
symmetryS S

Article

Consequences of f (T ) Cosmology in Thermal
Leptogenesis and Gravitino Late Abundance

Antonio Capolupo 1, Salvatore Marco Giampaolo 2, Gaetano Lambiase 1,* and
Aniello Quaranta 1

1 Dipartimento di Fisica “E.R. Caianiello” Universitá di Salerno, and INFN–Gruppo Collegato di Salerno,
SA 84084 Fisciano, Italy; capolupo@sa.infn.it (A.C.); aquaranta@unisa.it (A.Q.)
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Abstract: Thermal Leptogenesis and the gravitino problem are reviewed in the framework of
non-standard cosmologies. We consider in particular the f (T ) cosmology, where T is the torsion
field. We constrain the parameters space of these cosmological models consistently with thermal
Leptogenesis scenario (with degenerate mass spectrum of light neutrinos), and we show that they
allow to solve the gravitino problem as well. Owing to the similar characteristics to f (T ) cosmology,
we shortly discuss also the case of the shear dominated Universe.
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1. Introduction

Modified theories of gravity have been proposed in the last years as a possible solution of the
shortcomings related to the Cosmological Standard Model, based on General Relativity (GR). This
is the case, for example, of higher order curvature invariants than the simple Ricci scalar R that
allow to get inflationary behaviors, removing the primordial singularity, and to explain the flatness
and horizon problems [1] (see also [2–18]). This approach and, of course, all those related to it, are
fundamentally motivated by the fact that, at high curvature regimes, further curvature invariants have
to be considered for constructing self-consistent effective actions in curved spacetime [19–21]. In this
respect, modified gravity could provide the unification of the early-time (inflation) and the later-time
acceleration of the Universe [22,23], providing at the same time, an unified description of Dark Energy
(DE) and Dark Matter (DM).

One of the consequences to deal with the non standard cosmology is that the thermal history
of particles gets modified. In fact, the expansion rate of the Universe can be typically written in the
form [24],

H(T) = A(T)HGR(T) , (1)

where HGR is the expansion rate of the Universe in GR, and A(T) accounts for deviations from GR.
The latter is defined such that the successful predictions of the abundance of primordial light elements
is preserved, i.e., A(T) 6= 1 at early time, or equivalently, at temperatures T > TBBN , where TBBN is the
big bang nucleosynthesis (BBN) temperature, and A(T)→ 1 before or when the BBN begin. Therefore,
it is common to refer to the so-called pre-BBN epoch, since this era is not directly constrained by
cosmological observations. Typically this factor is parameterized as [24]

A(T) = η∗

(
T
T∗

)ν

, (2)
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where T∗ is a parameter with dimensions of the temperature (interpreted as the transition temperature
from the modified cosmology to the standard cosmology), and {η∗, ν} are free parameters. All these
parameters do depend on the cosmological model under consideration. Investigations along these
lines have been performed in different cosmological scenarios [24,25]: (i). ν = 2 in Randall-Sundrum
type II brane cosmology [26]; (ii). ν = 1 in kination models [27]; (iii). ν = 0 in cosmologies with an
overall boost of the Hubble expansion rate [24,28–34]; (iv). Gauss–Bonnet scenario ν = −2/3 [35];
(v). ν = −0.8 in scalar-tensor cosmology [24,36]; (vi). ν = 2/n− 2 in f (x) cosmology, with f (x) =
x + αxn and x = R, T , where R [2,4] and T [37–39] stand for the scalar curvature and the scalar
torsion, respectively.

