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Abstract: Air pollution is a worldwide problem faced by most countries across the world. Prediction
of air pollution is crucial in air quality research since it is related to public health effects. The symmetry
concept of fuzzy data transformation from a single point (crisp) to a fuzzy number is essential for
the forecasting model. Fuzzy time series (FTS) is applied for predicting air pollution; however, it
has a limitation caused by utilizing an arbitrary number of intervals. This study involves predicting
the daily air pollution index using the FTS Markov chain (FTSMC) model based on a grid method
with an optimal number of partitions, which can greatly develop the model accuracy for air pollution.
The air pollution index (API) data, which was collected from Klang, Malaysia, is considered in the
analysis. The model has been validated using three statistical criteria, which are the root mean (RMSE),
the mean absolute percentage error (MAPE), and the Thiels’ U statistic. Also, the model’s validation
has been investigated by comparison with some of the famous statistical models. The results of the
proposed model demonstrated outperformed the other models. Thus, the proposed model could be a
better option in air pollution forecasting that can be useful for managing air quality.

Keywords: air pollution index; fuzzy time series; grid partition method; Markov chain; Akaike
information criterion

1. Introduction

Air pollution is a matter of concern among the public, particularly for those who live in mega-urban
and industrial cities, which may have serious effects on humans and the natural environment in the
future [1]. Air pollution forecasting is a high-priority in air quality research since it is related to public
health effects and the natural environment [2–4]. The most widely important classical methods of time
series are the autoregressive integrated moving average (ARIMA) models [5], the artificial neuron
network (ANN) models [6–8], and the fuzzy time series (FTS) [9–17].

The FTS model is first introduced by Song and Chissom [18,19] based on a fuzzy set theory
proposed by Zadeh [20]. Chen [21] developed the FTS model of Song and Chissom based on fuzzy
logic group relations tables for reducing the computational complexity in the model. Huarng [22,23]
developed Chen’s [21] model by determining the effective length of intervals. Yolcu et al. [24] developed
the ratio-based method based on a constrained optimization to select the length of intervals. Yu [25]
improved a predicting model based on weighted fuzzy relations, which produced better forecasting
results than the Chen [21] model. Cheng et al. [26] introduced the trend weighted FTS model for
TAIEX forecasting by assign proper weights to individual fuzzy relationships. Effindy et al. [27]
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modified a weighted FTS model for enrollment forecasting. They adopted the weighted model by
adding the difference between the observed dataset across a midpoint of intervals. Tsaur [28] proposed
the FTS model based on Markov chain, which is used for obtaining the largest probability using the
transition probability matrix. He also used a random length of interval for the universe of discourse,
which leads to a negative effect by abnormal observations and outliers. Sadaei et al. [29] developed
a refined exponentially weighted FTS for forecasting the load data, which is developed prediction
preciseness. More specifically, the effective interval length has been investigated by several studies
based on different methods. For example, Huarng [22,23] proposed two methods for determining
the effective length of intervals, which are based on averages and distribution. Yolcu et al. [24]
developed Huarng’s model [22] based on constrained optimization for determining the effective length
of intervals. Eğrioğlu et al. [30] proposed a new method of fuzzy time series using a single variable
constrained optimization to determine the best length of interval for the best forecasting accuracy.
Chen et al. [31] proposed a new FTS forecasting model integrated with the granular computing
approach and entropy method for stock price data. Talarposhti et al. [32] proposed a hybrid approach
using optimization techniques and intelligence algorithm to determine the proper length of intervals
for predicting the stock market. Cheng et al. [33] employed a rough set and utilized an adaptive
expectation model to propose a new fuzzy time series to forecast the closing price. Rahim et al. [34]
developed a type 2 FTS model using the sliding window technique for determining the appropriate
length of intervals. Bose et al. [35] proposed a new partitioning method with the rough-fuzzy method
for developing the fuzzy time series model.

