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Abstract: Network traffic classification based on machine learning is an important branch of pattern
recognition in computer science. It is a key technology for dynamic intelligent network management
and enhanced network controllability. However, the traffic classification methods still facing severe
challenges: The optimal set of features is difficult to determine. The classification method is highly
dependent on the effective characteristic combination. Meanwhile, it is also important to balance the
experience risk and generalization ability of the classifier. In this paper, an improved network traffic
classification model based on a support vector machine is proposed. First, a filter-wrapper hybrid
feature selection method is proposed to solve the false deletion of combined features caused by a
traditional feature selection method. Second, to balance the empirical risk and generalization ability
of support vector machine (SVM) traffic classification model, an improved parameter optimization
algorithm is proposed. The algorithm can dynamically adjust the quadratic search area, reduce the
density of quadratic mesh generation, improve the search efficiency of the algorithm, and prevent
the over-fitting while optimizing the parameters. The experiments show that the improved traffic
classification model achieves higher classification accuracy, lower dimension and shorter elapsed
time and performs significantly better than traditional SVM and the other three typical supervised
ML algorithms.

Keywords: traffic classification; support vector machine; feature selection; parameters optimization

1. Introduction

With the dramatic growth in network applications, the current network has become a large,
dynamic and complex system. Large-scale network applications have brought serious challenges to
management. Therefore, network management based on traffic analysis intelligently is an urgent
task. The network traffic classification is the foundation of network management, which can manage
the corresponding network traffic differently, provide the basis for the subsequent network protocol
design, provide the methods for network attack detection and flow cleaning in network security [1].

There are four main methods of traffic classification research at present [2–4]: port numbers-based
method, deep packet inspection (DPI) method [5,6], protocol analysis method and machine learning
techniques. Since 2001, the number of research papers in the field of network traffic classification has
increased year over year. With the increase of network traffic and the backbone network optimization,
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the current network traffic classification method can’t completely solve all kinds of problems caused
by the constant change of traffic characteristics. For the machine learning techniques are intelligent
and flexible, more and more researches on network traffic classification are focused on this field in
recent years. At the same time, the traffic classification method based on machine learning also faces
some challenges: (1) The optimal feature subset is difficult to obtain. The classification method needs
an effective feature combination to form the optimal feature subset so that the classification algorithm
can get the maximum classification accuracy. Meanwhile, it is expected that the feature set contains
the least number of features, and effectively removes redundant and irrelevant features. (2) The
high dimensional feature results in high computational complexity and long convergence time of the
machine learning classification algorithm. If traffic features are extracted from the traffic packet header,
when the number of packets extracted from each traffic feature is equal to (n), the cost of collecting and
calculating each feature is close to O(n logn

2). (3) The traffic classification accuracy is highly correlated
with the prior probability of training samples. While the training and test samples in the classification
model may be biased to partial flow. (4) Some classification models, such as C4.5 decision tree, or
K-Nearest Neighbor (K-NN) is easy to fall into local optimum.

In summary, it is a challenge to realize network traffic classification by machine learning. No doubt
that there are great theoretical significance and application value to apply it to network traffic
classification. In this paper, we focus on reducing the dimension of the flow features and deriving the
optimal working parameters based on the machine learning model. The major contributions of this
work are summarized as follows:

(1) In the process of feature reduction, in order to select the optimal feature subset which can
represent the distribution of original traffic data, a Filter-Wrapper hybrid feature selection model
is proposed.

(2) In order to balance the empirical risk and generalization ability of support vector machine (SVM)
traffic classification model, improve its classification and generalization ability, and improved the
grid search parameter optimization algorithm is proposed. The algorithm can dynamically adjust
the second search area, reduce the density of grid generation, improve the search efficiency of the
algorithm, and prevent the over-fitting while optimizing the parameters.

(3) We compare the proposed model with the traditional SVM, and the representative supervised
machine learning algorithm. It shows that traffic classification performance can be significantly
improved by the proposed model by using very few training samples.

The rest of the paper is organized as follows: Section 2 reviews the related work of traffic
classification. Section 3 describes the proposed methods and framework. Section 4 proposes an
experimental framework and a detailed performance evaluation of the proposed model. Section 5
draws a conclusion.

2. Related Works

2.1. Method Based on Port Numbers

Port-based traffic classification is mainly used in early typical applications. The Internet Assigned
Numbers Authority (IANA) plans corresponding TCP/UDP service ports for each application in the
network. The main limitations are as follows: (1) Some open ports are applied to different networks.
(2) In order to pass through firewalls and avoid sniffing, some applications use port confusion
technology to fake the default ports of other applications [7].

2.2. Method Based on Deep Packet Inspection

Traffic classification based on deep packet inspection (DPI) is a method with high classification
accuracy [8]. DPI traffic classification not only detects IP and TCP/IP header but also detects part or
all the payload of the data packet, which is called depth packet inspection. Although the accuracy
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of traffic classification based on DPI is high, this method still has some defects: (1) As the number
of non-standard applications and private protocols increases more and more, these applications and
protocols lack applicable and open standards, which makes feature strings changeful and difficult to
inspect [9]. (2) The random encrypted stream in some network traffic associates several characteristic
strings, which makes the false-positive increase.