The aim of this paper is twice. First we study the origin of the matter-antimatter asymmetry
in the Universe in the case in which the evolution of the Universe is described by non-standard
cosmologies. The matter-antimatter asymmetry represents one of the open issue of the modern
cosmology and particle physics. The successful predictions of BBN combined with the observations
of the CMB anisotropies show that the parameter that characterizes such a asymmetry is η =
nB − nB̄

s
< (9.2± 0.5)× 10−11, where nB (nB̄) is the baryon (antibaryon) number and s =

2π2g∗T3

45
the entropy density (g∗ = 106.7 counts the total degrees of freedom for the relativistic particles).
Among the models proposed in literature for explaining the origin of baryon/antibaryon asymmetry,
the thermal Leptogenesis is certainly one of the favorite candidates. The asymmetry is generated in
the lepton sector, and through non–perturbative electroweak processes involving sphalerons physics,
is totally or partially converted to an asymmetry in the baryon sector. Leptogenesis is the simplest
extension of the Standard Model (SM) of particle physics that includes right handed neutrinos NR. They
implement the see-saw mechanism, providing from a side a possible explanation of light neutrinos
mass of the SM, from the other side to generate the lepton asymmetry from the decays of right handed
neutrinos. Moreover, Leptogenesis is very attractive since allows a possible lepton number violation in
the neutrino sector [40,41] (for a recent review see Ref. [42–44]), as well as the Sakharov conditions for
explaining the matter-antimatter asymmetry are easily realized.

In thermal Leptogenesis, the out-of-equilibrium condition occurs when ΓN1 < HGR at T =

M1, where ΓNi =
(λ†λ)M1

8π
is the decay rate of heavy Majorana right-handed neutrinos, HGR =√

8π3g∗
45

T2

MPl
, M1 is the heavy right-handed neutrino mass, and finally λik are the complex Yukawa

coupling constants (such a study for the brane cosmology has been performed in [45]). In terms of the
scaled quantities

m̃1 ≡ 8πv2

M2
1

ΓN1 =
(λ†λ)11v2

M1
, (3)

m∗ ≡
8πv2

M2
1

HGR(T = M1) ' 1.1× 10−3eV , (4)

where (λ†λ)11 = ∑j(λ
†
1jλ1j), the out-of equilibrium condition reads

m̃1 < m∗ ' 10−3eV . (5)

This condition provides an upper bound on the lightest neutrino mass m1 owing to the inequality
m1 6 m̃1 [46–49]. Such a bound normally implies that thermal Leptogenesis cannot generate
sufficient baryon asymmetry for degenerate masses of light neutrinos, as immediately follows from

the expression of the CP parameter ε ' 10−6 sin δ
m3

5× 10−2eV
M1

1010 GeV entering the lepton asymmetry

η ∼ ε, see Appendix A. As we will show, in the case in which the cosmological background evolves
according to (1), hence for modified cosmologies, the bound (5) turns out to be m̃1 < m∗A(T). As a
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consequence, the parameters characterizing non–standard cosmologies can be constrained by thermal
Leptogenesis in the case of degenerate light neutrino mass spectrum.

Moreover, we also explore the implications of modified cosmologies in relation to the gravitino
problem (see for example [50]). Gravitino couples to ordinary matter only through the gravitational

interaction, with a (quite) long lifetime τ3/2 ∼
M2

Pl
m3

3/2
' 105

(
1TeV
m3/2

)3
sec, where m3/2 is the mass of the

particle ∼ 102 GeV. The decay of these particles with such a long lifetime is problematic in cosmology
since their decay products would destroy light elements, destroying the successful predictions of
BBN. This problem can be avoided by putting an upper bound on the reheating temperature, that
for the standard cosmological model is given by TR . (106 − 107)GeV for m3/2 ∼ O(102 GeV). It
is worth to mention another mechanism to generate gravitinos by means of primordial black holes
(PBHs) evaporation [51]. As shown in [51], as source of gravitions is also provided by the evaporation
of light PBHs, with initial Mi . 109 gr. The subsequent decay of evaporated gravitinos into cascades
of non-equilibrium particles, as occurs in minimal supergravity, leads to the formation of elements
whose abundance is constrained by observations, and one has to require that their density does not
overclose the Universe. A consequence of this mechanism is that cosmological models with substantial
inhomogeneities on small scales are excluded.