Apart from that, Zuo et al. [36] developed a combining topological optimization technique in
order to figure out the optimization problem in the product manufacturing process. Ning et al. [37]
proposed a new method based on a chip formation model and an iterative gradient search method
using Kalman filter algorithm. This optimization method has been used to inversely identify the
Johnson-Cook model constants of ultra-fine-grained titanium. Ning and Liang [38] introduced a
developed inverse identification technique for Johnson-Cook model constants based on the use of
temperature and force data for predicting machining forces. The development of the model has been
done by using an iterative gradient search method based on the Kalman filter algorithm. These types
of optimization techniques can be adopted for improving the forecasting models.

More specifically, The FTS models have been utilized for forecasting environmental problems such
as air quality 9-17], which are considered for predicting air pollution since the time series of air pollution
may include uncertainty data and may not verify some of the statistical assumptions. Nevertheless,
utilizing the FTS models in the field of air pollution is still very rare. For example, Cheng et al. [17]
introduced a trend weighted FTS model to predict daily O3 concentrations. Dincer and Akkuş [12]
predicted the SO2 concentrations based on a robust FTS model, which has provided good forecasting
results. Koo et al. [39] made a comparison study using FTS and other statistical models for predicting
air pollution events. They concluded that the proposed model outperformed the other models.
Wang et al. [40] proposed a hybrid FTS method with data re-processing approaches for forecasting the
main air pollutants. Yang et al. [41] proposed a forecasting system based on a combination of the fuzzy
theory and advanced optimization algorithm for air pollution forecasting.

As previously mentioned, the FTS models have been utilized to solve various domain forecasting
problems. However, several FTS have some issues, such as using an arbitrary length of intervals for
the universe of discourse, repeated fuzzy relationships, or considering the weights of fuzzy logical
relationships. According to the literature review above, some researchers proposed a partition method
with complexity computations, and some have not evaluated their models, by comparison with the
other recent models. Particularly, the FTS-based Markov chain model has a deficiency in determining
the effective length of the interval, which was negatively affected by abnormal observations and
outliers. Therefore, determining the optimal length of intervals and assigning the proper weights
to present is an interesting issue that needs to be addressed. This motivated us to investigate the
optimal partition number of the universe of discourse. This study proposes the FTS Markov chain
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(FTSMC) model based on the grid method with the optimal number of the partitions of the universe
of discourse to provide significantly improved performance in the model accuracy for air pollution
forecasting. The major contribution of this study is to propose an improved model with an appropriate
partition number and to implement the model for forecasting APIs as a new forecasting model in air
quality research.

2. Preliminary

Fuzzy Time-Series Definitions

The fundamental steps for designing fuzzy time series models are defined universe of discourse
U, divide U into an equal number of intervals, fuzzification, define fuzzy logic relation, determined
forecasted values, and defuzzification. The main time series definitions of developed are listed below:

Definition 1. Let X(t)(t = 0, 1, 2, . . .), a subset of real numbers, be the universe of discourse in which fuzzy
sets f j(t) are defined. Let F(t) be a collection of f1(t), f2(t), . . . , then F(t) is called a fuzzy time series, defined
on X(t) [17–19].

Definition 2. Let R(t, t− 1) be the fuzzy logic relationship (FLR) between F(t− 1) and F(t), which can be
denoted as F(t− 1) → F(t) . For any t value, if R(t, t− 1) is independent of t, then

R(t, t− 1) = R(t− 1, t− 2) (1)

In this case, F(t) is called the time-invariant fuzzy time series, while otherwise called a time-variant fuzzy
time series [18,19].

Definition 3. Suppose that F(t− 1) = Ai and the F(t) = A j. The relationship between two consecutive
observations (t− 1) and F(t), denoted to as the FLR can be defined as Ai → A j , where Ai and A j are the
left-hand side and right-hand side of the FLR respectively [17–19].