2.3. Method Based on Protocol Analysis

Based on open protocol regulations, protocol analysis methods analyze the protocols by
establishing protocol state machines for traffic classification. Iliofotou et al. [10] classify traffic
by analyzing the behavior characteristics of network applications and provides the concept of traffic
dispersion graphs (TDGs). The TDG inspection method can be used to analyze and visualize network
traffic. In addition, the features of Skype client are analyzed by using private communication and
encrypted data traffic, Bonfiglio et al. [11] proposed to identify the traffic of the Skype client through
some features of the client. Although the efficiency of traffic classification based on protocol analysis is
better than those based on DPI, it still faces some challenges: (1) It is difficult to analyze the effective
features of the non-standard application and encryption protocol traffic. (2) The analysis of the protocol
is based on the current version of the protocol. Once the version of the protocol is revised, the features
of the protocol will change, so it is necessary to analyze the protocol again.

2.4. Method Based on Machine Learning Techniques

The machine learning methods capture and identify the traffic data packets based on calculating
the statistical information of the specific application traffic. Machine learning methods mainly include
supervised learning and unsupervised learning. Classifier builds unsupervised learning based on
clustering samples according to their similarity rather than labeling the training set in advance.
There are many representative clustering algorithms, such as K-means [12,13] clustering (K-means),
expectation-maximization (EM) [14], etc. The supervised learning is more favorable to the construction
of an application-oriented network traffic classification model because it knows the actual traffic
categories. Supervised learning refers to the design of classification models and parameters based
on prior knowledge. In supervised learning algorithms, classifiers or classification models are based
on certain pattern recognition techniques, such as Bayesian, C4.5 decision tree, and K-NN, which are
easy to fall into local optimization. In addition, Ensemble learning is a method of using several basic
classifiers to execute decisions together [15]. The basic classifiers include such as decision tree, random
forest, Bayesian, etc. [16]. However, the dependencies between the basic classifiers and the number of
basic classifiers need to be determined, the generalization ability and classification performance of
ensemble learning algorithms will be greatly affected. Deep learning is a characterization learning
method based on the data in machine learning [17]. Though the training of deep learning depends
on the huge amount of training data heavily, and the hyper-parameters optimization of deep neural
networks is difficult [18]. In the above methods, the support vector machine (SVM) algorithm is
a kind of supervised learning algorithm based on statistical theory [19]. And based on the kernel
function transformation and structural risk minimization (SRM) principle, the traffic classification
is transformed into a quadratic optimization problem, which has good classification accuracy and
stability. Moreover, it is more capable to solve high dimensional nonlinear problems [20]. In recent
years, the research of network traffic classification based on SVM is the focus of supervised learning
with theoretical significance and practical application value. In reference [21], a maximum margin SVM
is proposed to avoid local optimization, and a discriminatory selection algorithm is proposed. In [22],
a method of extracting and determining traffic parameters from the packet header was proposed based
on SVM. Bulk, interactive, WWW, service, P2P, and other application traffic were classified. For biased
samples, the overall average classification accuracy is 99.41%. And for unbiased samples, the overall
average classification accuracy is 92.81%. To sum up, the supervised classification method based on
SVM has been widely used in feature selection, classification of network traffic and other research
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fields. With the development of SVM theory, it is more and more urgent to apply it to do network
traffic feature selection and traffic classification. Therefore, the main research content of this paper is to
study the characteristics and application scope of the SVM training model, then propose reasonable
feature selection, traffic classification methods and corresponding solutions.

3. Materials and Methods

3.1. Model Framework

We proposed an improved network classification model based on SVM, this model improves
the accuracy of traffic classification. The model contains two modules, they are feature engineer and
classifier building. First, we proposed a filter-wrapper mixed feature selection algorithm, obtain the
optimal feature set to represent the original feature set. And then we proposed an improved grid search
algorithm, the algorithm gets the best combination of the key parameter of SVM classifier to improve
the classification accuracy and prevent overfitting. The model framework is shown in Figure 1.

Figure 1. The improved network traffic classification based on SVM.

3.2. The Filter-Wrapper Feature Selection Algorithm

Although filter feature selection is independent of the machine learning algorithm, it has
low computational complexity and fast feature selection speed. But it also has some limitations:
(1) Redundant features can’t be completely removed. When a redundant feature is highly correlated
with the target class, the feature will not be removed completely. (2) The ability of combination feature
selection is poor. When some feature combinations appear, they will have a strong ability to distinguish,
and there is a certain correlation between these features. The filter feature selection often only selects
one or several of them. The other combined features with strong distinguishing ability are filtered out
as redundancy. (3) As selecting the optimal feature subset is based on the information and statistical
features of the data, and independent from the learning algorithm, the classification effect is often not
very ideal.
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Wrapper feature selection depends on the learning algorithm. The classification accuracy will
reach a higher level. But it also has some limitations: (1) The computational complexity is high
relatively. When there are n dimension features and the number n is large, an exhaustive subset of
2n features will cause the NP problem [23]. In addition, when the k-fold crossover is used to verify
the classification accuracy of the feature subset, the computational complexity is huge. (2) It is often
necessary to combine the optimal search strategy to obtain the approximate optimal feature subset.