This bound opens a serious question for the inflationary models (and for some models of
Leptogenesis) since these models predict a larger reheating temperature [50]. Such a difficulty can be
avoided, as we will see, in the framework of non-standard cosmologies.

The paper is organized as follows. In next Section we discuss the thermal Leptogenesis for
degenerate mass spectrum of the light neutrinos in the context of non-standard cosmologies. The
gravitino problem is also discussed. Here we provide a general discussion considering non-standatd
cosmologies characterized by a Friedamn equation of the form H2 ∼ ρn. In Section 3 we analyzed
specific examples of non-standard cosmologies, focusing in particular on Teleparallel Equivalent of
General Relativity and shear dominated Universe. Conclusions are discussed in Section 4.

2. Thermal Leptogenesis in Modified Cosmologies

We consider the case in which the lightest heavy neutrino N1 decays during the phase of the
Universe expansion described by the modified cosmology. The expansion rate of the Universe is
therefore given by (1) with A(T) defined in (2). In such a case, the out-of-equilibrium condition reads

Γ(T = M1) < H(T = M1) = HGR(M1) A(M1) , (6)

or equivalently, in terms of the scaled masses, Equation (5) assumes the form

m̃1 < m∗A(T) ' 10−3 A(T)eV . (7)

The upper bound turns out to be hence modulated by the factor A(T). It then follows that for
low temperatures, i.e., T∗ < T . M1, the non-standard cosmologies are consistent with thermal
Leptogenesis with a degenerate light neutrino mass spectrum. In fact one gets

K1 ≡
ΓN1

H(T=M1)
= 1

A(M1)

ΓN1
HGR(T=M1)

= 1
A(M1)

m̃1
m∗ =

1
A(M1)

m̃1
10−3eV < 1 for A(M1)� 1 , (8)

so that, the effects of modified gravity is to avoid the suppression of Leptogenesis even in the case of
degenerate light neutrino masses, determining a sufficient baryon asymmetry.

The above discussion relies on the assumption that the neutrinos N1 are in thermal equilibrium at
temperature T greater than the heavy Majorana neutrino mass M1, T > M1 (this assumption underlies
the derivation of (7)). We shall now verify that such an assumption can be realized in modified
cosmologies. Owing to the fact that N1 are singlets under the Standard Model gauge group, the only
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interaction that allows to N1 to be in thermal equilibrium is the Yukawa coupling (see Equation (A1) in
Appendix A). The thermal average (pair) annihilation rate is [45]

Γann(T) = nN1〈σv〉 ' 3ξ(3)T3

2π2
Nannλ4

aKin T2 , (9)

where Nann is the number of annihilation channels, λ denotes the dominant Yukawa’s coupling,
aKin ∼ 102 is the kinematical phase factor, and Nannλ4 ' O(10). The freeze-out temperature Tf ,
determined as usual by Γann(Tf ) = H(Tf ) = HGR(Tf )A(Tf ), is given by

Tf =

[
3ξ(3)
2π2η∗

Nannλ4

aKin

√
45

8π3g∗

] 1
ν+1 ( T∗

MPl

) ν
ν+1

MPl (10)

'
(

7.5× 10−3

η∗

MPl
T∗

) 1
ν+1 T∗

GeV
GeV .

In order that thermal Leptogenesis can be realized in modified cosmologies, one has to require that the
mass of Majorana neutrinos is such that

T∗ < M1 . Tf . (11)

In what follows we shall assume M1 ' (108 − 109)GeV (see Appendix A).