3. Methodology

3.1. Study Area and Dataset

The air pollution index (API) data is classified based on the highest index value of five main air
pollutants, namely, ozone (O3), sulphur dioxide (SO2), particulate matter (PM10), carbon monoxide
(CO2), and nitrogen dioxide (NO2), as shown in Figure 1 [42–45]. The API values are determined
by the average indices for these five pollutant variables, and then the maximum value from these
sub-indices is selected as the API value [3]. In Malaysia, the air pollution index (API) has been adopted
as a measure of air pollution conditions. The API is a simple number that ranges from 0 to∞ to reflect
the air quality levels that are related to the health effects [3,45].

In this study, the daily API maxima values, which were gathered from an air monitoring station
located in Klang, Malaysia, are considered in the analysis. The city of Klang is located nearly 32 km to
the west side of Kuala Lumpur and covers a land area of about 573 km2, as shown in Figure 2. The API
dataset is divided into a training dataset, which is from the 1 January 2012 to 31 December 2013 and
testing dataset, which is from the1 January 2014 to 31 December 2014. The values of API recorded at
the selected monitoring station are provided by the Department of Environment of Malaysia. The total
number of observations in this study is 1096. The value of API of less than 100 denotes a good air
quality, while a of API greater than 100 indicates a higher degree of air pollution. The classification of
states is made based on the breakpoints for API of 50, 100, 200, 300, and 300+, corresponding to good,
moderate, unhealthy, very unhealthy, and hazardous states, respectively, as shown in Table 1 [3,45].
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Table 1. Classification of the APIs and health consequences by the Department of the environment of
Malaysia [42,44].

State Range of APIs Air Quality Status Health Consequences

1 [0, 50] Good Low pollution without any bad effect on health

2 (50, 100] Moderate Moderate pollution that does not pose any bad effect
on health

3 (100, 200] Unhealthy Worsens the health condition of high-risk people that
have heart and lung complications

4 (200, 300] Very Unhealthy
Affects public health. Worsens the health condition

and low tolerance of physical exercises for people with
heart and lung complications

5 (300,∞) Hazardous Hazardous to high-risk people and public health

3.2. Proposed Model

In this section, the simplified arithmetic operations proposed by Chen [21] and Tsaur [28] are used
in the proposed algorithm (see Figure 3). The steps of the proposed model can be described as follows:
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Step 1. Define the universe of discourse (U) from the available time-series data, by using the formula
U = [Dmin − D1, Dmax + D2], where Dmin and Dmax denote the minimum and the maximum
value in the universe of discourse U respectively, D1 and D2 represent positive values.

Step 2. Partition U for the observed data using the grid partition method [21,29] based on a different
number of partitions, which are 5, 6, 7, 8, . . . , 50. But to avoid the redundancy, we present only
5, 10, 15, 20, 25, 30, 35, 40, and 45 numbers of partitions to determine the optimal partition
number of partitions of the universe that can improve the model accuracy.

Step 3. Define the fuzzy sets Ai on U using the following equation

Ai =
fAi(u1)

u1
+

fAi(u2)

u2
+ . . .+

fAi(un)

un
(2)
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where fAi is the membership function of fuzzy set Ai; fAi : U→ [0, 1] . fAi(ur) ∈ [0, 1] and
1 ≤ r ≤ n.

Step 4. Fuzzify the observations into fuzzy numbers based on the maximum membership value.
Step 5. Construct the fuzzy logical relationships (FLRs) and establish fuzzy logical relation groups

(FLRGs) to build frequencies (count) matrix of fuzzy relation between observations.
Step 6. Generate the Markov weights (transition probability matrix) based on the frequencies of the

established (FLRGs) in Step 5. The total number of states is n according to the total number of
fuzzy sets. Thus, the matrix P is Pn×n. State transition probability Pi j, from state Ai to state A j.
In other words, Pi j is the probability of observing yt+1 given yt, i.e., Pi j = Pr(yt+1 = j

∣∣∣ yt = i),
which can be calculated as follows

Pi j =
Ni j

Ni.
, i, j = 1, 2, . . . , n (3)

where Ni j is the number of transitions from state Ai to state A j, and Ni. is the total number of
transitions in state Ai. The transition probability matrix P is given as

P =


p11

p21

p12

p22
· · ·

p1n
p2n

...
. . .