3.2.1. Filter-Wrapper Feature Selection Model Framework

In order to overcome the limitations of the traditional feature selection, we propose a filter-wrapper
hybrid feature selection model. The model framework is shown in Figure 2. The process of feature
selection in this model is as follows: (1) The pre-processed data set S0 is first selected by the filter.
The information gain (IG) algorithm is used to evaluate the information gain of each feature that
contributes to the classification, and a heuristic optimal feature selection search strategy is used to sort
the IG value of the feature attribute. Finally, a new candidate feature subset F1 is obtained by removing
the feature whose weight is less than the set threshold δ from the original dataset. (2) Wrapper second
feature selection is performed on the candidate feature subset F1 and data set S1. Based on the SVM
learning algorithm and heuristic sequence forward search strategy, an optimal feature subset F2 with
high classification accuracy is selected. (3) The data set S2 which is composed of the optimal feature
subset F2 selected by the Filter-Wrapper model is divided into a training set and test set. Then based on
the training of the SVM classifier, the network traffic classification results are obtained on the test set.

Figure 2. Filter-wrapper hybrid feature selection model based on SVM.

This filter-wrapper hybrid feature selection model reduces the feature dimension of traffic sample
space, shortens the training time and improves the classification performance of SVM. Because the
second wrapper feature selection is based on the filter feature selection, the model overcomes the
problem of not considering the combination feature ability and the poor classification effect caused
by using the filter feature selection model only. At the same time, due to the filter feature subset
selection, the computational complexity of the wrapper second feature selection is greatly reduced and
the classification effect is ideal.
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3.2.2. Filter-Wrapper Feature Selection Algorithm Framework

The filter-wrapper hybrid feature selection algorithm framework is shown in Figure 3.
The hybrid feature selection model can select the input feature set, reduce the dimension and
improve the classification performance. F0( f1, f2, . . . , fi, . . . , fn) represents the scaling original feature
set, S f ilter ← search(F0) represents the Filter feature selection stage. Heuristic optimal feature
combination search strategy is used to search candidate feature subsets F1 in feature space F0.
And EIG ← evaluate

(
S f ilter, F0

)
, means to evaluate candidate feature subsets F1 by information gain

evaluation strategy.EIG_best is the best evaluation value for EIG. If EIG < EIG_best updates the evaluation
value EIG and the candidate feature subset F1 of the Filter selection, otherwise it is not updated. Loop the
process until the threshold δ f ilter termination conditions δstop_ f ilter are satisfied (δ f ilter = δstop_ f ilter),
finish the Filter feature selection process, and output the target feature subset F1( f1, f2, . . . , fi, . . . , fn∗),
n∗ < n of the feature selection in this stage. Swrapper ← search(F1) indicates that in the wrapper
feature selection. A heuristic sequence forward search strategy is used to search candidate feature
subsets F2 in the feature space F1.Esvm_test ← evaluate

(
Swrapper, F1

)
, means that after the training model

is established by the SVM classification algorithm, the candidate feature subset F2 is tested. On the test
set, if the accuracy Testaccuracy is higher than the previous best accuracy Testbest(Testaccuracy > Testbest),
the evaluation value Esvm_test and the wrapper candidate feature subset F2 are updated by the best
SVM evaluation value Esvm_test_best and the best feature subset Fbest. Otherwise, no updates are made.
The process is circularized until the threshold is satisfied and the wrapper feature selection is completed.
Then the target feature subset F2( f1, f2, . . . , fi, . . . , fm) of the feature selection is outputted and the
feature dimension is m.

Figure 3. Filter (IG) feature selection process.

3.2.3. Filter Feature Selection Algorithm Evaluation Strategy

In the hybrid feature selection algorithm, the wrapper second feature selection directly uses
the SVM classifier as the evaluation strategy, which means the feature subset is evaluated based on
the classification performance of SVM. In the filter feature selection stage, the information gain (IG)
algorithm is used as the evaluation strategy which is independent of the learning algorithm. IG is an
entropy evaluation method, which evaluates the information gain of each feature that contributes to
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the classification. The more information a variable has, the greater the entropy. If the corresponding
probability of the class feature variable S(S1, S2, . . . Sn) is P(P1, P2, . . .Pn), then the entropy S is shown
on Equation (1). The IG of attribute feature F( f1, f2, . . . fn) is the difference of information quantity
with and without F. The IG is shown on the Equation (2). P(Si) is the probability of the appearance of
class S. P(Si| fi) is the conditional probability that attributes feature fi belongs to category Si. Pi

(
Si| fi

)
is

the conditional probability of not having attribute feature fi and belonging to a class Si. The larger
value of IG(F), the greater contribution of F( f1, f2, . . . fn) to classification. The information gain related
to the class is sorted by the feature attribute. The higher the IG value of attribute feature, the greater its
contribution to the classification:

H(S) = −
n∑

i=1

Pi log2 Pi (1)

IG(F) = H(S) −H(S|F)

= −
n∑

i=1
P(Si) log2 P(Si) + P( fi)

n∑
i=1

P(Si| fi) log2P(Si| fi)

+P
(

fi
) n∑
i=1

P
(
Si| fi

)
log2 P

(
Si| fi

) (2)

According to the IG value of each traffic feature in the Equation (2), combining the heuristic
optimal feature selection search strategy, the feature IG value is sorted, and the feature which threshold
δ f ilter= 0 is filtered out to form a new candidate feature subset F1. The feature selection process is
shown in Figure 4.

Figure 4. Filter (IG) feature selection process.

The input is the original feature set F0. The target feature subset F1 is initialized. The IG value of
each feature fi is calculated according to Equation (2). Each feature fi is searched in the feature set
F0 and sorted according to the IG value of the feature. When the IG value is less than or equal to the
threshold δstop_ f ilter

(
δstop_ f ilter = 0

)
, the feature fi is deleted and the next feature is searched. When the

IG value is greater than the set threshold δstop_ f ilter, the searched feature fi is selected into the target
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feature subset F1. The loop search processes until the last feature fn in the feature set F0 are searched,
then the search process is completed, and the final target feature subset F1 is output.

