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Abstract: Encountering a problem or error in the final stages of providing products or services
increases costs and delays scheduling. The key task is to ensure quality and reliability in the early
stages of the production process and prevent errors from occurring from the beginning. Failure mode
and effect analysis (FMEA) is one of the tools for identifying potential problems and their impact on
products and services. The conventional FMEA technique has been criticized extensively due to its
disadvantages. In this study, the concepts of uncertainty and reliability are considered simultaneously.
The processes of weighting risk factors, prioritizing failures by using the stepwise weight assessment
ratio analysis (SWARA)–gray relational analysis (GRA) integrated method based on Z-number theory
and complete prioritization of failures are implemented. Crucial management indices, such as cost
and time, are considered in addition to severity, occurrence and detection factors along with assigning
symmetric form of the weights to them. This, in turn, increases the interpretability of results and
reduces the decision-maker’s subjectivity in risk prioritization. The developed model is implemented
on solar panel data with 19 failure modes determined by the FMEA team. Results show that the
proposed approach provides a more complete and realistic prioritization of failures than conventional
FMEA and fuzzy GRA methods do.

Keywords: failure mode and effects analysis; solar panel systems; step-wise weight assessment ratio
analysis; grey relational analysis; Z-number theory

1. Introduction

In manufacturing and services, several factors, such as competition, customer expectations and
changes and technological developments, encourage producers to increase their commitment to fixing
product defects and eliminating performance deficiencies. Otherwise, market share will be lost due to
reduced customer satisfaction [1–4]. To maintain market share, companies use different procedures to
deliver unflawed products to the market. They use risk evaluation techniques to identify potential
risks and determine their causes and effects. Various methods for risk assessment have been developed
in recent years [5]. One of these methods is failure mode and effect analysis (FMEA). This method was
first used to systematically analyze failure modes and their subsequent effects on military products,
especially in the aviation industry [6]. One of the best features of FMEA is adopting proactive
measures instead of reactive ones. If an accident occurs, large sums of money will be spent on solving
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problems and eliminating failures and if a failure occurs during the design process, the damage will be
maximized [7]. Design modifications result in changes in production tools, templates and fixtures and
additional costs in process and product redesign. FMEA is implemented before the design and process
failure factor enters production to maximize work efficiency. Spending time and money on a complete
and accurate implementation of FMEA allows for easy modifications during process or product design
at a minimal cost. FMEA minimizes the problems associated with implementing such changes [8]. It is
a systematic approach that identifies evident and hidden errors, deficiencies and failures in systems,
products and processes then applies proper measures to eliminate these problems. Thus, FMEA can be
utilized as a tool for the continuous improvement of the quality of products and services in companies.

The main purposes of applying the FMEA technique are to identify potential failure modes in
system components, determine their causes, evaluate their effects on system performance, identify
ways to reduce the possibility of their occurrence and alleviate consequences and increase the capability
to detect failure modes [9]. Risk priority number (RPN) is used in the conventional FMEA technique
to calculate the risk of various system failure modes. RPN is the product of three factors, namely,
occurrence (O), severity (S) and detection (D) [10]. The higher RPN is, the higher the risk associated
with the failure mode is. The purpose of RPN calculation is to prioritize failure modes. Despite the
widespread use of FMEA, the technique has major drawbacks that limit its application, especially
when used for critical analysis in the calculation of RPNs.

This paper presents a new score to improve the deficiencies of conventional RPNs. This score is
obtained by developing an FMEA approach based on gray relational analysis (GRA) and stepwise
weight assessment ratio analysis (SWARA) methods. The first section identifies the failure modes.
In the second section, the SWARA method is used to determine the weights of RPN factors via the
proposed approach to keep symmetrical property of their weights. In the third section, the GRA
method is applied to consider the uncertainty in RPN factors and the unreliability in these values
by using Z-number theory. Time (T) and cost (C) are considered in addition to S, O and D. In this
approach, the identified failures are considered the decision-making alternatives and the SODCT
factors weighted by SWARA are considered the criteria for evaluating these failures. The advantages
of this theory over conventional fuzzy methods are as follows—it considers the uncertainty in experts’
opinions and allocates the credit in their opinions for estimating fuzzy parameters [11]. The following
shows the contributions of this study:

• Consideration of crucial management indices, such as cost and time, in the process of prioritizing
risks with SOD factors

• Assignation of different weights to risk factors according to the uncertainty of decision-makers’
preferences and the symmetric form of the weights with the aim of overcoming the deficiencies of
traditional RPN score and making results more interpretable

• Simultaneous consideration of the concepts of uncertainty (U) and reliability (R) in the processes
of weighting risk factors and prioritizing failures by using Z-number theory

• Complete prioritization of failures and distinction between failure ranks by using the SWARA–GRA
integrated method based on -number theory.

2. Literature Review

This section reviews related literature. The first subsection presents a review of published studies
that applied the FMEA technique and hybrid approaches (two or more techniques) based on this
method. The second subsection examines GRA and SWARA methods and the research conducted
using these methods.

2.1. Hybrid FMEA Approach

The development of multi-criteria decision making (MCDM) methods with the approaches for
continuous risk assessment has resulted in the establishment of new quantitative and qualitative tools
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and methods [12–14]. Among the various techniques for risk assessment, FMEA is one of the most
powerful ones in identifying defects. The simplicity and applicability of this technique make it suitable
for use in different fields, such as solar energy, automotive, chemical, medical, pharmaceutical and
food industries [15–19].

Despite the shortcomings of the FMEA technique, it is still considered one of the most widely
used approaches for prioritizing failures. In this technique, failure prioritization is accomplished
based on conventional RPN indices, which are a product of three factors, namely, O, S and D [20,21].
Numerous researchers, including Liu [9], attempted to combine this technique with MCDM approaches
to resolve the disadvantages of conventional RPN indices. Braglia and Bevilacqua [22] combined the
analytic hierarchy process with FMEA and prioritized the failure modes in a refrigerator company.
Liu et al. [23] proposed a new risk prioritization model for risk assessment in FMEA on the basis of
D-numbers and the improved GRA method and called the model GRP. Safari et al. [24] used the fuzzy
VIKOR method to evaluate FMEA and facilitate the deployment of EA in an organization. Emovon et
al. [25] proposed an improved FMEA model that uses the VIKOR technique to prioritize the risk of
different failures in a marine machinery system. Liu [26] utilized a hybrid GRA-TOPSIS method for
risk assessment in FMEA under uncertainty. The author showed that using this integrated approach is
superior to other methods in risk assessment and prioritization. Ghoushchi, Yousefi and Khazaeili [5]
used Z-MOORA and fuzzy BWM to prioritize and evaluate risks in the FMEA method. They utilized
fuzzy BWM to calculate factor weights and the Z-MOORA method to analyze and prioritize failure
risks. Table 1 presents several alternative hybrid approaches of the hybrid FMEA approach based on
MCDM methods.

