



# Article On a Generalization of a Lucas' Result and an Application to the 4-Pascal's Triangle <sup>†</sup>

# Atsushi Yamagami \* and Kazuki Taniguchi

Department of Information Systems Science, Soka University, Tokyo 192-8577, Japan; e1658229@soka-u.jp

- \* Correspondence: yamagami@soka.ac.jp
- + This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Received: 29 January 2020; Accepted: 10 February 2020; Published: 16 February 2020

**Abstract:** The Pascal's triangle is generalized to "the *k*-Pascal's triangle" with any integer  $k \ge 2$ . Let p be any prime number. In this article, we prove that for any positive integers n and e, the *n*-th row in the  $p^e$ -Pascal's triangle consists of integers which are congruent to 1 modulo p if and only if n is of the form  $\frac{p^{em} - 1}{p^e - 1}$  with some integer  $m \ge 1$ . This is a generalization of a Lucas' result asserting that the *n*-th row in the (2-)Pascal's triangle consists of odd integers if and only if n is a Mersenne number. As an application, we then see that there exists no row in the 4-Pascal's triangle consisting of integers which are congruent to 1 modulo 4 except the first row. In this application, we use the congruence  $(x + 1)^{p^e} \equiv (x^p + 1)^{p^{e-1}} \pmod{p^e}$  of binomial expansions which we could prove for any prime number p and any positive integer e. We think that this article is fit for the Special Issue "Number Theory and Symmetry," since we prove a symmetric property on the 4-Pascal's triangle by means of a number-theoretical property of binomial expansions.

**Keywords:** the  $p^e$ -Pascal's triangle; Lucas' result on the Pascal's triangle; congruences of binomial expansions

**MSC:** 11A99.

### 1. Introduction

As it is known, Pascal's triangle is constructed in the following way: Write the first row "1 1". Then each member of each subsequent row is given by taking the sum of the just above two members, regarding any blank as 0.

**Example 1.** *Here is the Pascal's triangle from the first row to the* 7*-th row:* 

**Remark 1.** For any integers  $n \ge 1$  and  $r \ge 0$ , we put

$${}_{n}C_{r} := \frac{n!}{r!(n-r)!} = \frac{n(n-1)\cdots(n-r+1)}{r\cdots 1},$$

where we put 0! = 1. Then it is well-known that the n-th row in the Pascal's triangle is equal to the sequence

$${}_{n}C_{0}, {}_{n}C_{1}, \ldots, {}_{n}C_{n-1}, {}_{n}C_{n}$$

consisting of n + 1 terms.

In ([1], Section 1.4), the construction above is generalized as follows:

**Definition 1.** Let  $k \ge 2$  be any integer. The k-Pascal's triangle is constructed in the following way: Write the first row " $11 \cdots 1$ ". Then each member of each subsequent row is given by taking the sum of the just above k members regarding the blank as 0.

**Example 2.** In the case where k = 4, the 4-Pascal's triangle from the first row to the 5-th row is the following:

**Remark 2.** (1) In ([1], Section 1.4), for any integers  $k \ge 2$  and  $n \ge 1$ , it is mentioned that the *n*-th row in the *k*-Pascal's triangle consists of n(k - 1) + 1 integers

$${}_{n}C_{0}^{(k)}, {}_{n}C_{1}^{(k)}, \dots, {}_{n}C_{n(k-1)-1}^{(k)}, {}_{n(k-1)}C_{n(k-1)}^{(k)}$$

satisfying the equation

$$(x^{k-1} + x^{k-2} + \dots + x + 1)^n$$
  
=  ${}_nC_0^{(k)}x^{n(k-1)} + {}_nC_1^{(k)}x^{n(k-1)-1} + \dots + {}_nC_{n(k-1)-1}^{(k)}x + {}_nC_{n(k-1)}^{(k)}$ 

of polynomials with indeterminate x and integral coefficients. A detailed proof of this fact is described in ([2], *Lemma* 1.1).