3.2.4. Wrapper Feature Selection Algorithm Search Strategy

The filter feature selection process adopts a heuristic single optimal feature combination search
strategy. The IG values of a single feature in the feature set are sorted and selected according to the set
threshold. The k best features are combined to form a candidate feature subset. Although the single
optimal feature combination strategy does not consider the interdependence between features, its
efficiency is high, which is very suitable for the initial feature selection of the filter-wrapper hybrid
feature selection algorithm. The computational complexity of the later wrapper feature selection stage
is greatly reduced. The combination feature ability and the classification effect can be realized in the
wrapper second feature selection stage.

In the wrapper second feature selection stage, the heuristic sequence forward selection search
strategy is used to obtain the approximate optimal feature subset. The main idea of this strategy is:
starting from the empty set, one or more features that can make the classifier of candidate subset
with the highest accuracy, are added to the current feature candidate subset until the number of
features exceeds the total number of features (threshold). That is, starting from the initial feature
space (empty set), each time we select m features from the feature space of filter feature selection,
add them into F1 to generate a new candidate feature subset F2 until the constraint conditions are
satisfied. The heuristic search adopts the depth-first strategy. When the maximum diameter of the
search is N, the computational complexity is O(N), which reduces the computational cost of the search.

Search strategy description: select an empty set as the initial feature subset F1. From the traffic
feature space F( f1, f2, . . . , fi, . . . , fn∗) of Filter feature selection, the selected k features are added to
the initial feature set F1. The classification accuracy A0 of S1 in F1 was calculated after filter feature
selection, and the candidate feature subset F2 was generated by F1. The sequence forward selection
was used. The loop selects m features from the remaining features and adds them to F1. Finally, a new
candidate feature F2 is generated. The classification accuracy A1 on F2 is calculated and compared
with A0. If A1 > A0, then the feature subset F1 is updated. So that F1 = F2. Otherwise, F1 will not
be updated. When the feature number i cannot satisfy the threshold condition, that is, i exceeds the
maximum number of features, then all the features are cyclically searched, and the algorithm ends.
The specific algorithm framework is shown in Algorithm 1.

Algorithm 1: Heuristic Sequence Forward Search Strategy

Input: initial feature set F1

Output: target feature set F2

1. F1 ← ∅ ;
2. Select k features to add into the initial feature set F1;
3. For i ≤ δwrapper do
4. The classification accuracy A0 of computing data set S1 on F1;
5. Select m features from the remaining features and add them into F1 to generate a new feature subset F2;
6. The classification accuracy A1 of computing data set S1 on F2;
7. if A1 > A0, then F1 = F2;
8. else, F1 no change;
9. End if
10. End For
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3.3. Parameters Optimization Based on Improved Grid Search Algorithm

3.3.1. Basic Principle of Traditional Grid Search Algorithm

The grid search algorithm (GS) [24] is one of the commonly used methods to optimize SVM
parameters. The main principle is as follows: If it contains n parameters, (1) For grid division in
the n-dimensional parameter space, each candidate parameter combination is represented by a grid
node. (2) Set the value range of each parameter yi and sample according to the specified step size.
Generate a set U(yi) = {U (yi) ×U(y2) × . . .× U(yn)

}
of parameter samples, that is, generating grids

according to the different directions of the parameter yi. (3) For each parameter sample yi (grid node),
the corresponding evaluation method is used until all the parameter samples are evaluated. Output
optimal parameter combination.

The grid search algorithm is simple in principle, which has no correlation between grid nodes
and has strong generality. In theory, when the search space is large enough and the search step is small
enough, the global optimal solution can be found. In practical application, grid search is still a commonly
used parameter optimization method [25,26]. However, as the parameters increase, the search space
expands and the search step decreases, the grid becomes very dense and the computational overhead
of the algorithm increases, especially when dealing with the large-scale data of network traffic. In this
section, an improved Grid algorithm for optimizing SVM parameters is proposed. The algorithm can
determine the global approximate optimal solution by finite search, reduce the computation cost, and
improve the classification performance and generalization ability of SVM.

3.3.2. Improved Grid Search Algorithm Framework

SVM is to maximize the classification interval to achieve the best generalization ability. When the
optimal classification plane can’t separate completely the two kinds of points, SVM allows the existence
of error samples by introducing a relaxation factor xi, which can balance the empirical risk and
generalization ability of SVM. In this case, the classification plane satisfies: yi

(
wTφ(xi) + b

)
≥ 1− ξi,

when 0 < ξi < 1, sample point xi is correctly classified, and when ξi ≥ 1, sample point xi is misclassified.