2.1. Kinetic Equations

Here we shortly discuss the kinetics equations in the framework of non standard cosmology. The
kinetic equation for the leptogenesis are given by (see for example [52])

dN1

dz
= (D + S)(N1 − Neq

1 ) ,
dNB−L

dz
= −εD(N1 − Neq

1 )−WNB−L , (12)

with z = M1/T, (D, S, W) = (ΓD, ΓS, ΓW)/(Hz), where ΓD,S,W are the scattering rates defined as

ΓD =
M1

8π
(λ†λ)11

K1(z)
K2(z)

(K1,2(z) are the Bessel functions), ΓS = 2ΓN1→φ,t + 4ΓN1→φ,s (ΓN1→φ,{t,s} are

the N1 scattering rates in which the Higgs φ processes in t- and s-channels are involved), and ΓW
is the washout-rate. The quantities Ω = D, S, W are proportional to λ†λ, so that the reduced rates

entering (12) are such that [52] Ω − ∆W ∝
MPlm̃D

1
v2 , where ∆W ∝

MPlm̄2M1

v4 , with m̄2 ' 3m2
i for

quasi degenerate neutrinos, and m̃D
1 =

(m†
DmD)11

M1
, with mD the Dirac neutrino mass. The latter

equation shows that the dependence of the generated lepton asymmetry on M1 is relaxed as long as
∆W is negligible. The Boltzamann equations of the number of heavy Majorana neutrinos N1 and of
B− L number NB−L, Equation (12), are dependent on A(T). However, in this paper we are mainly
interested to fulfill the conditions allowing the out-of-equilibrium, and the consequent constraints on
the parameter spaces of the non-standard cosmology, therefore the numerical analysis of the N1 and
NB−L quantities are beyond the scope of the present paper, and will be faced elsewhere (in the regime
to which we are interested in this paper, i.e., A(T) ∼ T (ν = 1) and A(T ' M1) ∼ O(10− 102), see

next Section, one gets
H(z)

H(z = 1)
=

1
z

HGR(z)
HGR(z = 1)

,
ΓD,S,W

H(z)
=

z
A(M1)

ΓD,S,W

HGR(z)
, while the abundance of

N1 and NB−L in non-standard cosmologies may remain unaffected, with respect results obtained in
the standard cosmological model [52], for appropriate initial conditions).
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2.2. The Gravitino Problem

The gravitino abundance is described, in the standard cosmological model, by the Boltzmann
equation (here we follow Ref. [45], where the gravitino problem has been discussed in the framework
of Brane Cosmology)

dY3/2

dT
= −ΘGR , ΘGR ≡

s〈σv〉Y2
rad

HGRT
, (13)

where Y3/2 = n3/2/s the gravitino abundance, Yrad = nrad/s the radiation abundance, and s the

entropy density, it follows Y3/2 ' 10−11 TR

1010GeV
, where TR is the reheating temperature. The adiabatic

evolution of the Universe and the conservation of the entropy is assumed. Note that the quantity
ΘGR is independent on T since 〈σv〉 ∼ M−2

Pl , HGR ∼ T2/MPl , and s ∼ T3. To solve the gravitino
problem one has to impose that the reheating temperature is constrained to TR . (106 − 107) GeV (for
gravitino masses of the order of 100 GeV) [50]. This bound is problematic for thermal Leptogenesis in
supersymmetric models after inflation since in these frameworks the reheating temperature is many
order of magnitudes greater than (106 − 107) GeV [50,53–55].

However, if the Universe evolution is described by a non standard cosmology, then the
expansion rate is replaced by (1). This implies that the factor ΘGR in (13) is replaced by
ΘGR → Θ = ΘGR/A(T) [45,56,57]. In such a circumstance, the reheating temperature TR entering
the above expression for Y3/2 is replaced by the transition temperature T∗. In fact, referring to
cosmological models studied in the next Sections, ν = 1 and ν > 1, the integration of (13) from T∗ to
TR (assuming TR � T∗ and using (2)), gives

Y3/2 ∼


T∗
η log TR

T∗ ν = 1

T2ν−1
∗

η(ν−1) ν > 1

Therefore, in the case in which the transition temperature is low enough, i.e., T∗ < (106–107) GeV, the
gravitino problem is avoided even if the reheating temperature is much higher.