2.2. GRA Application

GRA is an MCDM method developed by Deng [47]. This decision-making technique is applied to
solve various MCDM problems, such as employment decision-making [48], power distribution system
reconstruction planning [49], integrated spiral process inspection [50], quality function modeling [51]
and silicon wafer chip defect detection [52]. This method is also used to improve other decision-making
methods, such as TOPSIS, VIKOR and ELECTRE, which use only positive and negative criteria to
rank alternatives. Certain cases have neither positive nor negative criteria but they are presented as a
number or a linguistic variable in the problem. The original GRA method translates the functions of all
alternatives in a comparable order. This process is called the gray relation-generating step. Afterward,
a set of ideal goals is defined in accordance with this sequence. Then, the gray correlation coefficient
between all compatible and target sequences is calculated and the relative gray value between the
ideal target and each comparable sequence is calculated based on these coefficients. The alternative
with a high gray coefficient degree is selected [53]. The gray decision matrix comprises the following
criteria—The larger, the better (positive criteria in TOPSIS and VIKOR techniques); The smaller, the
better (negative criteria in TOPSIS and VIKOR techniques); The closer to the desired value, the better
(not included in TOPSIS and VIKOR techniques) [53]. In fact, The GRA method distinguishes between
different levels of criteria and can thus be used as a powerful decision-making method in MCDM
issues. This method is adopted in the result analysis of this study because of its advantage over other
decision-making methods, such as TOPSIS, VIKOR and ELECTRE. The GRA MCDM method has been
applied to various problems. Among the studies conducted on the GRA method and solar energy data
is the work of Kou et al. [54] on the optimization of the collection process of flat plates with multiple
qualitative characteristics in the production of solar energy collectors. Acır et al. [55] identified the
optimal parameters influencing the energy efficiency of solar air heaters by using the GRA method.
Tiwari et al. [56] used GRA to examine the effects of four controllable parameters (fuel blend, boiling
point, inlet temperature and bending point temperature) of a solar organic Rankine cycle on energy
efficiency. Narendranathan et al. [57] applied GRA to optimize CI engine parameters.
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Table 1. Hybrid approaches of the hybrid failure mode and effect analysis (FMEA) approach based on multi-criteria decision making (MCDM) methods.

Author(s) Approaches
Specification-Characteristics

Author(s) Approaches
Specification-Characteristics

Weighting Ranking Weighting Ranking

U R U R U R U R

Tian et al. [27]
Fuzzy best-worst
(BWM), relative
entropy, VIKOR

√ √
Melani et al. [28] ANP

√ √

Nie et al. [29] BWM, COPRAS
√ √

Galehdar et al. [30] ANP and Fuzzy
DEMATEL

√

Nie et al. [31] GRA–TOPSIS
√ √

Kumar et al. [32] GRA
√

Arabsheybani et al. [33] Fuzzy MOORA
√ Panchal and

Srivastava [34] GRA
√

Nazeri and Naderikia [35] ANP and
DEMATEL

√
Bian et al. [36] TOPSIS

√

Battirola Filho et al. [37] BPMS and AHP
√

Mangeli, et al. [38]
LFPP method

and Fuzzy
TOPSIS

√

Liu [26] GRA and
TOPSIS

√ √
Liu et al. [39] DEMATEL and

AHP
√

Safari et al. [24] VIKOR
√

Ak and Gul [40] AHP and
TOPSIS

√ √

Dorosti et al. [41] Fuzzy BWM and
MOORA

√ √
Liu [42] ITL-ELECTRE

√

Lo et al. [43] R-BWM and
R-TOPSIS

√ √ Liu et al. [39],
Wang et al. [44]

Regret theory
and TODIM

√ √

Li and Chen [45] FGRP
√

Ghoushchi et al. [5] Z-MOORA and
Fuzzy BWM

√ √ √

Fattahi and Khalilzadeh [46] MULTIMOORA
and AHP fuzzy

√ √
Proposed approach Z-GRA and

Z-SWARA
√ √ √ √
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2.3. SWARA

SWARA is an MCDM method that aims to calculate criterion and sub-criterion weights.
The performance of this method in weighing criteria is similar to that of Best-Worst Method (BWM) and
the linear programming technique for multidimensional analysis of preference (LINMAP) The linear
programming technique for multidimensional analysis of preference (LINMAP) methods. This method
was developed by Keršuliene et al. [58]. SWARA is generally used to solve various complicated
MCDM problems, such as deciding on machinery tools [59], recruitment [60,61], corporate social
responsibility and sustainability [62,63], product design [64], packaging design [65], logistics [66] and
utilization of clean technology [67]. The most important criterion in this method is listed as number
one and the least important one is listed as the last. Experts (respondents) have an important role
in determining criterion weights. This method allows experts to estimate the importance ratio of
criteria in the process of determining their weight. It is effective in collecting and coordinating data
obtained from experts [68]. Experts also have an important role in assessing the calculated weights.
Each expert identifies the importance of each criterion based on his or her tacit knowledge, information
and experience. Then, the weight of each criterion is determined in accordance with the average value
of group ratings obtained from the experts. Keršuliene, Zavadskas and Turskis [58] suggested using a
group of experts and discussing their views as a group; meanwhile, a researcher takes notes, sums up
the experts’ opinions and determines the relative weights of criteria by ranking them.

The SWARA method is used in determining criterion weights in this study because of this
method’s capability to rank criteria and determine criterion weights. Research has been conducted
on the SWARA method in consideration of solar energy systems. Ijadi Maghsoodi, Ijadi Maghsoodi,
Mosavi, Rabczuk and Zavadskas [67] studied the selection of renewable energy technology by applying
the SWARA method along with the multi-MOORA approach. Ghasempour et al. [69] employed the
SWARA MCDM method in selecting solar cell manufacturers and production technology. Siksnelyte
et al. [70] conducted a review of MCDM methods, including SWARA, in the context of sustainable
energy development.

3. Methodology

3.1. Fuzzy Sets Theory

The fuzzy theory introduces the concept of membership function to discuss various linguistic
variables [71]. There is a certain degree of uncertainty in terms of people’s thoughts, deduction and
perception. Fuzzy set (fuzzy logic) works with the sources of uncertainty and imprecision which are
vague and non-statistical, in nature. Basic definitions for the fuzzy numbers are provided below.

Definition 1. A fuzzy set A, defined in reference X, is as Equation (1).

Ã =
{
(x,µÃ(x))

∣∣∣x ∈ X
}

(1)

In Equation (1), µÃ(x) : X→ [0, 1] is the membership function of set A. Membership value µA(x)
shows the dependence degree x ∈ X at A. The degree of membership of each element like x ∈ R to the
fuzzy set Ã, in the form of the degree of our acceptance or belief in accepting x, is defined as a member
of the fuzzy set Ã or the degree of conformity of member x with the considered concept of set Ã.
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Definition 2. A symmetric triangular fuzzy number Ã is represented as a triplex of (l, m, u) and the membership
function is according to Equation (2) and the diagram is as in Figure 1.

0 x < l
x−l

m−l l ≤ x ≤ m
u−x
u−m m ≤ x ≤ u
0 x > u

(2)
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Definition 3. Assume that Ã = (l1, m1, u1), B̃ = (l2, m2, u2) are symmetric triangular fuzzy numbers.
Math operations are done as follow:

Ã⊕ B̃ = (l1 + l2, m1 + m2, u1 + u2) (3)

Ã⊗ B̃ = (l1l2, m1m2, u1u2) (4)

Ã	 B̃ = (l1 − u2, m1 −m2, u1 − l2) (5)

Ã� B̃ = (l1/u2, m1/m2, u1/l2) (6)

λÃ = λ(l1, m1, u1) = (λl1,λm1,λu1),λ > 0 (7)

Definition 4. Assume that Ã = (l1, m1, u1), B̃ = (l2, m2, u2) are two positive triangular fuzzy numbers.
The distance between A, B is defined as in Equation (8).

d(A, B) =

√(
(l1 − l2)

2 + (m1 −m2)
2 + (u1 − u2)

2
)

3
(8)

Definition 5. Assume that the triangular fuzzy number Ã is represented a triplex of (l, m, u). Equation (9) is
used to convert it into a crisp number according to the Best Non fuzzy Performance (BNP):

BNP
(
Ã
)
=

(u− l) + (m− l)
3

+ l (9)

3.2. Z-Number Theory

Zadeh [11] defined a Z-number associated with an uncertain variable as an ordered pair of fuzzy
numbers denoted as Z = (A, B). A is a fuzzy constraint on values of X and B is defined as a partial
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reliability of a probability criterion of A. According to Kang, et al. [72], Z-number is to solve problems
in controlling, decision making, modeling and other problems. This method is based on the conversion
of a Z-number to a fuzzy number on the basis of the expectation of a fuzzy set. However, converting
the Z-number to fuzzy numbers will lead to the loss of the original information. Aliev, et al. [73],
Aliev, et al. [74], Aliev, et al. [75] presented an effective general and computational approach to calculate
the Z-number.