Therefore, the penalty term C
l∑

i=1
ξi is added, the minimization objective function is the Equation (3),

and C is the penalty factor. The function of the penalty parameter C is to adjust the tolerance of SVM to
error samples when constructing the optimal classification plane. The appropriate C value can balance
the empirical risk and generalization ability of SVM:

min
w,b,ξ

1
2

wTw + c
l∑

i=1

ξi (3)

At the same time, the parameter γ = 1
σ of the RBF kernel function affects the radial action range of

the kernel function. When the scale parameter σ is small, then σ is smaller than the interval of actual

training sample points, and the RBF kernel function exp (−γ
∥∥∥xi − x j

∥∥∥)2
value is smaller so that the kernel

function can only affect the samples in the small scale range where the sample interval is the same as σ.
Therefore, setting the appropriate scale parameter σ, that is, determining the appropriate parameter γ
of the RBF kernel function, will have a great influence on the classification and generalization ability
of the SVM. In this section, the Improved Grid Search algorithm (IGS) is used to optimize the SVM
penalty parameters C and the RBF kernel function parameters γ. The framework of the algorithm is
shown in Algorithm 2. The details are as follows.
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Algorithm 2: Improved Grid Optimization Parameter Algorithm (IGS)

Input: α, β, lcstep, lγstep, δ, K;
Output: Cbest, γbest, CVbest;
1. [Cmin, Cmax]← [2−α, 2α] , [γmin,γmax]←

[
2−β, 2β

]
;

2. lcstep, lγstep ← λ·l(λ ≥ 1) ;
3. The initial optimization result Ci1, γi1, CVi1 is obtained by searching in the initial parameter space;
4. lcstep, lγstep ←

l
2 ;

5. If Ci1 < δ, then
6. Second-search of optimal contour region based on CVi1 evaluation results;
7. The second optimization results Ci2, γi2, CVi2 are calculated and obtained;
8. While Ci1 ≥ δ do
9. For, i = 1 to 2α, j = 1 to 2β do
10. [Cmin, Cmax]←

[
2−α+i, 2α− j

]
, j = 1 to 2β;

11. Calculate and update the second-optimization results Ci2, γi2, CVi2;
12. if Ci2 < δ, break
13. i + 1, j + 1;
14. End For
15. End While
16. End if
17. Cbest ← Ci2 , γbest ← γi2 , CVbest ← CVi2 ;

(1) In the initial parameter space (Ci,γi), the IGS algorithm will increase the initial step size
to λ times of the default step l, that is, λ·l(λ ≥ 1), and perform the initial traversal search until all
the parameter samples are evaluated according to the evaluation method. The optimal parameter
combination (Ci1,γi1) of SVM and the corresponding contour map of the evaluation result is outputted.
Here the initial step size is increased to λ·l, which can reduce the initial Grid search time and the
density of the initial Grid generation.

(2) When the initial penalty parameter C is judged, if it does not exceed the critical value δ,
then reduce the search area according to the range of contour line with the highest evaluation value.
And when the reduction step size is half of the default step l, the second search is carried out. If C
exceeds the critical value δ of over-fitting, then the boundary of the contour with the highest evaluation
result can be searched twice in the opposite direction to the lower value of the evaluation result, until
C is within the limit of the critical value. After all the parameter samples are evaluated according to
the evaluation method, the optimal parameter combination (Ci2,γi2) of SVM and the corresponding
evaluation results are finally outputted. Here, the step size is reduced to increase the density of grid
generation and to perform fine searches. When C exceeds the critical value δ, the algorithm searches for
the lower value of the evaluation result in the opposite direction, in order to optimize the parameters,
avoid over-fitting and improve the generalization ability of SVM.

3.3.3. IGS Evaluation Strategy

Based on statistical theory, the cross-validation (CV) method is used to evaluate samples.
This method can effectively evaluate the performance of a classifier. The typical model is k-fold
cross-validation (k-CV). The basic idea of k-fold cross-validation (k-CV) is to divide the training set
into k subsets, and select each subset as the test set in turn, and the remaining k-1 subsets as training
sets. The classification model trained by k-1 training sets is used to predict the corresponding test
sets. After k times of training iteratively, the sum of the k-times prediction results are divided by the
total number of samples to evaluate the generalization ability of the classification model. In k-fold
cross-validation (k-CV), each sample is used as a test sample once and k-1 as training sample, which
makes the evaluation results more reliable. At present, in the field of parameter optimization, although
k-CV evaluation method is time-consuming, its principle is simple and reliable, which is still applied
by many researchers in practice [27,28].
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In (k-CV), the k value determines the generalization ability of the model. When the value k is small,
the model with better prediction ability can’t be obtained. When the value k is larger, the calculation
load of the model will increase sharply. Therefore, in the paper, we discuss the k value and determine a
reasonable k value, so as to obtain a more effective and reliable evaluation method for predicting the
ability of the SVM classification model.

4. Experimental Performance Evaluation

4.1. Datasets

In order to test and analyze the performance of feature selection model, the common real data sets
are used to test, and the experimental results are compared and analyzed. The data set is Andrew
Moore [29] data set, which is a collection of traffic collected by Moore et al. It contains 10 (24 h)
data subsets of 1Gbps full-duplex network traffic. The collection time of each data subset is the
1680S (28 min), which contains 355,241 pieces of data and 248 attributes. Each line of each subset file
represents network traffic, and each network traffic consists of packets with the same attributes.

The original data set is an unbalanced data set. The data amount of WWW and mail traffic flows
reaches tens of thousands or even hundreds of thousands, but the games and interactive traffic flow
data is only 118. In order to avoid the imbalance of data, two kinds of samples, games and interactive,
are deleted. The original data set is sampled. On 10 classes of traffic data, equal proportions of random
data are sampled for each subset with a sample number of less than 3000. Then, the sample data of
10 subsets are merged to form the experimental data set of 24897 samples, as shown in Table 1.

Table 1. Datasets.