...
pn1 pn2 · · · pnn

 (4)

where Pi j ≥ 0 and
n∑

j=1
Pi j = 1.

Step 7. Calculate the forecasted values. The following rules are considered in calculating the forecasts.

Rule 1. In the case of the fuzzy logical relationship group of Ai is one-to-one, in which there only
one transition for Ai (i.e., Ai → Ak , with Pik = 1 and Pi j = 0, j , k), then the forecasting of F(t) is mk,
the midpoint of uk, k = 1, 2, n, which can be calculated according to Equation (5) below

F (t + 1) = mk Pik = mk (5)

Rule 2. In the case of the fuzzy logical relationship group of Ai is one-to-many, in which there
are more than one transition for Ai (i.e., Ai → A1, A2, . . .An, i = 1, 2, . . , n) . Thus, if the state is Ai
for the actual value Y(t) at time t, the forecasted value F(t + 1) can be determined by using Equation
(6) below

F (t + 1) = m1pi1 + m1p12 + . . .+ mi−1pi(i−1) + Y(t) pii + mi+1pi(i+1) + . . .+ mnpin (6)

where m1, m2, . . . , mn are the midpoint of u1, u2, . . . , un and mi is replaced by Y(t) for having
information further from the state Ai at time t.

Step 8. Adjust the forecasted values by adding the differences of actual values Y(t), which can adjust
the forecasted values to reduce the estimated error. The adjusted forecasted values can be
written by

F̂ (t + 1) = F (t + 1)+ diff (Y(t)) (7)

Step 9. Validate the model.

3.3. Model Validation

The statistical criteria used to evaluate models are MAPE, RMSE, and Thiels’ U statistic, which
are defined in Equations (8)–(10), respectively, where Yi means the real data, Fi the forecasted values,
and N is the total number of observations. The universe of discourse U is partitioned based on the grid
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method. The model is trained and tested for 5, 10, 15, 20, 25, 30, 35, and 40 number of partitions, and
the results are shown in the next section.

MAPE =
1
N

N∑
i=1

∣∣∣∣∣Yi − Fi
Yi

∣∣∣∣∣× 100 (8)

RMSE =

√∑N
i=1(Yi − Fi)

2

N
(9)

Theil’s U =

√∑N
i=1(Yi − Fi)

2√∑N
i=1 Yi2 +

√∑N
i=1 Fi2

(10)

4. The Implementation of the Algorithm

In this section, we will provide a result of the proposed model using the daily API data, whose
plots for training data and testing data are given in Figure 4, respectively.
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The implementation of the proposed model’s algorithm can be done based on pyFTS [46] as follows:

Step 1. Define U for the APIs values. U = [Dmin −D1, Dmax + D2]

U = [25− 5, 495 + 5]U = [20, 500]

Step 2. Partitioning U based on different numbers of partitions from 1 to 50. However, to prevent the
redundancy where it will be too long, we have only mentioned numbers 5, 10, 15, . . . , 30 to
present the partitioning as shown in Figure 5.

Step 3. Fuzzy sets are defined. Fuzzy sets Ak are determined based on the intervals uk that already
have formed using the grid method in the previous step with the function membership. Then,
the fuzzy sets Ak can be written as follows using Equation (2). Table 1 reveals the fuzzy sets Ai,
(i = 1, 2, , n). The greater the value of i indicates that the fuzzy set of API values will move
from the lowest to the highest fuzzy set of API values.

Step 4. Transform APIs values into fizzy numbers and find the fuzzy logic relationships (FLRs), as
shown in Table 2.

