887

DCQ 0.938 0.416 31.940 0.624 26.590 27.577 0.0052392 0.0013404

BLR 0.944 0.498 34.419 0.702 26.733 22.566 0.0037091 0.0005268

AGWN 0.861 0.473 27.612 0.603 26.496 25.518 0.0054970 0.0016277

Horse
(LQ)

FLT 0.840 0.437 13.808 0.709 23.777 14.561 0.00652794 0.0017846

JPG 0.786 0.176 19.448 0.400 23.622 17.092 0.00549665 0.0016539

JP2 0.753 0.122 19.999 0.371 23.230 15.921 0.0070989 0.0014571

DCQ 0.781 0.137 23.099 0.396 23.213 15.997 0.00697058 0.0012112

BLR 0.835 0.262 25.978 0.487 23.725 16.456 0.00395791 0.0011317

AGWN 0.777 0.363 24.709 0.513 23.300 21.530 0.00318548 0.0003756

Harbor
(GQ)

FLT 0.935 0.608 14.953 0.772 31.098 18.362 0.00317073 0.00113086

JPG 0.984 0.735 28.190 0.672 31.149 31.659 0.00302575 0.00103601

JP2 0.949 0.493 24.223 0.585 31.118 24.349 0.00303644 0.00113519

DCQ 0.975 0.649 26.711 0.663 31.202 35.532 0.00313986 0.00110450

BLR 0.989 0.769 36.825 0.880 31.211 29.284 0.00226195 0.00151543

AGWN 0.934 0.640 26.318 0.658 31.097 26.079 0.00287300 0.000939305

Harbor
(MQ)

FLT 0.906 0.545 12.597 0.721 28.740 15.843 0.0031356 0.0010805

JPG 0.968 0.589 26.207 0.608 28.909 26.549 0.00292496 0.00115297

JP2 0.918 0.363 21.363 0.515 28.792 21.245 0.002908160 0.00111366

DCQ 0.959 0.540 26.106 0.592 28.858 30.429 0.0030507 0.00119234

BLR 0.979 0.684 35.112 0.784 28.908 25.740 0.00195757 0.001470153

AGWN 0.895 0.552 24.244 0.607 28.724 23.095 0.00275998 0.001070499

Harbor
(LQ)

FLT 0.854 0.462 9.254 0.651 25.556 12.315 0.00277902 0.00110425

JPG 0.896 0.302 18.306 0.439 25.502 18.411 0.002717076 0.0014915792

JP2 0.843 0.204 16.939 0.384 25.569 16.309 0.00231397 0.0010248261

DCQ 0.931 0.395 24.526 0.490 25.610 27.498 0.002142166 0.0010449862

BLR 0.939 0.490 30.010 0.576 25.802 19.524 0.001351146 0.0014994589

AGWN 0.818 0.438 21.897 0.526 25.536 19.318 0.002607232 0.0005917831

Baby
(GQ)

FLT 0.948 0.614 22.824 0.843 34.485 23.352 0.001806857 0.000464815

JPG 0.955 0.504 29.818 0.718 34.528 27.700 0.001632599 0.000500301

JP2 0.945 0.413 28.877 0.675 34.504 26.049 0.001734634 0.00034369

DCQ 0.968 0.547 30.761 0.751 34.522 28.767 0.001640073 0.000445138

BLR 0.979 0.637 34.323 0.824 34.636 26.431 0.001428632 0.000429976

AGWN 0.963 0.716 32.966 0.732 34.564 31.574 0.00170072 0.000383635

Baby
(MQ)

FLT 0.932 0.573 21.512 0.802 32.828 21.422 0.001849179 0.000506972

JPG 0.919 0.376 26.591 0.630 32.738 24.065 0.001550735 0.000520883

JP2 0.918 0.307 26.283 0.611 32.759 23.314 0.001649043 0.000329263

DCQ 0.938 0.365 27.239 0.661 32.846 24.059 0.00159274 0.0003811

BLR 0.964 0.530 30.984 0.769 32.931 23.131 0.001232089 0.00038633

AGWN 0.946 0.647 31.594 0.665 32.740 29.220 0.001609792 0.000381473

Baby
(LQ)

FLT 0.907 0.523 19.740 0.735 30.772 19.064 0.001757395 0.000498084

JPG 0.859 0.264 22.941 0.507 30.722 20.583 0.001516522 0.001729756

JP2 0.877 0.222 23.077 0.529 30.794 19.833 0.001483539 0.0046381869

DCQ 0.915 0.283 26.433 0.613 30.803 19.935 0.001341795 0.0042625907

BLR 0.935 0.402 26.743 0.688 31.012 19.711 0.000895241 0.003490746

AGWN 0.916 0.561 30.352 0.581 30.740 26.674 0.001570303 0.000022357
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Table 2. Spearman’s rank correlation coefficient (SRCC) between full-reference and blind image quality
metrics for each image.