Traffic Class Representative
Application

Sample
of Flows Traffic Class Representative

Application Sample Flows

WWW http, https 2999 P2P Kazaa, BitTorrent,
Gnutella 2391

Mail pop2/3,smtp,
imap 2999 Database Postgres, sqlnet,

Oracle, ingres 2943

FTP-control FTP 2990 Ftp-data ftp 2997
FTP-pasv FTP 2989 Multi- Media Voice, video 576

Attack Worm, virus 1973 Service X11,dns, Ident, ntp 2220

This sampling method ensures that the data comes from different periods of time within 24 h and
makes the distribution of data flow more representative. SVM realizes the classification and prediction
of test sets by training set traffic samples [30]. In this paper, the LibSVM tool [31] is used to identify the
class label of network traffic. The 10 classes of network traffic of WWW~Services are identified with
the integer of 1~10 respectively, which is used as the class label of the training set. 50% of the sampled
data is taken as the training set and the remaining 50% of the data is used as the test set.

4.2. Performance Analysis of Filter-Wrapper Feature Selection

The original dimensionality is 248-dimensional, so the dimension is still high. These
high-dimensional features will increase the computational complexity and the training time of
the SVM classifier. The filter-wrapper hybrid feature selection model proposed in this section adopts
Filter information gain (IG) algorithm to remove features whose weights are less than the set threshold
δ(δ = 0) from the original data set to obtain a new feature subset. Based on the IG of the feature subset
selection, wrapper is adopted based on the SVM classifier, and heuristic forward search strategy is
used to select second-feature, which reduces the feature dimension and improves the performance of
SVM classification.

Based on the filter IG algorithm, the individual feature is analyzed, and the contribution of each
feature to the classification is investigated. The features whose weights are less than the threshold
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are deleted. The feature numbers and feature descriptions are shown in Table 2. A new feature
subset is formed after the feature with weight 0 is deleted. Based on the SVM classifier, the wrapper
second-feature selection is carried out by a backward search strategy on this feature subset.

Table 2. Features of weights less than δ(δ = 0) deleted based on Information Gain.

Feature Number Feature Description Feature Number Feature Description

40 dsack_pkts_sent_b a 78 urgent_data_bytes_b a
53 zwnd_probe_pkts_a b 92 zero_win_adv_b a
54 zwnd_probe_pkts_b a 102 missed_data_b a
55 zwnd_probe_pkts_b a 103 truncated_data_a b
56 zwnd_probe_bytes_b a 104 truncated_data_b a
75 urgent_data_pkts_a b 105 truncated_packets_a b
76 urgent_data_pkts_b a 106 truncated_packets_b a
77 urgent_data_bytes_a b

Figure 5 shows the classification accuracy of each network traffic increasing with the feature
number of the new feature subset. According to the graph, we can select the feature subset with the
highest contribution of the combined feature corresponding to each flow. The feature number and
classification accuracy of the feature subset based on filter-wrapper feature selection are shown in
Table 3.

Table 3. Feature subset and accuracy based on Filter-Wrapper feature selection.

Traffic Class The Number of Optimal Feature Combinations Accuracy (%)

WWW 162 98.8
Mail 208 99.96

FTP-control 219 99.44
FTPp-pasv 183 99.8

Attack 208 97.2
P2P 204 94.76

Database 224 99.96
FTP-data 215 99.98

Multimedia 201 97.64
Services 207 99.76
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In order to investigate whether the method can achieve the same classification effect based on
smaller training samples, 5000 samples are randomly selected, and the classification accuracy is
obtained based on the feature dimension of the Filter-Wrapper feature selection. The feature dimension,
classification accuracy, execution time of the method are compared with the classification effect of SVM
in the original feature set as shown in Figure 6.

Figure 6. Comparison of classification performance before and after Filter-Wrapper feature selection.
(a) Accuracy (%); (b) Elapsed time (s); (c) Dimensions.

It can be seen from the diagram that the classification effect of SVM is improved obviously after
the process of feature selection based on the filter-wrapper model. The accuracy of traffic classification:
WWW is 98.24%, mail is 99.72%, FTP-control is 99%, FTP-pasv is 99.56%, P2P is 94.52%, database is
99.8%, FTP data is 99.92%, multimedia is 97.04%, and services is 99.64%. The execution times of each
type of traffic are: WWW 0.85 s, mail 0.82 s, FTP-control 1.18 s, FTP-pasv 0.73 s, attack, 1.03 s, P2P 1.6 s,
database 1.01 s, FTP-data, 0.51 s, multimedia 1.03 s, services 0.7 s. The average classification accuracy is
8.34% higher than that before feature selection, the average feature dimension is 18.15% lower, and the
execution time is 92.5% shorter than that before feature selection.
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4.3. Performance Analysis of Parameter Optimization for Improved Grid Algorithm

4.3.1. Initialization Parameter Setting

After adopting the filter-wrapper feature selection, the average two-classification performance is
better, but the classification accuracy of P2P has not reached 95%. In addition, the multi-classification
performance is not ideal. The optimal feature subset dimension is 219, and the classification accuracy
is 82.6%. Therefore, the improved grid search algorithm (IGS) is used to optimize the parameters and
the SVM classification model is further optimized. The initial search range of the penalty parameter
C of IGS is

[
2−10, 210

]
, the initial search range of the parameter γ of RBF kernel function is

[
2−10, 210

]
,

and the search step is increased to 1.5 times the default step size. The k–CV method is used to test
the training set (k = 3), to optimize the parameters combination (C,γ). The k value k–CV affects the
classification accuracy and computational complexity. k = 3 and k = 10 are compared experimentally,
as shown in Figure 7. The execution time k = 3 is significantly shorter than that of k = 10. The average
execution time of two-classification is shortened 95.25% and the execution time of multi-classification
is shortened 94.22%. Between the two test sets (k = 3, k = 10), the accuracy of two-classification is
less than 0.2% and the accuracy of multi-classification is less than 0.7%. As a result, the experiment
adopts k = 3(3-CV) to optimize the parameter combination (C,γ), which can reduce the computational
complexity while avoiding overfitting and underfitting.