Table 3 reveals the actual API values that have been transferred to the FTS values. Then, the FLRs
of these values are determined. Since u1 has the maximum membership degree in fuzzy set A0,
observation 51 is transferred to a fuzzy set A0. Similarly, the API values have been fuzzified.
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Table 2. Values of FTS.

No FTS Values Ai

1 A0 =
1

u1
+

0.5
u2

+
0

u3
+

0
u4

+ . . .+
0

u27
+

0
u28

+
0

u29

2 A1 =
0.5
u1

+
1

u2
+

0.5
u3

+
0

u4
+ . . .+

0
u27

+
0

u28
+

0
u29

3 A2 =
0

u1
+

0.5
u2

+
1

u3
+

0.5
u4

+ . . .+
0

u27
+

0
u28

+
0

u29
.
.
.

29 A28 =
0

u1
+

0
u2

+
0

u3
+

0
u4

+ . . .
0.5
u3

+
1

u27
+

0.5
u28

+
0

u29

30 A29 =
0.5
u1

+
1

u2
+

0.5
u3

+
0

u4
+ . . .+

0
u27

+
0.5
u28

+
1
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Table 3. APIs as the fuzzy numbers.

N Date API Fuzzy Number Fuzzy Set Relationships

1 2012/1/1 51 A0 -
2 2012/1/2 81 A2 A0→ A2
3 2012/1/3 65 A1 A2→ A1
4 2012/1/4 70 A1 A1→ A1
5 2012/1/5 66 A1 A1→ A1
6 2012/1/6 65 A1 A1→ A1
7 2012/1/7 98 A3 A1→ A3
. . . . .
. . . . .
. . . . .

732 2013/12/29 50 A0 A0→ A1
733 2013/12/30 61 A1 A1→ A1
734 2013/12/31 70 A1 A1→ A1

Step 5. Fuzzy logical relationships (FLRs) are determined, and frequencies (count) matrix of fuzzy
relation between observations are determined. This step shows the FLRGs can be grouped into
the fuzzy logic relationship groups (FLRGs).

It can be seen from Table 4 that thirteen groups of the FTS values are presented, which is found
with several FLRs. From Table 4, transition frequency matrix or frequencies (count) matrix of fuzzy
relation between observations can be determined, which could be a matrix N30×30.

Table 4. FLRGs for the grid method with 30 number of partitions.

Group Fuzzy Logical Relationships (FLRs)

G1 A0 → (4) A0, (4) A1, (1) A3
G2 A1 → (3) A0, (125) A1, (65) A2, (10) A3, (1) A4
G3 A2→ (2) A0, (70) A1, (248) A2, (36) A3, (3) A4, (4) A5
G4 A3→ A1, A2, A3, A4, A5
G5 A4→ (2) A1, (2) A2, (11) A3, (10) A4, (1) A6, (1) A7
G6 A5→ (2) A2, (2) A3, (3) A4, A5, A8
G7 A6→ (1) A4, (1) A5, (1) A6
G8 A7 → (1) A12
G9 A8→ (2) A6, (2) A8
G10 A12→ (1) A14
G11 A14→ (1) A3
G12 A26→ (1) A27
G13 A27→ (1) A14

Step 6. Assign the Markov weights based on the matrix of frequencies from Step 5 by using Equation
(4), as shown in Table 4. Then, transition process diagram could be established using the
weights to visualize the Markov weighted Matrix.

Table 5 demonstrates the number of transitions of the FTS and Markov weight elements for each
group. The obtained Markov weights using the grid partition method can be used for establishing the
transition probability matrix P30×30, which can be used for calculating the forecasting values in the
next step. For instance, in the case of FLRG, it is A8→ A6, A8. Then, value y8 6 = 2 and y8 8 = 2. Thus,
p8 6 = 1/2 and p8 8 = 1/2, otherwise p8 j = 0.
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Table 5. Markov weighted FTS based on the grid method using 30 number of partitions.