(2) In ([1], Section 9.10), the following formula for  ${}_{n}C_{i}^{(k)}$  is described:

$${}_{n}C_{i}^{(k)} = \sum_{j=0}^{\left[\frac{i}{k}\right]} (-1)^{j} {}_{n+i-jk-1}C_{n-1} \cdot {}_{n}C_{j}$$

where  $\left[\frac{i}{k}\right]$  is the greatest integer that is less than or equal to  $\frac{i}{k}$ .

In Example 1, we can see that the *n*-th row consists of odd integers when *n* is equal to the Mersenne number 1, 3 or 7. Actually, Lucas showed the following

**Theorem 1** ([3], Exemple I in Section 228). Let  $n \ge 1$  be any integer. Then  ${}_nC_r$  is odd for any  $0 \le r \le n$  if and only if n is a Mersenne number, i.e., n is of the form  $2^m - 1$  with some integer  $m \ge 1$ .

In Section 2 in this article, we generalize the Lucas' result above as the following

**Theorem 2.** Let *p* be any prime number and *e* any positive integer. For any integer  $n \ge 1$ , the *n*-th row in the  $p^e$ -Pascal's triangle consists of integers which are congruent to 1 modulo *p* if and only if *n* is of the form  $\frac{p^{em} - 1}{p^e - 1}$  with some integer  $m \ge 1$ .

**Remark 3.** (1) Theorem 2 is a generalization of ([2], Theorem 0.2) which is in the case where e = 1.

(2) We can see that Example 2 gives a partial example of Theorem 2 in the case where p = 2, e = 2 and m = 1, 2.

As an application of Theorem 2, we can prove that ([2], Conjecture 0.3) holds for k = 4, i.e., there exists no row in the 4-Pascal's triangle consisting of integers which are congruent to 1 modulo 4 except the first row as follows:

By Theorem 2, in the case where k = 4, we see that for any integer  $n \ge 1$ , the *n*-th row in the 4-Pascal's triangle consists of odd integers if and only if *n* is of the form  $\frac{4^m - 1}{3}$  with some integer  $m \ge 1$ .

Moreover, we can see an essential property of the  $\frac{4^m - 1}{3}$ -th row in the 4-Pascal's triangle for any integer  $m \ge 2$  as in the following theorem proved in Section 3.2:

# **Theorem 3.** For any integer $m \ge 2$ , the $\frac{4^m - 1}{3}$ -th row in the 4-Pascal's triangle is congruent to the sequence

$$\overbrace{1133\cdots1133}^{2^{2m-3}}\overbrace{3311\cdots3311}^{2^{2m-3}}$$

modulo 4, which consists of the repeated 1133's and 3311's whose numbers are the same  $2^{2m-3}$ .

Therefore we can obtain the following

**Corollary 1.** ([2], Conjecture 0.3) holds for k = 4, i.e., there exists no row in the 4-Pascal's triangle consisting of integers which are congruent to 1 modulo 4 except the first row.

**Remark 4.** (1) By Example 2, in the case where m = 2, we can see that the 5-th row in the 4-Pascal's triangle is congruent to the sequence

 $1\,1\,3\,3\,1\,1\,3\,3\,3\,3\,1\,1\,3\,3\,1\,1$ 

modulo 4, which matches the assertion of Theorem 3.

(2) It seems that one could obtain the forms of the sequence to which the  $\left(\frac{4^m-1}{3}\pm\ell\right)$ -th row in the 4-Pascal's triangle is congruent modulo 4 for some positive integers  $\ell$  by means of Theorem 3. We would like to do these calculations in the future.

In the proof of Theorem 3 in Section 3.2, we shall use the following lemma proved in Section 3.1:

**Lemma 1.** For any prime number p and any positive integer e, we have the following coefficient-wise congruence

$$(x+1)^{p^e} \equiv (x^p+1)^{p^{e-1}} \pmod{p^e}$$

of binomial expansions with indetermiate x.

#### 2. A Proof of Theorem 2

Although Theorem 2 can be proved by the same argument as the proof of ([2], Theorem 0.2), we shall describe its detailed proof here to make this article self-contained.