Triple (X, A, B), known as Z-VALUATION, which is equivalent to an assignment statement and is
defined as a general constraint on X as in Equation (10).

Prob(X is A) is B (10)

This constraint is referred to as a probability restriction that shows a probability distribution
function. In particular, it can be explained in Equation (11).

R(X) : X is→ poss(X = u) = µA(u) (11)

where, µA is the membership function of A and u is a generic value of X. µA may be viewed as a
constraint which is associated with R(X). It means that how much the constraint that covers µA(u),
can satisfy u. when, X is a random variable, the probability distribution of the X acts as the probabilistic
restriction on X. Possible restriction and a probability density function are described in Equations (12)
and (13):

R(X) : X is p (12)

R(X) : X is p→ prob(u ≤ X ≤ u + du) = p(u)du (13)

In Equation (13), du shows the components of U derivations.

3.3. Z-SWARA

Keršuliene, Zavadskas and Turskis [58] proposed the step-wise weight assessment ratio analysis
(SWARA) method for the first time.

Different factors, such as non-assessable information, incomplete information and non-accessible
information cause uncertainty in decision-making. Since conventional MADM methods cannot solve
problems with such ambiguous information, fuzzy multi-criteria decision-making methods have been
developed because of ambiguity in evaluating the relative importance of criteria and ranking the
alternatives according to the criteria. The process of determining the relative weight of criteria using
Z-SWARA, like SWARA method, is as following steps:

Step 1. Sort the evaluation factors in descending order of expected importance.
Step 2. Switch Z-numbers linguistic variables to symmetric triangular fuzzy variables.
In this step, the verbal variables for factors, in the form of Z-Numbers, are transformed into

triangular fuzzy verbal variables. The process of this transformation is as follows:
Assume that Z = (A, B), which A is the verbal variable presented in Table 2 and B is the verbal

variable presented in Table 3 and assume that, Ã =
{(

x,µÃ(x)
)∣∣∣∣x ∈ [0, 1]

}
and B̃ =

{(
x,µB̃(x)

)∣∣∣∣x ∈ [0, 1]
}

are triangular membership functions. According to Equations (14) and (15), reliability of Z-Number is
transferred to crisp number

α =

∫
xµB̃(x)dx∫
µB̃(x)dx

(14)

Z̃α =
{(

X,µÃα

)∣∣∣∣µÃα(x) = αµÃα , X ∈ [0, 1]
}

(15)



Symmetry 2020, 12, 310 8 of 21

Table 2. Linguistics variable for evaluating the factors.

Linguistics Terms Membership Function

Equally Important (EI) (1,1,1)
Moderately less important (MOL) (2/3,1,3/2)

Less important (LI) (2/5,1/2,2/3)
Very less Important (VLI) (2/7,1/3,2/5)

Much less important (MUL) (2/9,1/4,2/7)

Table 3. Transformation rules of linguistics variables of reliability.

Linguistic
Variables Very Low (VL) Low (L) Medium (M) High (H) Very High

(VH)

TFNs (0,0,0.35) (0.2,0.35,0.50) (0.35,0.50,0.65) (0.50,0.65,0.80) (0.65,1.0,1.0)

In these Equations, α expresses the weight of reliability, µB̃α(x) indicates the degree of dependence
x ∈ X in B and µÃα(x) indicates the degree of dependence x ∈ X in Aα. Then, by combining the
Linguistics variable for evaluating the factors (see Table 2) and the Transformation rules of linguistics
variables of reliability (see Table 3), the roles of transforming verbal variables of decision makers, used
for maintaining the symmetry of the response, are obtained for the Z-SWARA method.

For instance, assume that Z = (A, B), which is Ã = (MOL) and R̃ = (H), so it is described
as Z =

[(
2
3 , 1, 3

2

)
, (0.50, 0.65, 0.80)

]
. Firstly, reliability component of Z-Number converts to a crisp

number by using Equations (14) and (15). According to Equation (15), the value of α is 0.5, then, this
value is used in Equation (14) Z̃α =

(
2
3 , 1, 3

2 ; 0.65
)
. Now, the Z-number weight is converted to the

triangular fuzzy number using Equation (15) Z̃′ =
(

2
3

√
0.65, 1 ∗

√
0.65, 3

2 ∗
√

0.65
)
= (0.54, 0.81, 1.21).

Other conversions are presented in Table 4 according to Tables 2 and 3.

Table 4. Transformation rules of linguistics variables to z-number of Z-stepwise weight assessment
ratio analysis (SWARA).

Linguistics Terms Membership Function Linguistics Terms Membership Function

(EI,VL) (1,1,1) (EI,L) (1,1,1)
(EI,M) (1,1,1) (EI,H) (1,1,1)

(EI,VH) (1,1,1) (MOL,VL) (0.23,0.35,0.52)
(MOL,L) (0.40,0.59,0.89) (MOL,M) (0.47,0.71,1.06)
(MOL,H) (0.54,0.81,1.21) (MOL,VH) (0.63,0.94,1.41)
(LI,VL) (0.14,0.17,0.23) (LI,L) (0.24,0.30,0.40)
(LI,M) (0.28,0.35,0.47) (LI,H) (0.32,0.40,0.54)

(LI,VH) (0.38,0.47,0.63) (VLI,VL) (0.10,0.11,0.14)
(VLI,L) (0.17,0.20,0.24) (VLI,M) (0.21,0.23,0.28)
(VLI,H) (0.23,0.27,0.32) (VLI,VH) (0.27,0.31,0.38)

(MUL,VL) (0.08,0.09,0.10) (MUL,L) (0.13,0.15,0.17)
(MUL,M) (0.16,0.18,0.21) (MUL,H) (0.18,0.20,0.23)

(MUL,VH) (0.21,0.23,0.27)

Step 3. According to Table 4, state the relative importance of the factor j in relation to the
previous factor ( j− 1) according by z-number, which has higher importance and follow to the last
factor. After determining all relative importance scores by all experts, the geometric mean of the
corresponding scores is obtained, to aggregate their judgments.

Step 4. Obtain the coefficient k̃ j as (16):

k̃ j =

 1̃ j = 1
s̃ j + 1̃ j > 1

(16)
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Step 5. Calculate the fuzzy weight q̃ j as (17):

q̃ j =


ĩ j = 1
x̃ j−1

k̃ j
j > 1

(17)

Step 6. Calculate the relative weights of the evaluation criteria as (18):

W̃ j =
q̃ j∑n

k=1 q̃k
(18)

where W̃ j =
(
wl

j, wm
j , wu

j

)
is the relative fuzzy weight of j, the criterion and n shows the number of

evaluation criteria.

3.4. Z-GRA

Z-GRA approach, is described as follow steps:
Step 1: Decision-making matrix with Z-Number elements is indicated as a matrix, where m and n,

respectively, show the number of alternatives and criteria. Also, xi j and yi j, respectively, indicate the
value of the ith criterion for the jth alternative and the ith reliability for the jth alternative.

Z̃ =


[(

xl
11, xm

11, xu
11

)
,
(
yl

11, ym
11, yu

11

)] [(
xl

12, xm
12, xu

12

)
,
(
yl

12, ym
12, yu

12

)]
· · ·

[(
xl

1n, xm
1n, xu

1n

)
,
(
yl

1n, ym
1n, yu

1n

)]
· · · · · · · · · · · ·

· · · · · · · · · · · ·[(
xl

m1, xm
m1, xu

m1

)
,
(
yl

m1, ym
m1, yu

m1

)] [(
xl

m2, xm
m2, xu

m2

)
,
(
yl

m2, ym
m2, yu

m2

)]
· · ·

[(
xl

mn, xm
mn, xu

mn

)
,
(
yl

mn, ym
mn, yu

mn

)]
 (19)

Step 2: Switch Z-numbers linguistic variables to symmetric triangular fuzzy variables.
The elements of above matrix are converted into symmetric triangular fuzzy numbers and a

decision-making matrix is obtained with elements of symmetric triangular fuzzy numbers.