Markov Weights Elements for Each Group

A0→ A0(4/9), A1(4/9), A3(1/9)
A1→ A0(1/68), A1(125/204), A2(65/204), A3(5/102), A4(1/204)
A2→ A0(2/363), A1(70/363), 2(248/363), A3(12/121), A4(1/121), A5(4/363)
A3→ A1(2/107), A2(47/107), 3(47/107), A4(10/107), A5(10/107)
A4→ A1(2/27), A2(2/27), A3(11/27), A4(10/27), A6(1/27), (1/27)
A5→ A2 (2/9), A3 (2/9), A4 (1/9), A5(1/3), A8 (1/9)
A6→ A4 (1/3), A5 (1/3), A6 (1/3)
A7→ A12 (1)
A8→ A6 (1/2), A8 (1/2)
A12→ A14 (1)
A14→ A3 (1)
A26→ A27 (1)
A27→ A14(1)

Step 7. Calculate the forecasted values by using Equation (5) or (6) based on Markov weights. For
example, the forecast value for the day (2012/1/2) is calculated by using Equation (6).

Step 8. The forecasted values are adjusted by using Equation (7). For example, in Step 7, we have
found the forecast value is 56.66.

5. Model Evaluation

In this section, fitting the optimal number of partitions of the universe of discourse has been
presented. In addition, to validate the proposed model, a comparison of the proposed with some
existing models is provided.

5.1. Fitting the Optimal partItion Number of the Universe of Discourse

In this section, investigating the appropriate number of partitions has been done using numbers
from 5 to 50 (see Table A2 in Appendix A). However, to avoid the redundancy, we present only numbers
5, 10, 15, . . . , 45. It can be seen from Table 6 and Figure 6 that the best number of partitions of API data
is 30 intervals, which indicates that the proposed model produced the smallest value of MAPE, RMSE,
and Theils U. This implies that the proposed model provides the best forecasting accuracy using this
number of partitions as compared to the other number of partitions of APIs in terms of training and
testing dataset.

Table 6. Statistical criteria for fitting the best partition number of the FTSMC model using the
training dataset.

N. Partitions RMSE MAPE Theils U

5 31.41 40.69 1.63
10 17.08 20.80 0.89
15 13.25 15.80 0.69
20 13.83 14.19 0.72
25 12.41 14.32 0.64
30 11.44 13.15 0.59
35 12.30 13.22 0.64
40 11.89 13.21 0.62
45 11.80 13.21 0.61
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More specifically, Figure 7 shows that the proposed model using the best number of partitions
provides greatly improved performance in air pollution index prediction accuracy compared with the
other petition numbers. This indicates that the proposed model produces accurate predicting results of
the air pollution index.
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5.2. Model’s Validation

For validating the proposed model, the testing and training dataset of the APIs are used to
evaluate the model performance and compare it with some of the famous existing models. Particularly,
we introduce a comparison between the FTSMC model based on the optimal number of partitions
and conventional FTS models that were proposed by Song & Chissom [18], Chen [21], Cheng [47],
and Severiano et al. [48], which are FTS [18], CFTS [21], TWFTS [47], and HOFTS [48], respectively, to
examine the performance of the proposed model. It can be seen from Table 7 and Figure 8 that the
performance of the proposed model using the training dataset is very good. It has been performed
with the smallest values of RMSE, MAPE, and U statistic as compared to other forecasting models.
Thus, the proposed model outperformed the other forecasting models. This indicates that the proposed
model is a powerful model for predicting air pollution occurrences. In addition, it could be seen from
Table 8 and Figure 9 that the proposed model, using the testing dataset, outperformed the other FTS
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models. This implies that the model can produce a better forecasting accuracy of air pollution, which
indicates that the proposed model can be modeled very well using any sort of time series.