Let n and e be any positive integers and p be any prime number.

Firstly, we assume that *n* is of the form  $n = \frac{p^{em} - 1}{p^e - 1}$  with some integer  $m \ge 1$ . In the algebra  $\mathbb{F}_p[x]$  of polynomials of one varible *x* with coefficients in the finite field  $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$  of *p* elements, we see that for any positive integer  $\ell$ ,

$$(x-1)^{p^{\ell}-1} = \frac{(x-1)^{p^{\ell}}}{x-1} = \frac{x^{p^{\ell}}-1}{x-1}$$
$$= x^{p^{\ell}-1} + x^{p^{\ell}-2} + \dots + x + 1.$$

Therefore we see that

$$(x^{p^e-1} + x^{p^e-2} + \dots + x+1)^n = (x^{p^e-1} + x^{p^e-2} + \dots + x+1)^{\frac{p^{em}-1}{p^e-1}}$$
$$= ((x-1)^{p^e-1})^{\frac{p^{em}-1}{p^e-1}}$$
$$= (x-1)^{p^{em}-1}$$
$$= x^{p^{em}-1} + x^{p^{em}-2} + \dots + x+1$$
$$= x^{n(p^e-1)} + x^{n(p^e-1)-1} + \dots + x+1$$

in  $\mathbb{F}_p[x]$ . By Remark 2 (1), this implies that the *n*-th row in the *p*<sup>*e*</sup>-Pascal's triangle consists of integers which are congruent to 1 modulo *p* as desired.

Conversely, we now assume that *n* is of the form

$$n = 1 + p^e + \dots + p^{e(m-1)} + k$$

with some integers  $m \ge 1$  and  $1 \le k \le p^{em} - 1$ . Moreover, we assume that we have

$$(x^{p^e-1} + x^{p^e-2} + \dots + x + 1)^n = x^{n(p^e-1)} + x^{n(p^e-1)-1} + \dots + x + 1$$

in  $\mathbb{F}_p[x]$  to obtain some contradiction. Since the left hand side is equal to  $(x-1)^{n(p^e-1)}$  and the right hand side is equal to  $\frac{x^{n(p^e-1)+1}-1}{x-1}$ , we then have the equality

$$(x-1)^{n(p^e-1)+1} = x^{n(p^e-1)+1} - 1$$

in  $\mathbb{F}_p[x]$ . Since  $n = \frac{p^{em} - 1}{p^e - 1} + k$ , this implies that

$$(x-1)^{p^{em}+k(p^e-1)} = x^{p^{em}+k(p^e-1)} - 1.$$

Let  $v_p(a)$  be the *p*-adic valuation of any non-zero integer *a*, i.e.,  $p^{v_p(a)} | a$  and  $p^{v_p(a)+1} \nmid a$ . Since  $1 \le k \le p^{em} - 1$ , we see that  $v_p(k) < em$  and then

$$v_p(p^{em} + k(p^e - 1)) = v_p(k).$$

Therefore we can put

$$p^{em} + k(p^e - 1) = p^{v_p(k)}t$$

with some positive integer *t* which is prime to *p*. Then we have

$$(x-1)^{p^{v_p(k)}t} = x^{p^{v_p(k)}t} - 1 = (x^t - 1)^{p^{v_p(k)}t}$$

which implies that

$$(x-1)^{p^{v_p(k)}(t-1)} = (x^{t-1} + x^{t-2} + \dots + x + 1)^{p^{v_p(k)}},$$

since  $\mathbb{F}_p[x]$  is an integral domain. Since  $p^{v_p(k)} < p^{em}$ , we see that  $t \ge 2$ . Therefore substituting x = 1 leads a contradiction t = 0 in  $\mathbb{F}_p$  as desired, and Theorem 2 is proved.

#### 3. An Application to the 4-Pascal's Triangle

By Theorem 2, in the case where p = 2 and e = 2, we see that for any integer  $n \ge 1$ , the *n*-th row in the 4-Pascal triangle consists of odd integers if and only if *n* is of the form  $\frac{4^m - 1}{3}$  with some integer  $m \ge 1$ .