Let us check that the condition TR � T∗ occurs also in non-standard cosmology. By comparing
the expansion rate of the Universe (1) with the decay rate of the inflaton ΓI one obtains the reheating
temperature

TR = T∗

(
MPlΓI

T2∗

) 1
ν+2

. (14)

On the other hand, in the standard cosmology, the relation HGR(TGR
R ) = ΓI gives TGR

R ' (MPlΓI)
1/2.

Combining this relation with the reheating temperature (14), one infers

TR = T∗

(
TGR

R
T∗

) 2
ν+2

. (15)

Thus TR � T∗ provided TGR
R � T∗, as in the standard cosmology (such a relation, however, is such

that the values ν� 1 are excluded).

3. Examples of Non Standard Cosmologies

As pointed out, results of previous Section are general, and apply to cosmological models in
which the expansion rate can be cast in the form of Equations (1) and (2). In this Section we shall
consider some specific models of modified cosmologies. We first focus on f (T ) model, deriving a
bound on the parameter of the model, then we shortly discuss the shear dominated Universe (ν = 1).
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3.1. f (T ) Cosmology

An interesting cosmological model recently proposed in literature is the Teleparallel Equivalent
of General Relativity (TEGR) [37]. This theory of gravity is based on the Weitzenböck connection
(instead of the usual Levi-Civita connection), and the gravitational field is described by the torsion
tensor (instead of the curvature tensor)

T λ
µν = Γ̂λ

νµ − Γ̂λ
µν = eλ

i (∂µei
ν − ∂νei

µ) , (16)

where ei
µ(x) are the vierbein fields defined as gµν(x) = ηijei

µ(x)ej
ν(x). The action is given by

SI =
1

16πG

∫
d4xe [T + f (T )], (17)

where T = Sρ
µνT ρ

µν is the torsion scalar, e = det(ei
µ) =

√−g, f (T ) is a generic function of the
torsion, and

Sρ
µν =

1
2

[
1
4
(T µν

ρ − T νµ
ρ − Tρ

µν) + δ
µ
ρT θν

θ − δν
ρT θµ

θ

]
. (18)

TEGR represents an alternative to inflation models, as well as to effective DE models, in which the
Universe acceleration is driven by the torsion terms [37,58] (see the review [59,60]). For a homogeneous
and isotropic Universe (FRW Universe) one finds that eA

µ = diag(1, a, a, a) and T = −6H2. The
cosmological field equations are [60]

12H2[1 + fT ] + [T + f ] = 16πGρ, (19)

48H2 fT T Ḣ − (1 + fT )[12H2 + 4Ḣ]− (T − f ) = 16πGp ,

where fT = d f /dT . As an explicit example, we consider the power-law f (T) model f (T ) =

βT |T |nT [61,62]. By rewriting (19) in the form H2
GR + H2

T =
8π

3M2
Pl

ρ, where H2
T ≡

f
6
− T fT

3
=

6n−1βT (2nT + 1)H2n, and assuming HT � HGR, one gets HT = A(T)HGR, where A(T) is of the form
(2) with

η = 1 , ν =
2

nT
− 2 , (20)

T∗ ≡
(

24π3g∗
45

) 1
4

(2nT + 1)
1

4(1−nT )

(
βT

GeV2(1−nT )

) 1
4(1−nT )

(
MPl
GeV

) 1
2

GeV .

From (20) it follows

A(T = M1) =

(
1

(2nT + 1)
GeV2(1−nT )

βT

) 1
2nT
[(

45
24π3g∗

) 1
2
(

M1

GeV

)2 GeV
MPl

] 1
nT
−1

. (21)

