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Abstract: This paper studies a simple skewness measure to detect symmetry and asymmetry in
samples. The statistic can be obviously applied with only three short central tendencies; i.e., the first
and ninth deciles, and the median. The strength of the statistic to find symmetry and asymmetry is
studied by employing numerous Monte Carlo simulations and is compared with some alternative
measures by applying some simulation studies. The results show that the performance of this statistic
is generally good in the simulation.
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1. Introduction

In scientific studies, the researchers can summarize a given dataset using descriptive statistics.
The descriptive statistics contain three known tendencies: central tendencies, dispersion tendencies
and shape tendencies [1]. The central and dispersion tendencies, such as mean, median, standard
deviation and variance deal with the convenience of the dataset [1–5]. The shape tendencies, such as
skewness and kurtosis, are related to the distribution of dataset [6–8]. These measures which may
be utilized in divergent disciplines consist of the tests of normality and of the lustiness for normal
theoretical procedures. Skewness is often utilized to reference to symmetry. Nevertheless, symmetry is
not often perspicuously defined, and it is thought that everybody knows it. There are some definitions
about symmetry relying on the disciplines that it is utilized in. In literature, any statement related
to the symmetry of a structure has to be done with reference to some rules of symmetry—a score,
a line or an axis [9]. In the statistical inference, the meaningful score or axis is taken as the center of a
distribution. There are several measures employed to quantify the degree of skewness of a distribution.
Assume that µ, m, M, σ, µ3, Q1 and Q3, are the mean; median; mode; standard deviation; third centered
moment; and the first and the third quartiles, respectively. The statistics introduced for measuring the
skewness are Pearson’s coefficient of skewness:

SKP =
µ−M
σ

(1)
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Pearson’s second coefficient of skewness:

SKP2 =
3(µ−m)

σ
(2)

Yule’s coefficient of skewness:

SKY =
(µ−m)

σ
(3)

the standardized third central moment:
γ1 =

µ3

σ3 (4)

Bowley’s coefficient of skewness:

SKB =
Q3 + Q1 − 2m

Q3 −Q1
(5)

and three Galip’s coefficients of skewness:

SKG1 =
XMax + Xmin − 2M

XMax −Xmin
(6)

SKG2 =
XMax + Xmin − 2m

XMax −Xmin
(7)

SKG3 =
XMax + Xmin − 2µ

XMax −Xmin
(8)

[9–17].
Although there are numerous different measures, and practical elongations of the above coefficients

were proposed afterward, the original measures are still employed to this day, especially γ1(or its
variants). It is largely utilized in statistical calculation software.

When we face a dataset containing outliers, we need a measure that can carefully consider these
outliers. Therefore, probably, the measures that are based on the extreme values (max and min) such as
three Galip’s coefficients of skewness; are based on the first and the last quartiles (Q1 and Q3) such as
Bowley’s coefficient of skewness; or are based on the first and the last deciles (D1 and D9), should be
more effective than other methods. The previous studies indicated that the three Galip’s coefficients of
skewness had the most power to detect symmetry and asymmetry. But the Bowley’s coefficient of
skewness acted not so well. There is no deep study about the definition of skewness based on deciles
and the comparison between them and other alternatives.

In this work, at first, we consider the definition of skewness based on deciles and then study its
asymptotic properties, similar to the approach that was applied in [18–23]. Finally, the power of the
considered statistic to detect symmetry and asymmetry is compared with the powers of other measures
of skewness.

2. Decile-Based Skewness

Let X1, . . . , Xn be a sample from a distribution F on the real line, and we suppose that F is
continuous so that all observations are distinct with probability one. We may then arrange the
observations in increasing order without ties, X(1) < . . . < X(n). These variables are called the order
statistics, where X(k) is the kth order statistic. For 0 < p < 1, the pth quantile of F is defined as xp = F−1(p)
and the corresponding sample quantile is defined as X(k) where k =

⌈
np

⌉
, the ceiling of (the smallest

integer greater than or equal to np). Let D1 and D9 be the first and nine sample deciles (0.1 and 0.9
quantiles), respectively. We consider our statistic for measuring the skewness by

SK =
(D9 −m) − (m−D1)

D9 −D1
(9)
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In the following, the asymptotic distribution of the proposed statistic is explored.