In this section, we shall prove Theorem 3 asserting that for any integer  $m \ge 2$ , the  $\frac{4^m - 1}{3}$ -th row in the 4-Pascal's triangle is congruent to the sequence

$$\overbrace{1133\cdots1133}^{2^{2m-3}} \overbrace{3311\cdots3311}^{2^{2m-3}}$$

modulo 4. Here we should note that  $2^{2m-3}$  is the number of 1133's and 3311's, respectively.

Then Theorems 2 and 3 imply that ([2], Conjecture 0.3) holds in the case where k = 4, i.e., there exists no row in the 4-Pascal's triangle consisting of integers which are congruent to 1 modulo 4 except the first row as we have seen in Corollary 1.

#### 3.1. On a Congruence of Binomial Expansions

Before proving Theorem 3, we shall prove Lemma 1 on a congruence of binomial expansions in this subsection.

Let *p* be any prime number and *e* any positive integer. In order to prove the congruence

$$(x+1)^{p^e} \equiv (x^p+1)^{p^{e-1}} \pmod{p^e}$$

of binomial expansions with indeterminate x, it suffices to see the following two congruences hold:

(1) For any integer  $1 \le \ell \le p^e - 1$  which is prime to p,

$$_{p^e}C_\ell \equiv 0 \pmod{p^e}.$$

(2) In the case where  $e \ge 2$ , for any integers  $0 \le f \le e - 2$  and i such that  $1 \le ip^f \le p^{e-1} - 1$  and (i, p) = 1,

$${}_{p^e}C_{ip^{f+1}} \equiv {}_{p^{e-1}}C_{ip^f} \pmod{p^e}.$$

Firstly, we shall prove the part (1). In the case where  $\ell = 1$ , we see that

$$_{p^e}C_1 = p^e \equiv 0 \pmod{p^e}.$$

Moreover, in the case where  $2 \le \ell \le p^e - 1$ , we see that

$$_{p^e}C_\ell=rac{p^e}{\ell}\prod_{j=1}^{\ell-1}rac{p^e-j}{j}.$$

Since  $v_p(p^e - j) = v_p(j)$  for any  $1 \le j \le \ell - 1 < p^e$  and  $\ell$  is prime to p, we then see that

$$\begin{aligned} v(p^e C_\ell) &= e - v_p(\ell) + \sum_{j=1}^{\ell-1} v_p\left(\frac{p^e - j}{j}\right) \\ &= e + \sum_{j=1}^{\ell-1} (v_p(p^e - j) - v_p(j)) \\ &= e. \end{aligned}$$

Therefore  ${}_{p^e}C_\ell\equiv 0\ ({
m mod}\ p^e)$ , and part (1) is proved.