Table 7. Statistical criteria of the proposed model and some FTS models using the training data.

Model RMSE MAPE Theils U

FTS [18] 27.94 19.45 1.45
CFTS [21] 15.08 22.85 0.78

TWFTS [47] 12.84 14.28 0.62
HOFTS [48] 28.65 32.96 1.31

FTSMC The proposed model 11.44 13.15 0.59
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Table 8. Statistical criterions of the proposed model and some FTS models using the testing data.

Model RMSE MAPE Theils U

FTS [18] 46.80 61.24 2.07
CFTS [21] 24.27 36.63 1.26

TWFTS [47] 18.06 18.88 0.89
HOFTS [48] 28.65 42.96 1.49

FTSMC The proposed model 17.01 17.32 0.80
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In addition, a comparison of the proposed model and some of the famous existing time series
models are presented for further validation of our model. The time series models are ARMA [1],
ARIMA [5,49], exponential smoothing [49], SARIMA [50], autoregressive conditional heteroskedasticity
(ARCH) [51], GARCH [51], Markov chain [3], and fuzzy-ARIMA [52]. The evaluation of the model has
been done based on the Akaike information criterion (AIC) [53] and Bayesian information criteria [54]
using Equations (11) and (12), respectively, which are the common goodness of fit criteria for selecting
the best time series models.

AIC = 2k− r ln(L) (11)

BIC = k ln(r) − r ln(L) (12)

where r is the number of observations, and k is the number of parameters used in models, and L = L
(
θ̂
)

is
the maximum value of the likelihood function of the model, which can stand for mean square error
(MSE). It could be seen from Table 9 that the proposed model produced the smallest values of AIC
and BIC compare to the other models. This indicates that the proposed model outperformed the other
models; thus, it is an adequate model, and it could provide an accurate forecast of air pollution.

Table 9. AIC and BIC criteria of the proposed model and some of the existing models.

Prediction Model AIC BIC Ranking

ARMA 9389.56 9425.39 6
ARIMA 9380.53 9415.82 4

Markov chain 9381.23 9418.71 3
ARCH 12,213.47 12,249.33 7

GARCH 12,225.42 12,261.05 8
SARIMA 9385.91 9421.28 5

Fuzzy-ARIMA 9379.94 9313.98 2
Exponential smoothing 12,942.58 12,977.24 9

FTSMC The proposed model 9368.14 9406.46 1

Furthermore, air pollution forecasting is based on daily API concentrations [3,39,45]. According
to the time series lag test, as shown in Figure 10, we can effectively develop the performance of the
fuzzy time-series Markov chain forecasting model. Based on different testing periods, the time lags of
the API time series are not the same.
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6. Conclusions

This study proposed the FTSMC model based on the optimal partition number for forecasting the
air pollution in Malaysia using daily API data gathered from Klang for a period of three years. In this
study, the Markov weights of the fuzzy logical relationships (FLRs) in the FLRG have been calculated
based on the Markov transition probability. The grid partition method has been used to determine
the optimal partition number of U. Then, the evaluation of the proposed model has been performed
using a different number of partitions, which is chosen in order to avoid the arbitrary choosing of
intervals. This is considered the first study that has ever properly defined the number of partitions
in the FTSMC model. Although, the optimal number of partitions could be developing the model
performance. In the proposed forecasting method, fitting the optimal number of partitions provided an
improvement in the forecasting accuracy. In forecasting the daily API data, it shows that the proposed
model has produced a higher prediction accuracy as compared to some FTS models. This indicated
that the model could be used for forecasting air pollution data, in addition to various time-series data.
For future studies, the proposed model could be performed to provide accurate results of air pollution
for the sub-index variables such as PM2.5, PM10, O3, SO2, NO2, and CO, including the weather factors,
such as wind speed and temperature, to provide a comprehensive exanimation of the air pollution
problem. In addition, the proposed model can be developed by utilizing optimization methods such as
Kalman filter, topology method, and Bayesian method, which are recommended to be employed in
future works to provide an accurate forecasting model to predict air pollution. Additionally, it can
be developed by combining the model with clustering and machine learning techniques in order to
improve the model forecasting accuracy.
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Appendix A

Table A1. List of symbols and abbreviations in the study.