Lemma 1. LetU1, . . . , Un be independent, identically distributed (iid in short) random variables from U(0, 1)
and U(1) < . . . < U(n), which are order statistics of U1, . . . , Un. If n→∞ , then

√
n


Udnp1e − p1

Udnp2e − p2

Udnp3e − p3

 D
→ N(0, Σ) (10)

where 0 < p1 < p2 < p3 < 1, and

Σ =


p1(1− p1) p1(1− p2) p1(1− p3)

p1(1− p2) p2(1− p2) p2(1− p3)

p1(1− p3) p2(1− p3) p3(1− p3)

 (11)

Proof. Assume that Y1, Y2, . . . are iid exponential variables with mean 1 and Sj =
j∑

i=1
Yi.

Additionally, assume that
√

n
( k1

n − p1
)
→ 0,

√
n
( k2

n − p2
)
→ 0 and

√
n
( k3

n − p3
)
→ 0 as k1, k2, k3, and

n→∞ . Then by the extension of the results given in [24],

√
n + 1


1

n+1 Sk1 − p1
1

n+1

(
Sk2 − Sk1

)
− (p2 − p1)

1
n+1

(
Sk3 − Sk2

)
− (p3 − p2)

1
n+1

(
Sn+1 − Sk3

)
− (1− p3)


D
→ N(0, Σ1),

such that

Σ1 =


p1 0
0 p2 − p1

0 0
0 0

0 0
0 0

p3 − p2 0
0 1− p3


Take g(x1, x2, x3, x4) =

1
x1+x2+x3+x4

[x1, x1 + x2, x1 + x2 + x3]
′; then, by Cramer’s theorem [24],

√
n


Sk1

Sn+1
− p1

Sk2
Sn+1
− p2

Sk3
Sn+1
− p3


D
→ N(0, Σ)

Finally, the proof is completed with the reality that the distribution of
(

Sk1
Sn+1

,
Sk2

Sn+1
,

Sk3
Sn+1

)′
given

Sn+1 is the same as the distribution of
(
U(k1), U(k2), U(k3)

)′
. �

Corollary 1. LetX1, . . . , Xn be iid random variables with density and distribution functions f and F, respectively.
Additionally, assume that f (x) is continuous and positive in a neighborhood of the quantiles xp1 , xp2 and xp3

with p1 < p2 < p3; then,

√
n


Xdnp1e − xp1

Xdnp2e − xp2

Xdnp3e − xp3

 D
→ N(0, Σ∗) (12)
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where

Σ∗ =


p1(1−p1)

f 2(xp1)
p1(1−p2)

f(xp1) f(xp2)
p1(1−p3)

f(xp1) f(xp3)
p1(1−p2)

f(xp1) f(xp2)
p2(1−p2)

f 2(xp2)
p2(1−p3)

f(xp2) f(xp3)
p1(1−p3)

f(xp1) f(xp3)
p2(1−p3)

f(xp2) f(xp3)
p3(1−p3)

f 2(xp3)

 (13)

Proof. By applying the transformation g(y1, y2, y3) =
(
F−1(y1), F−1(y2), F−1(y3)

)
′ to the variables(

Udnp1e − p1, Udnp2e − p2, Udnp3e − p3
)

in Lemma 1, the proof will be completed. Be careful that the
derivation of g is

.
g(y1, y2, y3) =


1

f (F−1(y1))
0 0

0 1
f (F−1(y2))

0

0 0 1
f (F−1(y3))

.
�

The asymptotic distribution of SK is provided in the following theorem. This is our major
contribution. It is also necessary to infer the skewness of population.

Theorem 1. LetX1, . . . , Xn be iid random variables with density function f. Additionally, assume that f (x) is
continuous and positive in a neighborhood of the quantiles x0.1, x0.5 and x0.9. Then, the asymptotic distribution
of the proposed statistic can be illustrated by

Tn =
√

n
(
SK −

x0.9 + x0.1 − 2x0.5

x0.9 − x0.1

)
D
→ N

(
0, σ2

)
where

σ2 = 1
(x0.9−x0.1)

4

[
0.36(x0.9−x0.5)

2

f 2(x0.1)
+

(x0.9−x0.1)
2

f 2(x0.5)
+

0.36(x0.5−x0.1)
2

f 2(x0.9)

−
0.4(x0.9−x0.1)(x0.9−x0.5)

f (x0.1) f (x0.5)
+

0.08(x0.5−x0.1)(x0.9−x0.5)
f (x0.1) f (x0.9)

−
0.4(x0.9−x0.1)(x0.5−x0.1)

f (x0.5) f (x0.9)

] (14)

Proof. The proof is simply achieved using Cramer’s theorem [24] and taking g(x1, x2, x3) =
x1−2x2+x3

x3−x1
.