Secondly, we shall prove part (2). We see that

$$\begin{split} & p^{e}C_{ipf^{+1}} - p^{e^{-1}}C_{ipf} \\ & = \frac{p^{e}}{ip^{f+1}} \cdot \frac{\prod_{j=0}^{i-1} \left(\prod_{1 \le k \le p^{f+1} - 1, \ (k,p) = 1} (k + jp^{f+1} + (p^{e} - ip^{f+1}))\right)}{\prod_{j=0}^{i-1} \left(\prod_{1 \le k \le p^{f+1} - 1, \ (k,p) = 1} (k + jp^{f+1})\right)} \cdot p^{e^{-1} - 1}C_{ipf^{-1}} \\ & = \frac{p^{e^{-f} - 1}}{i} \cdot p^{e^{-1} - 1}C_{ipf^{-1}} \left(\prod_{1 \le k \le p^{f+1} - 1, \ (k,p) = 1} (k + jp^{f+1} + (p^{e} - ip^{f+1}))\right) - 1 \\ & = \frac{p^{e^{-f^{-1}}}}{i} \cdot p^{e^{-1} - 1}C_{ipf^{-1}} \left(\prod_{1 \le k \le p^{f+1} - 1, \ (k,p) = 1} (k + jp^{f+1} + (p^{e} - ip^{f+1}))\right) - 1 \\ & = \frac{p^{e^{-f^{-1}}}}{i} \cdot p^{e^{-1} - 1}C_{ipf^{-1}} \left(\prod_{1 \le k \le p^{f+1} - 1, \ (k,p) = 1} (k + jp^{f+1} + (p^{e} - ip^{f+1}))\right) - 1 \\ & = \frac{p^{e^{-f^{-1}}}}{i} \cdot p^{e^{-1} - 1}C_{ipf^{-1}} \left(\prod_{1 \le k \le p^{f+1} - 1, \ (k,p) = 1} (k + jp^{f+1})\right) - 1 \\ & = \frac{p^{e^{-f^{-1}}}}{i} \cdot p^{e^{-1} - 1}C_{ipf^{-1}} \left(\prod_{1 \le k \le p^{f+1} - 1, \ (k,p) = 1} (k + jp^{f+1})\right) - 1 \\ & = \frac{p^{e^{-f^{-1}}}}{i} \cdot p^{e^{-1} - 1}C_{ipf^{-1}} \left(\prod_{1 \le k \le p^{f^{+1} - 1}, \ (k,p) = 1} (k + jp^{f^{+1}})\right) - 1 \\ & = \frac{p^{e^{-f^{-1}}}}{i} \cdot p^{e^{-1} - 1}C_{ipf^{-1}} \left(\prod_{1 \le k \le p^{f^{+1} - 1}, \ (k,p) = 1} (k + jp^{f^{+1}})\right) - 1 \\ & = \frac{p^{e^{-f^{-1}}}}{i} \cdot p^{e^{-1} - 1}C_{ipf^{-1}} \left(\prod_{1 \le k \le p^{f^{+1} - 1}, \ (k,p) = 1} (k + jp^{f^{+1}})\right) - 1 \\ & = \frac{p^{e^{-f^{-1}}}}{i} \cdot p^{e^{-1} - 1}C_{ipf^{-1}} \left(\prod_{1 \le k \le p^{f^{+1} - 1}, \ (k,p) = 1} (k + jp^{f^{+1}})\right) - 1 \\ & = \frac{p^{e^{-f^{-1}}}}{i} \cdot p^{e^{-1} - 1}C_{ipf^{-1}} \left(\prod_{1 \le k \le p^{f^{+1} - 1}, \ (k,p) = 1} (k + jp^{f^{+1}})\right) - 1 \\ & = \frac{p^{e^{-f^{-1}}}}{i} \cdot p^{e^{-1} - 1}C_{ipf^{-1}} \left(\prod_{1 \le k \le p^{f^{+1} - 1}, \ (k,p) = 1} (k + jp^{f^{+1}})\right) - 1 \\ & = \frac{p^{e^{-f^{-1}}}}{i} \cdot p^{e^{-1} - 1}C_{ipf^{-1}} \left(\prod_{1 \le k \le p^{f^{-1} - 1}, \ (k,p) = 1} (k + jp^{f^{+1}})\right) - 1 \\ & = \frac{p^{e^{-1}}}{i} \cdot p^{e^{-1} - 1}C_{ipf^{-1}} \left(\prod_{1 \le k \le p^{f^{-1} - 1}, \ (k,p) = 1} (k + jp^{f^{-1} - 1})\right) - 1 \\ & = \frac{p^{e^{-1}}}{i} \cdot p^{e^{-1} - 1}C_{ipf^{-1}} \left(\prod_{1 \le k \le p^{f^{-1} - 1}, \ (k + jp^{f^{-1} - 1})}\right) - 1 \\ & = \frac{p^{e^{-1}}}{i} \cdot p^{e^{-1} - 1}$$

and that

$$\begin{split} &\prod_{j=0}^{i-1} \left( \prod_{1 \le k \le p^{f+1} - 1, \ (k,p) = 1} (k + jp^{f+1} + (p^e - ip^{f+1})) \right) \\ &\equiv \prod_{j=0}^{i-1} \left( \prod_{1 \le k \le p^{f+1} - 1, \ (k,p) = 1} (k + jp^{f+1}) \right) \\ &\equiv \left( \prod_{1 \le k \le p^{f+1} - 1, \ (k,p) = 1} k \right)^i \ (\text{mod } p^{f+1}). \end{split}$$

Since (i, p) = 1, we then see that  $p^e C_{ip^{f+1}} - p^{e-1}C_{ip^f}$  is divisible by  $p^{e-f-1} \cdot p^{f+1} = p^e$  as desired.