Figure 7. Comparison of performance between two-Classification and multi-Classification under
different k−CV(k = 3, k = 10). (a) Elapsed Time (S); (b) Accuracy (%).

4.3.2. Initial Grid Parameter Optimization

After the initial parameter optimization, the combination C of the penalty parameter of SVM,
the parameter γ of RBF kernel function and the accuracy of the classification of the test set are shown in
Table 4. From the table, we can see that the average accuracy of SVM two-classification is 99.648% after
the initial parameter optimization of IGS, and the accuracy of multi-classification is 92.04%, which
is 9.44% higher than the traditional SVM classification. However, the value of penalty parameters C
for initial optimization of individual traffic is too large, such as P2P and Multimedia traffic’s C value
is more than 700. The larger the value C is, the greater the penalty for empirical error is, the greater
the complexity of the learning machine is and the smaller the value of empirical risk is, which will
result in over-fitting and it can lead to the deterioration of the generalization ability of SVM. For this
situation, IGS performs second-optimization.
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Table 4. Optimal (C,γ) after initial search of IGS and classification performance of the test set.

Traffic Class The Number of Optimal
Feature Combinations C γ Accuracy (%)

WWW 162 11.3137 0.0625 99.96
Mail 208 0.5 0.0220971 99.88

Ftp-control 219 32 0.00276214 99.84
Ftp-pasv 183 11.3137 0.0220971 99.88
Attack 208 90.5097 0.0220971 99.20

P2P 204 724.077 0.0625 99.12
Database 224 4 0.0220971 99.96
Ftp-data 215 1.41421 0.0220971 100.00

Multimedia 201 724.077 0.0078125 98.84
Services 207 4 0.5 99.80

Multi-class 219 11.3137 0.0220971 92.04

4.3.3. Second-Grid Parameter Optimization

The IGS algorithm judges the penalty parameter C in the process of second-grid parameter
optimization. When C does not exceed the threshold δ(δ = 100), according to the contour map of the
initial parameter optimization, the searching range is reduced according to the highest accuracy area.
In the second-search process, the step size is reduced to 0.5 times of the default step size, so that the IGS
carries out the second fine search in the ideal region. When C exceeds the threshold value δ(δ = 100),
using the contour map optimized by reference to the initial parameters, the method of opposite
direction grid search from the highest accuracy region to the lower accuracy region is used. Until
C reaches the threshold value which satisfies the condition (C ≤ 100), thus it avoids the over-fitting
and enhances the SVM classification generalization ability. The optimal parameter combination (C,γ)
values are shown in Table 5. You can see that the penalty parameters C in the SVM classification model
and the parameters γ of the RBF kernel function are within the threshold constraint range and they are
the optimal parameters after the second-parameter optimization of the IGS.

Table 5. The best parameters combination of (C,γ) after the second-parameter optimization of the IGS.

Traffic Class C γ Traffic Class C γ

WWW 1.41421 0.176777 Database 2 0.0110485
Mail 1 0.125 Ftp-data 1 0.03125

Ftp-control 1.41421 0.0220971 Multimedia 22.6274 0.015625
Ftp-pasv 5.65685 0.0625 Services 4 0.0883883
Attack 8 0.03125 Multi-class 5.65685 0.03125

P2P 32 0.015625

4.4. Performance Comparison

4.4.1. Comparison and Analysis of Each Stage of the IGS Algorithm

The improved IGS is based on the proposed feature selection method to further optimize the
working parameters of SVM, thus to improve the classification performance and generalization ability
of SVM. Therefore, we compare the feature dimension selection and parameter optimization at each
stage. In Figure 8, we compare the two-classification and multi-classification performance of the SVM
model in the original, dimension selection and parameter optimization stages.
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Figure 8. Performance comparison of SVM two-Classification and multi-Classification before and after
IGS. (a) Accuracy (%); (b) Elapsed time (S).

Through comparison and analysis, the average accuracy of the two-classification of the
IGS_filter-wrapper_SVM model reached 99.34%, which is 9.28% higher than the original SVM.
The average accuracy of the multi-classification of the IGS_filter-wrapper_SVM model reached 91.96%,
which is 14.2% higher than the original SVM, and the average feature dimension is 18.15% lower.
Based on the proposed feature selection model, the classification performance of SVM is improved
greatly after the parameters optimization of IGS. Although the IGS_filter-wrapper_SVM model takes a
certain amount of learning time before classification, the first average learning time is 8.97 min, but
once the feature and classifier parameters are selected, the classification model can achieve accurate
and fast classification later. The model two-classification is 93.19% shorter on average execution
times, and its multi-classification is 88.87% shorter on average execution times. In addition, due to
the second-optimization of SVM working parameters by IGS, the threshold of parameter range is
constrained, which avoids overfitting and improves the generalization ability of SVM.