Assume that Z = (A, B) where Ã =
{(

x,µÃ(x)
)∣∣∣∣x ∈ [0, 1]

}
and B̃ =

{(
x,µB̃(x)

)∣∣∣∣x ∈ [0, 1]
}

are
triangular membership functions. Equations (20) and (21) show their transformation to the
crisp numbers.

α =

∫
xµB̃(x)dx∫
µB̃(x)dx

(20)

Z̃α =
{(

X,µÃα

)∣∣∣∣µÃα(x) = αµÃα , X ∈ [0, 1]
}

(21)

In the Equations above, α represents the reliability weight, µB̃(x) indicates the dependence degree
of x ∈ X in B and µÃα(x) indicates the dependence degree of x ∈ X in Aα.

Then, by combining linguistic variables presented in Table 5 and the rules of converting
linguistic variables, the components of conversion of linguistic variables by decision makers’ for
Z-GRA method are obtained. For example, assume that Z = (A, B) where Ã = (MH) and the
R̃ = (M), then it is converted to Z = [(5, 7, 9), (0.35, 0.50, 0.65)]. According to Equations (20) and (21),
Z̃α =

(
5 ∗
√

0.5, 7 ∗
√

0.5, 9 ∗
√

0.5
)
= (3.54, 4.95, 6.36). According to the Tables 5 and 6, other conversions

are brought in Table 7.

Table 5. Linguistic variables for rating the failure modes.

Linguistic
Variables

Very Low
(VL)

Low
(L)

Medium
Low (ML)

Medium
(M)

Medium
High (MH) High (H) Very High

(VH)

TFNs (0,0,1) (0,1,3) (1,3,5) (3,5,7) (5,7,9) (7,9,10) (9,10,10)
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Table 6. Transformation rules of linguistics variables of reliability.

Linguistic
Variables

Very Low
(VL) Low (L) Medium (M) High (H) Very High

(VH)

TFNs (0,0,0.35) (0.2,0.35,0.50) (0.35,0.50,0.65) (0.50,0.65,0.80) (0.65,1,1)

Table 7. Transformation rules for Z-number linguistic variables to Z-gray relational analysis (GRA).

Linguistics Terms Membership Function Linguistics Terms Membership Function

(VL,VL) (0,0,0.35) (M,H) (2.42,4.03,5.64)
(VL,L) (0,0,0.59) (M,VH) (2.81,4.69,6.57)
(VL,M) (0,0,0.71) (MH,VL) (1.73,2.42,3.12)
(VL,H) (0,0,0.81) (MH,L) (2.96,4.14,5.32)

(VL,VH) (0,0,0.94) (MH,M) (3.54,4.95,6.36)
(L,VL) (0,0.35,1.04) (MH,H) (4.03,5.64,7.26)
(L,L) (0,0.59,1.77) (MH,VH) (4.69,6.57,8.44)
(L,M) (0,0.71,2.12) (H,VL) (2.42,3.12,3.46)
(L,H) (0,0.81,2.42) (H,L) (4.14,5.32,5.92)

(L,VH) (0,0.94,2.81) (H,M) (4.95,6.36,7.07)
(ML,VL) (0.35,1.04,1.73) (H,H) (5.64,7.26,8.06)
(ML,L) (0.59,1.77,2.96) (H,VH) (6.57,8.44,9.38)
(ML,M) (0.71,2.12,3.54) (VH,VL) (3.12,3.46,3.46)
(ML,H) (0.81,2.42,4.03) (VH,L) (5.32,5.92,5.92)

(ML,VH) (0.94,2.81,4.69) (VH,M) (6.36,7.07,7.07)
(M,VL) (1.04,1.73,2.42) (VH,H) (7.26,8.06,8.06)
(M,L) (1.77,2.96,4.14) (VH,VH) (8.44,9.38,9.38)
(M,M) (2.12,3.54,4.95)

Step 3: in this step, the decision-making matrix with symmetric triangular fuzzy numbers is
formed and it is normalized. In this matrix, dmn demonstrates the value that the alternative takes in n
criteria and m alternative (performance measurement).

D̃ =


(
dl

11, dm
11, dn

11

) (
dl

12, dm
12, dn

12

)
· · ·

(
dl

1n, dm
1n, dn

1n

)
· · · · · · · · · · · ·

· · · · · · · · · · · ·(
dl

m1, dm
m1, dn

m1

) (
dl

m2, dm
m2, dn

m2

)
· · ·

(
dl

mn, dm
mn, dn

mn

)
 (22)

Step 4: In this step, fuzzy GRA works as follows:
Decision matrix (22) is converted into the normalized decision matrix

Symmetry 2020, 12, 310 10 of 22 

 

𝑍 = (𝑋, 𝜇 )|𝜇 (𝑥) = 𝛼𝜇 , 𝑋 ∈ [0,1]  (21) 

In the Equations above, α represents the reliability weight, 𝜇 (𝑥) indicates the dependence 
degree of 𝑥 ∈ 𝑋 in 𝐵 and 𝜇 (𝑥) indicates the dependence degree of 𝑥 ∈ 𝑋 in 𝐴 . 

Then, by combining linguistic variables presented in Table 5 and the rules of converting 
linguistic variables, the components of conversion of linguistic variables by decision makers’ for Z-
GRA method are obtained. For example, assume that 𝑍 = (𝐴, 𝐵) where 𝐴 = (𝑀𝐻) and the 𝑅 = (𝑀), 
then it is converted to ( ) ( )5,7,9 , 0.35,0.50,0.65Z  =   . According to Equations (20) and (21), 𝑍 =5 ∗ √0.5, 7 ∗ √0.5, 9 ∗ √0.5 = (3.54,4.95,6.36). According to the Tables 5 and 6, other conversions are 
brought in Table 7. 

Table 5. Linguistic variables for rating the failure modes. 

Linguistic 
Variables 

Very Low 
(VL) 

Low 
(L) 

Medium 
Low (ML) 

Medium 
(M) 

Medium High 
(MH) 

High 
(H) 

Very High 
(VH) 

TFNs (0,0,1) (0,1,3) (1,3,5) (3,5,7) (5,7,9) (7,9,10) (9,10,10) 

Table 6. Transformation rules of linguistics variables of reliability. 

Linguistic 
Variables 

Very Low 
(VL) Low (L) Medium (M) High (H) Very High 

(VH) 
TFNs (0,0,0.35) (0.2,0.35,0.50) (0.35,0.50,0.65) (0.50,0.65,0.80) (0.65,1,1) 

Table 7. Transformation rules for Z-number linguistic variables to Z-gray relational analysis (GRA). 