According to recent results in literature, one has that ν > 1, i.e., nT 6 2/3, in order that the gravitino
problem can be solved in non-standard cosmologies, and that the BBN temperature is TBBN ' (10− 50)
GeV, so that the enhancement to the annihilation cross section is able to reproduce the observed Dark
Matter density [63]. We discuss the case nT = 2/3, i.e., ν = 1, and nT < 2/3, i.e., ν > 1. In Table 1
are reported the values of {nT , βT , M1} such that the relation T∗ < M1 . Tf , see Equation (11), is
fulfilled. We have taken M1 = (108, 109) GeV (values M1 & 1010 GeV are difficult to accommodate in
this scenario). We see, for example, that the parameter nT may vary in the range 0.65 . nT . 2/3 as
M1 = 109 GeV, for a temperature T∗ & O(10 MeV). Notice that a large value of A(T) also occurs in
scalar tensor theories [24]. Although very tiny, there is a range of parameters {nT , βT } for which the
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constraints from thermal leptogenesis (for massive degenerate neutrinos) are consistent with the ones
needed to solve the gravitino problem (see Section 2.1).

Table 1. Values of the parameters {nT , βT , M1} such that T∗ < M1 . Tf , according to Equation (11).

Here we take M1 = (108, 109)GeV and β̃T ≡ βT /GeV2(1−nT ).

{nT , β̃T , M1(GeV)} T∗(GeV) Tf (GeV) A(T = M1)

{2/3, 10−16, 109} 0.038 1.39× 109 2.5× 1010

{0.67, 10−16, 109} 0.029 1.87× 109 2.3× 1010

{0.66, 10−17, 109} 0.012 1.80× 109 1.7× 1011

{0.65, 10−18, 109} 0.005 1.68× 109 1.4× 1012

{2/3, 10−16, 108} 0.038 1.39× 109 2.5× 109

{0.62, 10−18, 108} 0.050 1.4× 108 2.5× 1011

{0.615, 10−18, 108} 0.070 1.01× 108 2.8× 1011

3.2. Shear Dominated Universe

The shear dominated Universe, or Bianchi’s type I Universe, is a Universe homogeneous but
anisotropic, characterized by three time dependent scale factors ai(t), i = 1, 2, 3, one for each spatial
directions. For a1 = a2 = a3 one recovers the standard FRW cosmology. The Friedman equation for
this Universe reads [64–66].

H2 =
8π

3M2
Pl
(ρ + ρs) , (22)

where ρ = π4g∗T4

30 , and ρs is the shear energy density

ρs =
MPl2

48π

[
(H1 − H2)

2 + (H1 − H3)
2 + (H2 − H3)

2
]

, (23)

where Hi =
ȧi
ai

, i = 1, 2, 3, are the expansion rate of the three scale factors. Expressing results in terms
of the temperature T, one finds that the expansion rate of the Universe can be written in the form

H(T) = HGR

√
1 +

g∗
ge∗

T2

T2
e

, (24)

where Te is the temperature such that ρ = ρs (it is related to the transition temperature T∗ as we
will see in a moment), and ge

∗ is the number of degree of freedom evaluated at Te. The Universe
is therefore shear dominated when T � Te (before the BBN ), while for T � Te, the Universe is
radiation dominated and the background evolves according to the standard cosmological model. BBN
constraints require Te & 2.5 MeV. During the shear dominated phase T � Te the factor A(T) reads

A(T) =

√
1 +

g∗
ge∗

(
T
Te

)2
' g∗

ge∗

T
Te

, (25)

From (25) it follows η∗ = 1, ν = 1 and T∗ =
ge
∗

g∗ Te. Requiring that A(T = M1) > 1 and ge
∗ = g∗, one

gets T∗ . 10−2M1, and Tf . 2.5× 107√M1GeV. Taking, for example, A(M1) ' 102 and the lower
bound on Majorana heavy neutrino M1 = 109 GeV, it follows Tf ' 0.8× 1012 GeV and T∗ ' 107 GeV
(according to (11)). The latter value for the transition temperature T∗ ∼ 107 GeV allows in turn to solve
the gravitino problem, as discussed in Section 2.1.

4. Conclusions

The cosmological evolution of the Universe is, at the moment, observationally tested at
temperature T ∼ 1 MeV, and for T > 1 MeV it is not excluded that new physics (non-standard
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cosmology, Dark Matter, Dark Energy, and so on) might be occurred opening a serious of questions
which are still under a deep scrutiny.