�

Corollary 2. LetX1, . . . , Xn be iid random variables from U(0, 1); then, the asymptotic distribution of the
proposed statistic is given by

√
n(SK − 0) D

→ N(0, 1.25) (15)

These results can be employed to build an asymptotical confidence interval and to check
the hypothesis.

2.1. Asymptotic Confidence Interval

Now, Tn can be utilized as a pivotal quantity to build a confidence interval asymptotic to a
population’s skewness, (

SK −
σ̂
√

n
Zα/2, SK +

σ̂
√

n
Zα/2

)
(16)
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where
σ̂2 = 1

(D9−D1)
4

[
0.36(D9−m)2

f 2(D1)
+

(D9−D1)
2

f 2(m)
+

0.36(m−D1)
2

f 2(D9)

−
0.4(D9−D1)(D9−m)

f (D1) f (m)
+

0.08(m−D1)(D9−m)
f (D1) f (D9)

−
0.4(D9−D1)(m−D1)

f (m) f (D9)

] (17)

2.2. Hypothesis Testing

Hypothesis testing related to skewness is a crucial issue in practical application. For instance,
the assumption Skewness = 0 is tantamount to the symmetry. Generally, to test H0 : Skewness = γ0,
the test statistic can be

T0 =
√

n
(

SK − γ0

σ̂

)
(18)

Similar to the methodology provided in Theorem 1, it can prove that with the null hypothesis,
T0 has, asymptotically, standard normal distribution.

3. Asymptotic Properties of the Proposed Statistic

In this part, many data sets are drawn to analyze the performance of the proposed approach,
for distinct symmetric distributions and divergent sample sizes. Firstly, we checked that the given CI
and test statistic are truly the asymptotic CI and test statistic. For every parameter, the experiential
coverage probability (percentage of runs for which the given CI contains zero (true skewness)) was
calculated by relying on 10,000 repetitions using statistical R 3.6.2 and SPSS 25 software. In addition,
for each repetition, the value of the given test statistic is presented and normal Q–Q plots of the given
test statistic are provided. The Shapiro-Wilk’s normality test is used to confirm the normality of the
given test statistic. The experiential coverage probabilities for divergent parameters are illustrated as
in Table 1.

Table 1. The experiential coverage probability of the proposed confidence interval.

Distribution
n

50 75 100 200 500 1000

Normal (1,5) 0.9732 0.9734 0.9743 0.9744 0.975 0.9761

t(10) 0.9916 0.9928 0.9934 0.9939 0.9942 0.9947

U(0,1) 0.9485 0.949 0.9491 0.9502 0.9521 0.9569

The results show that the experiential coverage probability of proposed approach is more than
nominal level (0.95), especially when the sample sizes grow. In the other hand, we can admit the
given CI as the asymptotic CI for the skewness of population. Figure 1 and Table 2 show the Q–Q
plots for the standard normal distribution and the results of Shapiro-Wilk’s normality test in the test
statistic, respectively.

Table 2. Shapiro-Wilk’s normality test p-value for the given test statistic.

Distribution
n

50 75 100 200 500 1000

Normal (1,5) 0.7131 0.7174 0.7899 0.8436 0.9077 0.9213

t(10) 0.433 0.6515 0.781 0.8317 0.9603 0.9945

U(0,1) 0.3144 0.5566 0.6034 0.6219 0.8249 0.9488
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Figure 1. The Q–Q plots versus standard normal distribution. Normal distribution: n = 50 (a),
n = 1000 (b). t distribution: n = 50 (c), n = 1000 (d). Uniform distribution: n = 50 (e), n = 1000 (f).

It can be then seen that the asymptotic properties are relatively satisfied in all situations (p-value
is greater than 5%). Thereafter, it can be seen that our approach is a good choice to build a CI and
execute hypothesis testing for the skewness of a population.