Linguistics Terms Membership Function Linguistics Terms Membership Function 
(VL,VL) (0,0,0.35) (M,H) (2.42,4.03,5.64) 
(VL,L) (0,0,0.59) (M,VH) (2.81,4.69,6.57) 
(VL,M) (0,0,0.71) (MH,VL) (1.73,2.42,3.12) 
(VL,H) (0,0,0.81) (MH,L) (2.96,4.14,5.32) 

(VL,VH) (0,0,0.94) (MH,M) (3.54,4.95,6.36) 
(L,VL) (0,0.35,1.04) (MH,H) (4.03,5.64,7.26) 
(L,L) (0,0.59,1.77) (MH,VH) (4.69,6.57,8.44) 
(L,M) (0,0.71,2.12) (H,VL) (2.42,3.12,3.46) 
(L,H) (0,0.81,2.42) (H,L) (4.14,5.32,5.92) 

(L,VH) (0,0.94,2.81) (H,M) (4.95,6.36,7.07) 
(ML,VL) (0.35,1.04,1.73) (H,H) (5.64,7.26,8.06) 
(ML,L) (0.59,1.77,2.96) (H,VH) (6.57,8.44,9.38) 
(ML,M) (0.71,2.12,3.54) (VH,VL) (3.12,3.46,3.46) 
(ML,H) (0.81,2.42,4.03) (VH,L) (5.32,5.92,5.92) 

(ML,VH) (0.94,2.81,4.69) (VH,M) (6.36,7.07,7.07) 
(M,VL) (1.04,1.73,2.42) (VH,H) (7.26,8.06,8.06) 
(M,L) (1.77,2.96,4.14) (VH,VH) (8.44,9.38,9.38) 
(M,M) (2.12,3.54,4.95)  

Step 3: in this step, the decision-making matrix with symmetric triangular fuzzy numbers is 
formed and it is normalized. In this matrix, mnd  demonstrates the value that the alternative takes in 
n criteria and m alternative (performance measurement). 
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Step 4: In this step, fuzzy GRA works as follows: 
Decision matrix (22) is converted into the normalized decision matrix ̃. Given ̃ (23), the 

normalized performance rating can be calculated as (Gumus et al., 2013; Zhang and Liu, 2011): 
. Given
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(23), the

normalized performance rating can be calculated as (Gumus et al., 2013; Zhang and Liu, 2011):

d̃i j
∗ =

(
dl∗

i j

d+j
,

dm∗
i j

d+j
,

du∗
i j

d+j

)
and ∀i j : i = 1, 2, ...m, j = 1, 2, ...n

d+j = max
i

{
di j

}
∀i i = 1, 2, ...m

(23)

3.5. Proposed Approach

A combination of FMEA, Z-SWARA and Z-GRA is used to evaluate and prioritize failure modes
in this study. In the first phase of the research method, the failure modes and reliability of each of
mode are determined by the FMEA team. In the second phase, the failure modes are weighted in the
symmetric form and the criteria are ranked by decision makers (DMs) via the Z-SWARA method. In
the third phase, the primary matrix Z-GRA is formed in consideration of the failure modes identified
in the first phase and the final symmetric weights assigned in the second phase of the study. Figure 2
shows the steps in prioritizing the FMs of solar panels.
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Figure 2. Proposed approach for prioritizing the failures of the solar panels. 
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Figure 2. Proposed approach for prioritizing the failures of the solar panels.

4. Analysis of the Results

In accordance with the methodology of this study, 19 failures of solar panels are detected using
FMEA and the factor values for each failure are determined by the team. Z-number theory is used to
convert uncertain data into fuzzy numbers because of the uncertainty in the factors. The uncertainty
in the factors and their reliability values are considered. The Z-number values obtained from the
conversion of linguistic numbers based on the team’s opinion are indicated in Table 8.

Then, in the second phase of the research method and also according to the SWARA method
expressed, the values of coefficient k and the weight of q and w are calculated on the basis of Equations
(16) to (18) for each decision-maker in examining the failures of solar panels as in table (10). In this step,
the linguistic variables are converted into triangular fuzzy numbers, based on the Equations shown
in Tables 2 and 3. For example, the fuzzy numbers corresponding to the linguistic variable MOL-M
are (0.47, 0.71, 1.06), respectively. After the conversion of linguistic variables into fuzzy numbers, the
coefficient k j from Equation (16), the fuzzy weight q j from Equation (17) and the final weight of the
factors in the form of fuzzy numbers w j from Equation (18) are obtained. Final symmetric fuzzy weight
of main criteria by each decision maker shown in Table 9.
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Table 8. The score of ach failure mode in Z-number format.

Symb-ol Failure Modes
S O D C T

TM1 TM2 TM3 TM1 TM2 TM3 TM1 TM2 TM3 TM1 TM2 TM3 TM1 TM2 TM3

FM1 Shading (MH,H) (M,VH) (H,VH) (MH,M) (M,VH) (M,VH) (ML,H) (L, H) (M,VH) (M,H) (ML,H) (L,M) (MH,M) (M,VH) (ML,H)

FM2 Dust (MH,
H) (H,M) (H,VH) (VH,VH) (H,H) (MH,M) (H,H) (MH,H) (M,M) (M,H) (ML,M) (M,M) (M,VH) (MH,H) (M,M)

FM3 Orientation (MH,VH) (H,H) (M,H) (ML,VH) (M,VH) (MH,VH) (ML,H) (MH,VH) (M,M) (M,M) (MH,H) (H,M) (H,VH) (MH,M) (H,H)
FM4 Corrosion (M,M) (L,H) (ML,VH) (MH,VH) (M,H) (ML,M) (H,VH) (MH,H) (M,M) (M,M) (ML,H) (MH,VH) (M,M) (ML,VH) (L,H)
FM5 fire (MH,VH) (MH,H) (M,M) (ML,H) (L,M) (M,VH) (ML,M) (ML,H) (ML,VH) (M,H) (L,VH) (ML,M) (M,VH) (M,H) (M,VH)

FM6 Incorrect energy
yield prediction (VH,VH) (H,H) (MH,M) (MH,VH) (M,VH) (ML,H) (M,VH) (ML,M) (L,H) (M,H) (ML,H) (L,VH) (H,H) (M,H) (MH,H)

FM7 Stability (H,M) (M,M) (MH,H) (H,M) (VH,M) (MH,H) (M,VH) (MH,M) (ML,M) (ML,VH) (L,VH) (M,M) (H,M) (M,M) (MH,M)
FM8 Sizing (MH,H) (H,M) (MH,H) (M,H) (MH,VH) (MH,H) (M,M) (MH,H) (ML,M) (M,M) (M,VH) (M,M) (H,VH) (MH,H) (M,H)

FM9 Electrical
connections (M,M) (MH,VH) (H,H) (H,VH) (MH,M) (M,VH) (ML,H) (L,VH) (M,M) (L,VH) (ML,H) (VL,VH) (MH,M) (H,H) (M,H)

FM10 Lightning/
groundi-ng (MH,M) (ML,VH) (M,H) (ML,H) (L,H) (M,VH) (MH,VH) (ML,M) (M,VH) (ML,M) (ML,VH) (L,VH) (MH,H) (H,H) (M,VH)

FM11 grid connection (H,H) (H,VH) (MH,M) (MH,VH) (H,H) (M,M) (L,H) (ML,H) (M,H) (L,VH) (ML,H) (M,H) (M,M) (ML,H) (MH,H)

FM12
not compliant

with IEC
standard

(M,H) (ML,VH) (MH,VH) (M,M) (ML,VH) (L,VH) (M,VH) (L,H) (ML,H) (MH,H) (M,M) (H,H) (ML,H) (MH,M) (M,VH)

FM13 Equipment (M,H) (ML,VH) (MH,H) (H,VH) (MH,H) (M,M) (M,H) (L,VH) (ML,H) (M,H) (M,M) (MH,M) (M,M) (ML,VH) (MH,H)

FM14 Structure
Damage (M,H) (ML,H) (M,VH) (ML,VH) (L,VH) (VL,VH) (ML,M) (M,H) (M,VH) (M,M) (MH,H) (H,M) (ML,H) (L,M) (M,VH)

FM15 Wiring (M,H) (H,M) (MH,VH) (MH,VH) (M,H) (ML,M) (MH,H) (H,VH) (M,M) (MH,M) (M,H) (H,VH) (ML,VH) (L,H) (M,M)
FM16 Batteries (M,M) (MH,VH) (H,H) (MH,VH) (M,H) (ML,H) (M,VH) (M,H) (M,M) (MH,H) (M,M) (ML,VH) (H,H) (MH,VH) (M,VH)

FM17 Labelling and
warning signs (L,H) (VL,VH) (ML,H) (MH,M) (M,VH) (ML,VH) (MH,VH) (ML,H) (M,M) (M,VH) (M,H) (M,M) (ML,VH) (L,M) (VL,H)

FM18 Sensors (MH,H) (M,VH) (ML,M) (M,H) (H,M) (MH,VH) (M,M) (ML,H) (MH,VH) (H,VH) (MH,M) (M,H) (M,H) (ML,VH) (MH,M)

FM19 Boxes or conduit
bodies (H,VH) (MH,M) (M,H) (M,VH) (L,VH) (ML,H) (MH,VH) (M,VH) (ML,H) (M,VH) (H,M) (MH,M) (ML,H) (ML,VH) (L,VH)
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Table 9. Symmetric fuzzy weight of main criteria by each decision maker.