Symbol/Abbreviation Description

Ai Fuzzy set
U Universe of discourse

Dmin The minimum value in the universe of discourse U
Dmax The maximum value in the universe of discourse U

D1 Positive value
D2 Positive value
fAi

Membership function of fuzzy set
ui Linguistic intervals

F(t) Fuzzy time series at time t
FLR Fuzzy logical relationships

FLRGs Fuzzy logical relationship groups
mk Midpoints of the linguistic intervals ui
Pij Transition probability
Nij Number of transitions
Ni. Total number of transitions
P Transition probability matrix

Y(t) Actual value
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Table A1. Cont.

Symbol/Abbreviation Description

diff (Y(t)) The difference in actual values
FTS Fuzzy time series

FTSMC Fuzzy time series Markov chain
ARIMA Autoregressive integrated moving average

ANN Artificial neuron network
SO2 Sulphur dioxide
O3 Ozone

PM10 Particulate matter
CO2 Carbon monoxide
NO2 Nitrogen dioxide
API Air pollution index

Thiels’ U Thiels’ U statistic.
RMSE Root mean square error
MAPE Mean absolute percentage error

FTS Fuzzy time series model proposed by Song
CFTS Fuzzy time series model proposed by Chen

HOFTS High order fuzzy time series model proposed by Severiano et al.
TWFTS Trend weighted fuzzy time series model proposed by Cheng

AIC Akaike information criteria
BIC Bayesian information criteria

SARIMA Seasonal autoregressive integrated moving average
ARMA Autoregressive moving average

GARCH General autoregressive conditional heteroskedasticity
ARCH Autoregressive conditional heteroskedasticity
MSE Mean square error

L The maximum value of the likelihood function
ACF Autocorrelation function

PACF Partial autocorrelation function

Table A2. Statistical criteria for fitting the best partition number of the FTSMC model using the
training dataset.

Partitions RMSE MAPE Theils U

5 31.41 40.69 1.63
6 26.38 32.10 1.37
7 23.55 27.38 1.22
8 17.38 20.41 0.90
9 19.97 20.20 1.04

10 17.08 20.80 0.89
11 16.10 19.81 0.84
12 18.93 19.37 0.98
13 13.85 17.44 0.72
14 17.35 16.77 0.90
15 13.25 15.80 0.69
16 14.54 15.71 0.76
17 14.43 14.97 0.75
18 14.24 14.54 0.74
19 13.95 14.42 0.72
20 13.83 14.19 0.72
21 12.79 14.13 0.66
22 12.68 14.04 0.66
23 12.55 14.02 0.65
24 12.26 13.91 0.64
25 12.41 14.32 0.64
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Table A2. Cont.

Partitions RMSE MAPE Theils U

26 12.65 14.46 0.66
27 14.03 14.43 0.73
28 13.63 14.13 0.71
29 12.13 13.69 0.63
30 11.44 13.15 0.59
31 12.25 13.40 0.64
32 11.91 13.06 0.62
33 11.98 13.10 0.62
34 11.77 13.20 0.61
35 12.30 13.22 0.64
36 11.91 13.33 0.62
37 11.99 13.50 0.62
38 11.68 13.26 0.61
39 11.63 13.21 0.60
40 11.89 13.21 0.62
41 11.80 13.35 0.61
42 11.70 13.37 0.61
43 11.50 13.37 0.60
44 11.50 13.20 0.60
45 11.80 13.21 0.61
46 12.31 13.02 0.61
47 11.51 13.21 0.60
48 11.56 13.14 0.60
49 11.62 12.99 0.60
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