In this paper we focused on some consequences of non-standard cosmologies in the framework
of thermal Leptogenesis and gravitino late abundance. Since the out-of-equilibrium condition gets
modified whether or not the cosmic evolution of the Universe is described by non-standard cosmology,
then the consistence with thermal Leptogenesis, in the case of degenerate mass spectrum of light
neutrinos, constrains the parameters space of these cosmological models. We have studied also the
possibility that these constraints can solve the gravitino problem. As specific examples, we have
considered the f (T ) cosmology and the shear dominated Universe.

Results derived in this paper show once more the intriguing interplay between particle physics
and the non standard cosmological models needed for a consistent description of the evolution of the
very early Universe.
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Appendix A. Thermal Leptogenesis Scenario

In this Appendix, we shortly recall the main features of thermal Leptogenesis. The Lagrangian
density is [67,68]

L = h∗β(L̄β φc∗)Eβ − λ∗αk(L̄α φ∗)Nk −
1
2

N̄j MjNc
j + h.c. , (A1)

where L = (e ν)T
L is the Standard Model left-handed doublet, E = eR is the right-handed singlet,

φ is the scalar field, Nj are the singlet fermions (Majorana neutrinos), α, β are the flavor indices of
the Standard Model (α, β = e, µ, τ), M is the mass matrix, h are coupling constants, and finally λ are
Yakawa matrices. Equation (A1) is written in a basis such that h and M are real and diagonal, and λ is
complex. Integrating out the heavy fermions Ni, one infers the effective light neutrino masses (see-saw
mechanism): mν αβ = λαk M−1

k λβk.
Consider, for simplicity, the lightest Majorana singlet N1 (with M1 � M2,3). The allowed channel

decays are N1 → Lα + φ and N1 → L̄α + φ†. The net lepton asymmetry is given by [67,68]

η ' ε

g∗
ηe f f . (A2)

Here ηe f f is the efficiency factor. It may assume values in the range 0 < ηe f f < 1. In fact, define

the freeze-out temperature TF as the temperature for which Γ(φ + L → N1)
∣∣∣
TF

< H(TF), where

Γ(φ + L → N1) ' 1
2 ΓN1 e−M1/T , with ΓN1 = (λ†λ)11 M1

8π and, in the standard cosmological model,

H =

(
8π

3M2
P

ρ

)1/2
= 1.66g1/2

∗
T2

MP
. Below TF the density of the fermion N1 is Boltzmann suppressed

(N1 ∼ e−M1/T), so that the decay of N1 at T < TF contributes to the lepton asymmetry, with
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ηe f f '
nN1 (TF)

nN1 (T�M1)
' e−M1/TF < 1. The efficiency factor depends on how much the N1 decays

are out-of-equilibrium and ε is the CP parameter related to the asymmetry in the N1 decays

ε ≡ Γ(N1 → φ + L)− Γ(N1 → φ† + L̄)
Γ(N1 → φ + L) + Γ(N1 → φ† + L̄)

(A3)

' 10−6 sin δ
m3

5× 10−2eV
M1

1010GeV
, (A4)

where δ is the phase coming from the complex Yukawa couplings, m3 the heaviest light neutrino mass
normalized to the atmospheric neutrino oscillation data

√
∆m⊕ ' 0.05 eV [69], and M1 � Mj, j = 2, 3.

This quantity is generated from the interference of the tree-level and one-loop amplitudes, with complex
Yakawa couplings. From Equation (A2) it follows that the observed baryon asymmetry (η ∼ 10−10)
provides a lower bound on the mass of the Majorana neutrino N1 given by M1 & (108 − 109)GeV [47].
In terms of the scaled quantities (3) and (4), the condition of out-of-equilibrium decay (Γ(T) < H(T))
can be cast in the form m̃1 < m∗. This equation provides an upper bound on the lightest neutrino mass
mν being mν . m̃1 [46,47].
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