DM1
K q Wj

l m u l m u l m u l m u

S 1 1 1 1.000 1.000 1.000 0.357595 0.418505 0.495377
C MOL-M 0.47 0.71 1.06 1.47 1.71 2.06 0.485 0.585 0.680 0.17359 0.24474 0.336991
D MOL-H 0.54 0.81 1.21 1.54 1.81 2.21 0.220 0.323 0.442 0.078547 0.135215 0.218826
O MUL-VH 0.21 0.23 0.27 1.21 1.23 1.27 0.173 0.263 0.365 0.061848 0.109931 0.180848
T MUL-H 0.18 0.2 0.23 1.18 1.2 1.23 0.141 0.219 0.309 0.050283 0.091609 0.153261

Sum 2.019 2.389 2.796

DM2
K q Wj

l m u l m u l m u l m u

C 1 1 1 1.000 1.000 1.000 0.329376 0.371481 0.428399
S MOL-H 0.54 0.81 1.21 1.54 1.81 2.21 0.452 0.552 0.649 0.149039 0.205238 0.278181
D MUL-M 0.16 0.18 0.21 1.16 1.18 1.21 0.374 0.468 0.560 0.123173 0.17393 0.239811
O MUL-VH 0.21 0.23 0.27 1.21 1.23 1.27 0.294 0.381 0.463 0.096986 0.141407 0.198191
T VLI-VH 0.27 0.31 0.38 1.27 1.31 1.38 0.213 0.291 0.364 0.07028 0.107944 0.156056

Sum 2.334 2.692 3.036

DM3
K q Wj

l m u l m u l m u l m u

S 1 1 1 1.000 1.000 1.000 0.327769 0.373165 0.435067
C MOL-M 0.47 0.71 1.06 1.47 1.71 2.06 0.485 0.585 0.680 0.159111 0.218225 0.295964
D LI-M 0.28 0.35 0.47 1.28 1.35 1.47 0.330 0.433 0.531 0.108239 0.161648 0.231222
T VLI-H 0.17 0.2 0.24 1.17 1.2 1.24 0.266 0.361 0.454 0.087289 0.134707 0.197626
O MUL-H 0.18 0.2 0.23 1.18 1.2 1.23 0.217 0.301 0.385 0.070967 0.112256 0.167479

Sum 2.298 2.680 3.051

Table 10 shows the average of the final symmetric weight, obtained from all the opinions of
decision-makers for evaluating and prioritizing the risk of failures in FMEA method. This table consists
of the average weight W for each factor of FMEA in all decision-makers’ opinions.

Table 10. Final symmetric weight of main criteria with Fuzzy SWARA method.

Factor
DM1 DM2 DM3 Final Weight Crisp

l m u l m u l m u l m u

S 0.358 0.419 0.495 0.149 0.205 0.278 0.328 0.373 0.435 0.278 0.332 0.403 0.338
C 0.174 0.245 0.337 0.329 0.371 0.428 0.159 0.218 0.296 0.221 0.278 0.354 0.284
D 0.079 0.135 0.219 0.123 0.174 0.240 0.108 0.162 0.231 0.103 0.157 0.230 0.163
O 0.062 0.110 0.181 0.097 0.141 0.198 0.071 0.112 0.167 0.077 0.121 0.182 0.127
T 0.050 0.092 0.153 0.070 0.108 0.156 0.087 0.135 0.198 0.069 0.111 0.169 0.117

According to Table 10, the final symmetric weight, obtained in the form of triangular fuzzy numbers,
is for each failure factor in FMEA method. The final factor weight for factors are calculated as ws =

(0.278, 0.332, 0.403), wc = (0.221, 0.278, 0.354), wd = (0.103, 0.157, 0.230), wo = (0.077, 0.121, 0.182) and
wt = (0.069, 0.111, 0.169), respectively. Then the failure modes are prioritized, using the developed
Z-GRA method.

Table 11 shows the decision-making matrix Z-GRA in the form of Z-number elements for failure
factors of FMEA. The lines in Table 12 show the failure modes identified in the first phase of the
research method by the team.
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Table 11. Z-GRA initial decision matrix for failure modes of FMEA.

Failure
S O D C T

l m u l m u l m u l m u l m u

FM1 4.470 6.257 7.737 3.053 4.777 6.500 1.207 2.640 4.340 1.077 2.150 3.460 2.387 4.020 5.653
FM2 5.183 6.813 7.903 5.873 7.197 7.933 3.930 5.480 6.757 1.750 3.230 4.710 2.987 4.623 6.260
FM3 4.250 5.953 7.380 2.813 4.690 6.567 2.540 4.177 5.807 3.700 5.180 6.427 5.250 6.883 7.933
FM4 1.020 2.387 4.020 2.607 4.240 5.873 4.240 5.873 7.197 2.540 4.177 5.807 1.020 2.387 4.020
FM5 3.613 5.250 6.883 1.207 2.607 4.240 0.820 2.450 4.087 1.043 2.363 3.997 2.680 4.470 6.260
FM6 5.873 7.197 7.933 2.770 4.560 6.347 1.173 2.540 4.177 1.077 2.463 4.160 4.030 5.643 6.987
FM7 3.700 5.180 6.427 5.113 6.357 7.133 2.353 3.920 5.490 1.020 2.430 4.150 3.537 4.950 6.127
FM8 4.337 5.880 7.197 3.713 5.413 7.113 2.287 3.767 5.250 2.350 3.923 5.490 4.340 6.037 7.427
FM9 4.150 5.790 7.150 4.307 6.027 7.437 0.977 2.300 3.930 0.270 1.120 2.593 3.867 5.413 6.687

FM10 2.300 3.930 5.563 1.207 2.640 4.340 2.737 4.460 6.183 0.550 1.957 3.680 4.160 5.863 7.297
FM11 5.250 6.883 7.933 4.150 5.790 7.150 1.077 2.420 4.030 1.077 2.463 4.160 2.320 3.867 5.413
FM12 2.683 4.470 6.257 1.020 2.430 4.150 1.207 2.640 4.340 3.930 5.480 6.757 2.387 4.020 5.653
FM13 2.463 4.160 5.863 4.240 5.873 7.197 1.077 2.463 4.160 2.693 4.173 5.650 2.363 3.997 5.633
FM14 2.013 3.713 5.413 0.313 1.250 2.813 1.980 3.613 5.250 3.700 5.180 6.427 1.207 2.607 4.240
FM15 4.020 5.653 7.050 2.607 4.240 5.873 4.240 5.873 7.197 4.177 5.807 7.127 1.020 2.387 4.020
FM16 4.150 5.790 7.150 2.640 4.340 6.037 2.450 4.087 5.720 2.363 3.997 5.633 4.380 6.173 7.690
FM17 0.270 1.077 2.463 2.430 4.150 5.873 2.540 4.177 5.473 2.450 4.087 5.720 0.313 1.173 2.540
FM18 2.517 4.150 5.790 4.020 5.653 7.050 2.540 4.177 5.807 4.177 5.807 7.127 2.300 3.930 5.563
FM19 4.177 5.807 7.127 1.207 2.683 4.470 2.770 4.560 6.347 3.767 5.333 6.667 0.583 2.057 3.843

Table 12. Normalized weighted matrix.