4. Comparison with Alternative Measures

To check the performances of the considered statistic, its power to detect asymmetry is compared with
the conventional measures of skewness by employing a Monte Carlo simulation. As in Section 3, numerous
data sets were drawn to check the performances of the measures, for different asymmetric distributions
and different sample sizes using R software. For this purpose, we generated 10,000 samples of size
n = 10, 20, 50, from a chi-square distribution with m degrees of freedom,

(
χ2(m)

)
. We considered three

cases: extremely skewed (m = 1), moderately skewed (m = 5) and slightly skewed (m = 40). The powers
(at 5% significant level) of different measures to detect asymmetry are summarized in Table 3.
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Table 3. The powers of different measures to detect skewness.

Distribution Measure
n

10 20 50

Extremely Skewed

SK 0.798 0.989 1.000

γ1 0.687 0.942 1.000

SKG3 0.817 0.991 1.000

SKG2 0.834 0.992 1.000

SKG1 0.461 0.831 0.997

SKP 0.200 0.151 0.130

SKY 0.616 0.869 0.999

SKP2 0.616 0.869 0.999

SKB 0.260 0.403 0.711

Moderately
Skewed

SK 0.318 0.597 0.945

γ1 0.297 0.530 0.889

SKG3 0.321 0.564 0.911

SKG2 0.318 0.623 0.941

SKG1 0.145 0.397 0.814

SKP 0.132 0.108 0.100

SKY 0.207 0.344 0.651

SKP2 0.207 0.344 0.651

SKB 0.123 0.156 0.224

Slightly Skewed

SK 0.144 0.163 0.289

γ1 0.129 0.165 0.288

SKG3 0.135 0.175 0.284

SKG2 0.143 0.153 0.282

SKG1 0.116 0.136 0.252

SKP 0.106 0.103 0.119

SKY 0.120 0.116 0.180

SKP2 0.120 0.116 0.180

SKB 0.117 0.116 0.135

As preliminary results, based on the maximum power, it can be observed that the performances
of SK, γ1 , SKG1, SKG2 and SKG3 are approximately similar and are more powerful than other methods
for all simulated datasets, and are therefore are very promising. The performances of SKP, SKP2 and
SKY are approximately similar and have the next best ranks, while SKB has the worst performance in
all situations. In general, the measures that are based on the extreme values (maximum and minimum),
such as three Galip’s coefficients of skewness, and those based on the first and the last deciles (D1 and
D9), are more effective than other methods, because of their better performances and easy calculations.

5. Discussion

In this work, at first, we considered the definition of skewness based on deciles, and then studied
its asymptotic properties. The results showed that the experiential coverage probability of this measure
was more than nominal level (0.95), especially when the sample size was increased. The Q–Q plots
versus the standard normal distribution and the results of Shapiro-Wilk’s normality test verified the
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theoretical asymptotic properties. Finally, the power of the considered statistic to detect symmetry
and asymmetry was compared with the powers of other measures of skewness. The power study
indicated that the performances of decile-based measure and three Galip’s coefficients of skewness
were approximately similar, and were more powerful than other methods for all simulated datasets,
and are therefore are promising for application in practice.

6. Conclusions

We presented a simple measure to find skewness in patterns. The new measure relies on a
new definition of skewness that contains many outstanding advantages. The proposed coefficient of
skewness could be obviously calculated with only three short statistics; i.e., the first and nine deacons
and the median. The strength of the proposed statistic to find symmetry and asymmetry was studied
by employing numerous Monte Carlo simulations. The results show that the performance of new
statistic is generally very good in the simulation. There are many definitions to describe symmetry and
asymmetry. To investigate the skewness in datasets including outliers, we should use the measures
that consider the effects of outliers. Therefore, probably, the measures that are based on the extreme
values (maximum and minimum), such as three Galip’s coefficients of skewness; those based on the
first and the last quartiles (Q1 and Q3), such as Bowley’s coefficient of skewness; and those based on
the first and the last deciles (D1 and D9), are candidates for application. Other studies showed that
Galip’s coefficients of skewness are more powerful for detecting symmetry and asymmetry. There is
no deep study about the definition of skewness based on deciles and a comparison between them and
other alternatives. In this work, at first, we considered the definition of skewness based on deciles and
then studied its asymptotic properties. Finally, the power of the considered statistic to detect symmetry
and asymmetry was compared with the powers of other measures of skewness. For future works,
we suggest readers to use a definition of skewness based on combinations of more deciles, not only
the first and the ninth deciles. We think this combination will improve the detection of symmetry
and asymmetry.
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