Image Blind Image Quality Index
Full-Reference Image Quality Metric

SSIM VIF NQM UQI PSNR VSNR

Horse (GQ) Rényi-AIQ 0.485 −0.428 0.42 −0.371 0.085 0.2

WECE - AIQ 0.485 0.485 0.257 0.6 0.714 −0.771

Horse (MQ) Rényi-AIQ 0.028 −0.485 −0.314 −0.257 0.028 −0.028

WECE -AIQ 0.085 0.142 −0.485 0.314 0.485 −0.542

Horse (LQ) Rényi-AIQ −0.257 −0.657 −0.485 −0.657 −0.428 −0.771

WECE -AIQ 0.428 0.028 −0.942 0.028 0.371 −0.657

Harbor (GQ) Rényi-AIQ −0.371 −0.714 −0.714 −0.314 −0.257 −0.257

WECE -AIQ 0.485 −0.028 0.085 0.257 0.257 −0.257

Harbor (MQ) Rényi-AIQ −0.257 −0.485 −0.542 −0.142 −0.085 −0.085

WECE -AIQ 0.942 0.314 0.771 0.257 0.828 0.657

Harbor (LQ) Rényi-AIQ −0.714 −0.2 −0.828 0.085 −0.257 −0.714

WECE -AIQ 0.714 0.2 0.085 0.142 −0.028 −0.028

Baby (GQ) Rényi-AIQ −0.771 −0.142 −0.7714 0.028 −0.828 −0.428

WECE -AIQ −0.142 −0.2 −0.028 −0.6 0.085 0.657

Baby (MQ) Rényi-AIQ −0.485 0.085 −0.6 0.085 −0.2 −0.257

WECE -AIQ −0.085 −0.485 −0.028 −0.314 0.085 −0.028

Baby (LQ) Rényi-AIQ −0.371 0.428 −0.428 0.028 −0.771 0.085

WECE -AIQ 0.314 0.314 −0.2 0.6 0.257 −0.542

Table 3. SRCC between full-reference image quality criteria of the horse image.

Image Image Quality Index
Full-Reference Image Quality Index

SSIM VIF NQM UQI PSNR VSNR

Horse
(GQ)

SSIM 1 0.542857 0.942857 0.314286 0.828571 0.142857

VIF 0.542857 1 0.485714 0.771429 0.828571 −0.31429

NQM 0.942857 0.485714 1 0.085714 0.657143 0.314286

UQI 0.314286 0.771429 0.085714 1 0.771429 −0.48571

PSNR 0.828571 0.828571 0.657143 0.771429 1 −0.25714

VSNR 0.142857 −0.31429 0.314286 −0.48571 −0.25714 1

Horse
(MQ)

SSIM 1 0.2 0.771429 0.428571 0.6 −0.08571

VIF 0.2 1 −0.02857 0.942857 0.6 −0.48571

NQM 0.771429 −0.02857 1 0.085714 0.028571 0.371429

UQI 0.428571 0.942857 0.085714 1 0.714286 −0.42857

PSNR 0.6 0.6 0.028571 0.714286 1 −0.71429

VSNR −0.08571 −0.48571 0.371429 −0.42857 −0.71429 1

Horse
(LQ)

SSIM 1 0.657143 −0.25714 0.657143 0.828571 −0.25714

VIF 0.657143 1 −0.08571 1 0.771429 0.085714

NQM −0.25714 −0.08571 1 −0.08571 −0.25714 0.542857

UQI 0.657143 1 −0.08571 1 0.771429 0.085714

PSNR 0.828571 0.771429 −0.25714 0.771429 1 −0.14286

VSNR −0.25714 0.085714 0.542857 0.085714 −0.14286 1

6. Conclusions

In this paper, we have presented some results of the WECE and its dynamic past version. These
results included stochastic ordering, bounds and some relationships with other reliability concepts.
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Additionally, we examined the conditional WECE, which can be applied in measuring the uncertainty
in blind image quality assessment. Finally, we proposed a nonparametric estimator of WECE and
studied the numerical results of WECE in a blind image quality assessment. Furthermore, it can be
seen that in most cases, the visual quality of images that were selected using the WECE-AIQ metric
was higher than for images that were chosen using the Rényi-AIQ metric. It was shown that the quality
rank of images which are selected using the WECE-AIQ are very similar to the quality ranks of the
full-reference metrics.
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