Failure/Factor S O D C T

FM1 0.745 0.555 0.461 0.425 0.517
FM2 0.863 1.000 0.871 0.510 0.579
FM3 0.701 0.543 0.619 0.809 1.000
FM4 0.387 0.505 1.000 0.627 0.405
FM5 0.611 0.398 0.439 0.443 0.560
FM6 1.000 0.532 0.453 0.451 0.715
FM7 0.599 0.782 0.584 0.448 0.612
FM8 0.698 0.630 0.565 0.591 0.787
FM9 0.678 0.711 0.436 0.370 0.677

FM10 0.480 0.400 0.662 0.414 0.754
FM11 0.877 0.678 0.444 0.451 0.503
FM12 0.524 0.390 0.461 0.890 0.517
FM13 0.498 0.690 0.448 0.627 0.515
FM14 0.462 0.341 0.546 0.809 0.417
FM15 0.659 0.505 1.000 1.000 0.405
FM16 0.678 0.513 0.606 0.601 0.812
FM17 0.333 0.497 0.604 0.613 0.349
FM18 0.498 0.659 0.619 1.000 0.509
FM19 0.680 0.403 0.677 0.852 0.387

WEIGHT 0.338 0.127 0.163 0.284 0.117

After the normalization of the primary matrix presented in Table 11, the normalized weighted
matrix, considering the weights of the factor used in FMEA method, is obtained for all the failure
modes as in Table 12.

Now, after normalizing the final symmetric weights, the identified failures are prioritized based
on the Z-GRA approach and also a comparison between the outputs of this approach and conventional
methods such as Fuzzy GRA and traditional RPN has been presented in Table 13.
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Table 13. New approach results with existing methods.

Failure RPN Rank Fuzzy GRA Rank Z-GRA Rank

FM1 1890 12 0.570 16 0.578 13
FM2 18,144 1 0.815 1 0.773 2
FM3 11,200 2 0.799 2 0.753 3
FM4 2100 11 0.576 15 0.583 12
FM5 1152 14 0.525 17 0.520 18
FM6 2835 8 0.706 6 0.691 6
FM7 7680 4 0.667 8 0.596 11
FM8 7840 3 0.710 5 0.667 7
FM9 2352 10 0.581 14 0.574 14

FM10 1680 13 0.518 18 0.527 17
FM11 4608 5 0.663 9 0.641 9
FM12 840 15 0.645 11 0.615 10
FM13 2625 9 0.593 13 0.567 16
FM14 1152 14 0.610 12 0.567 15
FM15 7840 3 0.797 3 0.781 1
FM16 4200 6 0.661 10 0.659 8
FM17 600 16 0.490 19 0.489 19
FM18 4200 6 0.702 7 0.696 4
FM19 3528 7 0.725 4 0.679 5

Table 13 implies that failures FM2 with a score of 18,144, FM3 with a score of 11,200 and FM8 and
FM15 with a score of 7840 are ranked from 1 to 3, respectively. Consideration of the different weights
of risk factors (SODET) demonstrates that although failure FM8 with the FGRA approach ranks fifth,
it ranks third based on traditional RPN indices. This change indicates the application of the weights of
risk factors in the process of prioritizing failures.

FM2 with a score of 0.815, FM3 with a score of 0.799 and FM15 with a score of 0.797 are ranked
from 1 to 3 based on fuzzy GRA, respectively. The fuzzy GRA index has a more substantial impact on
distinguishing priorities (complete prioritization of failures) compared with the RPN indices.

On the basis of the Z-GRA approach, FM15 with a score of 0.781, FM2 with a score of 0.773 and
FM3 with a score of 0.753 are ranked from 1 to 3, respectively. Further investigation of this index shows
that the recommended approach not only considers uncertainty and reliability simultaneously in the
processes of prioritizing failures and assigning different weights to risk factors but can also prioritize
the failures completely and assign distinct ranks to each risk properly.

A simultaneous comparison of critical failures in the two approaches of Z-GRA and traditional
RPN shows that although failures FM8 and FM15 share the third rank based on the RPN indices, they
have distinct ranks of seventh and first, respectively, based on the suggested approach. The reason
for the lower rank of FM8 compared with that of FM15 is the difference in the values of symmetric
weights assigned to the risk factors. For example, FM15, which is ranked first based on the Z-GRA
approach, assigns large values to crucial risk factors, such as cost and detection (Table 11).

CFM15 = (4.177, 5.807, 7.127) > CFM8 = (2.35, 3.923, 5.490)
DFM15 = (4.240, 5.873, 7.197) > CFM8 = (2.287, 3.767, 5.250)

Figure 3 shows the resolution of ranks assigned to failures based on traditional FMEA, fuzzy GRA
and Z-GRA methods. The conventional FMEA performs an incomplete prioritization of failures by
placing 19 risks in 15 categories. By contrast, fuzzy GRA and Z-GRA conduct a complete prioritization
by assigning distinct ranks to identified failures. The advantage of this ranking over incomplete
prioritization is that it can increase the ability of DMs to discern critical failures and plan corrective
actions in accordance with the limitations of sources. Although, the fuzzy GRA method provides DMs
with a complete ranking, reliability is disregarded in this ranking. Consequently, the results of the
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Z-GRA method are more coincident with the FMEA team’s opinion compared with those of the fuzzy
GRA method.

Symmetry 2020, 12, 310 16 of 22 

 

Table 13 implies that failures FM2 with a score of 18,144, FM3 with a score of 11,200 and FM8 
and FM15 with a score of 7840 are ranked from 1 to 3, respectively. Consideration of the different 
weights of risk factors (SODET) demonstrates that although failure FM8 with the FGRA approach 
ranks fifth, it ranks third based on traditional RPN indices. This change indicates the application of 
the weights of risk factors in the process of prioritizing failures. 

FM2 with a score of 0.815, FM3 with a score of 0.799 and FM15 with a score of 0.797 are ranked 
from 1 to 3 based on fuzzy GRA, respectively. The fuzzy GRA index has a more substantial impact 
on distinguishing priorities (complete prioritization of failures) compared with the RPN indices. 

On the basis of the Z-GRA approach, FM15 with a score of 0.781, FM2 with a score of 0.773 and 
FM3 with a score of 0.753 are ranked from 1 to 3, respectively. Further investigation of this index 
shows that the recommended approach not only considers uncertainty and reliability simultaneously 
in the processes of prioritizing failures and assigning different weights to risk factors but can also 
prioritize the failures completely and assign distinct ranks to each risk properly. 

A simultaneous comparison of critical failures in the two approaches of Z-GRA and traditional 
RPN shows that although failures FM8 and FM15 share the third rank based on the RPN indices, they 
have distinct ranks of seventh and first, respectively, based on the suggested approach. The reason 
for the lower rank of FM8 compared with that of FM15 is the difference in the values of symmetric 
weights assigned to the risk factors. For example, FM15, which is ranked first based on the Z-GRA 
approach, assigns large values to crucial risk factors, such as cost and detection (Table 11). 

15 8

15 8

(4.177,5.807,7.127) (2.35,3.923,5.490)

(4.240,5.873,7.197) (2.287,3.767,5.250)

= > =

= > =
FM FM

FM FM

C C

D C
 

Figure 3 shows the resolution of ranks assigned to failures based on traditional FMEA, fuzzy 
GRA and Z-GRA methods. The conventional FMEA performs an incomplete prioritization of failures 
by placing 19 risks in 15 categories. By contrast, fuzzy GRA and Z-GRA conduct a complete 
prioritization by assigning distinct ranks to identified failures. The advantage of this ranking over 
incomplete prioritization is that it can increase the ability of DMs to discern critical failures and plan 
corrective actions in accordance with the limitations of sources. Although, the fuzzy GRA method 
provides DMs with a complete ranking, reliability is disregarded in this ranking. Consequently, the 
results of the Z-GRA method are more coincident with the FMEA team’s opinion compared with 
those of the fuzzy GRA method. 