4.4.2. Comparison and Analysis of IGS and Other Algorithms

The improved SVM classification model, IGS_filter-wrapper_SVM, is compared with other typical
supervised classification algorithms, naive Bayes, RBFNetwork, KNN, and the original SVM. The results
are shown in Figure 9.

The average classification accuracy of IGS_filter-wrapper_SVM was 99.34%, 11.06% higher than
that of naive Bayes, 16% higher than RBFNetwork, 12.4% higher than KNN, 9.28% higher than the
original SVM. The accuracy of multi-classification reached 91.96%, 8.24% higher than naive Bayes,
5.16% higher than RBFNetwork, 3.06% higher than KNN, 14.22% higher than original SVM.

4.4.3. Comparison and Analysis of IGS on CAIDA Datasets

In order to verify the universality of IGS_filter-wrapper_SVM, we also inspect the classification
performance of it on the CAIDA dataset [32]. The CAIDA was collected from a different period
in 3 days. The dataset includes traffic logs, topology logs, traffic summary statistics, security logs,
worm traffic, and other applications, which is shown in Table 6.
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Figure 9. Comparison of five algorithms on data sets with different sample sizes. (a) Accuracy (%)
(sample size = 5000); (b) Accuracy (%) (sample size = 24897).

Table 6. CAIDA Dataset.

Traffic Class Sample Number Traffic Class Sample Number

Http 33667 NETBIOS 58
DNS 22814 Mail_POP 64
ICMP 1318 Windows media 46
SSL 2671 Gnutella 108

MSN 190 Oscar 126
Bittorrent 61 DirectDownloadLink 45

NTP 81

In order to reduce the imbalance of the data, we deleted the traffic flows in which the samples are
very few, and we extracted samples randomly from every subset to build the unbiased new training
dataset. 50% of the sample data are used as the training set, and the others are used as the test set.
The classification result is shown in Figure 10.
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Figure 10. Comparison of different algorithms on the CAIDA dataset.

As is shown in Figure 10, the average classification accuracy of the IGS_filter-wrapper_SVM
is 97.2%, 10.8% higher than KNN, 12.1% higher than RBF network, 6.6% higher than naive Bayes,
4% higher than ensemble voting classifier, 5.7% higher than DNN, and 10.6% higher than traditional
SVM. The result showed that the IGS_filter-wrapper_SVM is appropriate for the CAIDA dataset.
In addition, with the filter-wrapper feature selection and the IGS parameter optimization algorithms,
the training time consumption reduced from 3.12S to 0.31 s, which reduced the model computation
complexity obviously.

4.4.4. Comparison of IGS and Other Related Approaches

In order to verify the overall performance of the IGS_filter-wrapper_SVM model, we compare
the model with other related approaches. Three properties are compared in Table 7, they are feature
selection, parameter optimization, and accuracy performance. From the analysis in Table 7, the accuracy
of the IGS_filter-wrapper_SVM model is the highest. References [15,16] select features depending
on experience or manual tuning, which reduces the performance of classification. In [17], the deep
learning model learns features automatically from all data, and it does not consider excluding irrelevant
features, in which the noise features may increase the risk of overfitting. The filter-wrapper feature
selection method selects the key feature combinations accurately and avoids the false deletion of
combined features, which achieves the effect of reducing the dimension and shortening the training
time. The parameter optimization is used in reference [21,33], and it is the original grid search method
which brings a higher risk of overfitting. The back-propagation algorithm in [17] is a kind of local
search algorithm, which may fall into a local optimum solution. The IGS method proposed in this
paper can convergence to a globally optimal solution, and doesn’t need to search widely. From this
perspective, the IGS_filter-wrapper_SVM model is more effective.
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Table 7. Related approaches.

Algorithm Feature Selection Parameters Optimization Classification Accuracy

IGS_filter-wrapper_SVM Filter-Wrapper IGS more than 99.34%
Ensemble learning [15] Identification Engineer no more than 99%
Ensemble learning [16] Burst Threshold no more than 80%
Deep learning [17] No Back-Propagation more than 80%
SVM [21] Sequential forward Grid-Search 97.17%
SVM [33] No Grid-Search more than 95%

5. Conclusions

In the process of network traffic classification, the filter-wrapper hybrid feature selection model
is proposed to solve the problem that high dimensional data leads to the increase of time and space
complexity of SVM. The model can solve the problem that interferences between features lead to
the degradation of the classification performance. In addition, an improved grid search parameter
optimization algorithm(IGS), is proposed to find a set of optimal parameter combinations for model
training, which can dynamically adjust the second search region, reduce the density of second grid
generation and improve the search efficiency of the algorithm. At the same time, the overfitting in the
optimization process is prevented, and the generalization ability of SVM is improved. The experimental
results of real data sets show that the combined optimization network traffic classification model
proposed in this paper has an obvious dimensionality reduction effect, and the optimal parameter
combination can be found in the parameter space at a finite computational cost. The classification and
generalization ability of SVM is increased effectively and the classification effect is very close to the
original sample data set under the small unbiased training sample. It has practical significance for
real-time classification of network traffic. It provides the basis for real-time dynamic monitoring of
network traffic, user behavior mining, and identification of network attacks.

In addition, the proposed method of this paper can realize the differential management of the
corresponding network traffic, and provide a solid foundation and basis for the subsequent network
protocol design, network operation management, network traffic scheduling. It can also be extended in
network traffic abnormal pattern recognition, mobile encryption traffic pattern recognition and so on.
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