 
Figure 3. Comparison of failure prioritization based on conventional FMEA, fuzzy GRA, Z-GRA 
approaches. 

12

1
2

11

14

8

4
3

10

13

5

15

9

14

3

6

16

6
7

16

1
2

15
17

6
8

5

14

18

9
11

13
12

3

10

19

7

4

13

2
3

12

18

6

11

7

14

17

9
10

16
15

1

8

19

4
5

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Pr
io

rit
y

Failure Modes

Conventional FMEA Fuzzy GRA Z-GRA

Figure 3. Comparison of failure prioritization based on conventional FMEA, fuzzy GRA,
Z-GRA approaches.

5. Sensitivity Analysis

Sensitivity is calculated with the risk factor weights in accordance with the information in Table 14.
For example, the original weight values of the risk factors are shown in Case 0. In Case 1, 0.1 is added
to the weight of S and 0.025 is deducted from the weight of O, D, C and T. Similarly, 0.1 is added to
the weight of O in Case 2, to the weight of D in Case 3, to the weight of C in case 4 and to the weight
of T in Case 5; meanwhile, 0.025 is deducted from the initial weight of the others. The results of the
rating sensitivity analysis of solar panels are shown in Table 15 and Figure 4. In Case 1, by increasing
the weight of S, FM2 (Dust) is upgraded from the second position to the first position, whereas FM15
(Wiring) is downgraded from the first position to the second position. In Case 2, by increasing the
weight of O, FM2 (Dust) is upgraded from the second position to the first position, whereas FM15
(Wiring) is downgraded from the first position to the second position. In Case 4, by increasing the
weight of C, FM2 (Dust) is downgraded from the second position to the third position. In Case 5, by
increasing the weight of T, FM15 (Wiring) is downgraded from the first position to the third position.
FM3 (Orientation) is upgraded from the third position to the first one. In all cases, FM17 (Labeling and
warning signs) is selected as the last failure mode.

Table 14. Weights of the risk factors with respect to considered cases.

S O D C T

Case 0 0.338 0.127 0.163 0.284 0.117
Case 1 0.438 0.102 0.138 0.259 0.092
Case 2 0.313 0.227 0.138 0.259 0.092
Case 3 0.313 0.102 0.263 0.259 0.092
Case 4 0.313 0.102 0.138 0.384 0.092
Case 5 0.313 0.102 0.138 0.259 0.217
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Table 15. Ranking results of failure modes with respect to the considered cases.

Failures
Rank

Case 0 Case 1 Case 2 Case 3 Case 4 Case 5

FM1 13 11 14 14 15 13
FM2 2 1 1 2 3 2
FM3 3 3 3 3 2 1
FM4 12 16 15 9 12 15
FM5 18 17 17 18 17 18
FM6 6 4 5 6 6 4
FM7 11 12 10 12 13 11
FM8 7 8 6 7 7 5
FM9 14 13 12 15 16 12
FM10 17 18 18 17 18 17
FM11 9 6 8 10 10 9
FM12 10 10 11 11 8 10
FM13 16 15 13 16 14 14
FM14 15 14 16 13 11 16
FM15 1 2 2 1 1 3
FM16 8 9 9 8 9 6
FM17 19 19 19 19 19 19
FM18 4 7 4 4 4 7
FM19 5 5 7 5 5 8
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6. Conclusions

The FMEA technique is widely used in various fields but it has deficiencies and limitations, which
have pushed researchers to improve the technique. In this study, an FMEA approach is developed
using Z-SWARA and Z-GRA. A new approach is recommended to address several of the defects
of conventional RPN. After identifying failures via the FMEA technique, the Z-SWARA method is
used to weigh RPN determining factors because not considering the symmetric weights of these
factors is one of the disadvantages of conventional RPN indices. Applying the Z-GRA method also
helps DMs incorporate uncertainty into the determinants of RPN and consider reliability in failure
modes in accordance with Z-number theory. Under this condition, prioritization is close to reality
because reliability is considered, and a complete prioritization is provided. DMs can thus execute a
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set of precautionary actions for important failures and re-evaluate the new system condition and the
effectiveness of these actions. In general, wiring should be examined and dust should be removed from
solar panels. The orientation of panels should be set and sensors and boxes or conduit bodies must be
arranged properly; the other components can be controlled based on the prioritization obtained. In the
case of failure, the quality control department or laboratory should be informed for repairs. In future
studies, the prioritization of failure modes can be evaluated using the G-number.
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66. Zavadskas, E.K.; Stević, Ž.; Tanackov, I.; Prentkovskis, O. A novel multicriteria approach–rough step-wise
weight assessment ratio analysis method (R-SWARA) and its application in logistics. Stud. Inform. Control
2018, 27, 97–106. [CrossRef]

67. Ijadi Maghsoodi, A.; Ijadi Maghsoodi, A.; Mosavi, A.; Rabczuk, T.; Zavadskas, E. Renewable energy
technology selection problem using integrated h-swara-multimoora approach. Sustainability 2018, 10, 4481.
[CrossRef]

68. Shahsavar, S.; Rad, A.J.; Afzal, P.; Nezafati, N.; Aghdam, M.A. Prospecting for polymetallic mineralization
using step-wise weight assessment ratio analysis (SWARA) and fractal modeling in Aghkand Area, NW Iran.
Arab. J. Geosci. 2019, 12, 248. [CrossRef]

69. Ghasempour, R.; Nazari, M.A.; Ebrahimi, M.; Ahmadi, M.H.; Hadiyanto, H. Multi-Criteria Decision Making
(MCDM) Approach for Selecting Solar Plants Site and Technology: A Review. Int. J. Renew. Energy Dev.
2019, 8, 15–25. [CrossRef]

70. Siksnelyte, I.; Zavadskas, E.; Streimikiene, D.; Sharma, D. An overview of multi-criteria decision-making
methods in dealing with sustainable energy development issues. Energies 2018, 11, 2754. [CrossRef]

71. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
72. Kang, B.; Wei, D.; Li, Y.; Deng, Y. A method of converting Z-number to classical fuzzy number. J. Inf. Comput.

Sci. 2012, 9, 703–709.
73. Aliev, R.A.; Alizadeh, A.V.; Huseynov, O.H. The arithmetic of discrete Z-numbers. Inf. Sci. 2015, 290, 134–155.

[CrossRef]
74. Aliev, R.; Alizadeh, A.; Huseynov, O. An introduction to the arithmetic of Z-numbers by using horizontal

membership functions. Procedia Comput. Sci. 2017, 120, 349–356. [CrossRef]
75. Aliev, R.A.; Huseynov, O.H.; Serdaroglu, R. Ranking of Z-numbers and its application in decision making.

Int. J. Inf. Technol. Decis. Mak. 2016, 15, 1503–1519. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/sym11010074
http://dx.doi.org/10.5937/sjm11-7877
http://dx.doi.org/10.5755/j01.ee.24.5.4526
http://dx.doi.org/10.24846/v27i1y201810
http://dx.doi.org/10.3390/su10124481
http://dx.doi.org/10.1007/s12517-019-4304-5
http://dx.doi.org/10.14710/ijred.8.1.15-25
http://dx.doi.org/10.3390/en11102754
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/j.ins.2014.08.024
http://dx.doi.org/10.1016/j.procs.2017.11.249
http://dx.doi.org/10.1142/S0219622016500310
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Literature Review 
	Hybrid FMEA Approach 
	GRA Application 
	SWARA 

	Methodology 
	Fuzzy Sets Theory 
	Z-Number Theory 
	Z-SWARA 
	Z-GRA 
	Proposed Approach 

	Analysis of the Results 
	Sensitivity Analysis 
	Conclusions 
	References