## 3.2. A Proof of Theorem 3

Now we shall prove Theorem 3 by means of Lemma 1 with p = 2 and e = 2, i.e., the congruence of binomial expansions

$$(x+1)^4 \equiv (x^2+1)^2 \pmod{4}$$
. ... (\*)

By Remark 2 (1), proving Theorem 3 is equivalent to proving that for any integer  $m \ge 2$ , the coefficient-wise congruence

$$(x^{3} + x^{2} + x + 1)^{\frac{4^{m}-1}{3}}$$
  

$$\equiv x^{4^{m}-1} + x^{4^{m}-2} - x^{4^{m}-3} - x^{4^{m}-4} + \dots + x^{\frac{4^{m}}{2}+3} + x^{\frac{4^{m}}{2}+2} - x^{\frac{4^{m}}{2}+1} - x^{\frac{4^{m}}{2}}$$
  

$$- x^{\frac{4^{m}}{2}-1} - x^{\frac{4^{m}}{2}-2} + x^{\frac{4^{m}}{2}-3} + x^{\frac{4^{m}}{2}-4} - \dots - x^{3} - x^{2} + x + 1 \pmod{4} \dots (**)$$

holds with indeterminate *x* by the induction on *m*.

Before doing this, we see the following

**Lemma 2.** The polynomial in the right hand side of the congruence relation (\*\*) can be decomposed as

$$(x+1)(x^2-1)(x^4+1)\cdots(x^{2^{2m-2}}+1)(x^{2^{2m-1}}-1).$$

**Proof.** By a direct calculation, we can see that there exists some positive integer  $\ell$  such that the polynomial in the right hand side of the congruence relation (\*\*) can be decomposed as

$$\begin{aligned} (x+1)(x^{4^m-2} - x^{4^m-4} + x^{4^m-6} - x^{4^m-8} + \dots + x^{\frac{4^m}{2}+6} - x^{\frac{4^m}{2}+4} + x^{\frac{4^m}{2}+2} - x^{\frac{4^m}{2}} \\ &- x^{\frac{4^m}{2}-2} + x^{\frac{4^m}{2}-4} - x^{\frac{4^m}{2}-6} + x^{\frac{4^m}{2}-8} - \dots - x^6 + x^4 - x^2 + 1) \\ &= (x+1)(x^2 - 1)(x^{4^m-4} + x^{4^m-8} + \dots + x^{\frac{4^m}{2}+4} + x^{\frac{4^m}{2}} \\ &- x^{\frac{4^m}{2}-4} - x^{\frac{4^m}{2}-8} - \dots - x^4 - 1) \\ &= \dots \\ &= (x+1)(x^2 - 1)(x^4 + 1) \cdots (x^{2^\ell} + 1)(x^{3\cdot 2^{\ell+1}} + x^{2\cdot 2^{\ell+1}} - x^{2^{\ell+1}} - 1) \\ &= (x+1)(x^2 - 1)(x^4 + 1) \cdots (x^{2^\ell} + 1)(x^{2^{\ell+1}} + 1)(x^{2^{\ell+2}} - 1). \end{aligned}$$

Since the degree of the polynomial in the right hand side of the congruence relation (\*\*) is equal to  $4^m - 1$ , we then see that

$$4^m - 1 = 1 + 2 + 2^2 + \dots + 2^{\ell} + 2^{\ell+1} + 2^{\ell+2}$$
  
=  $2^{\ell+3} - 1$ ,

which implies that  $\ell = 2m - 3$  as desired.  $\Box$ 

Let us start to prove Theorem 3 by the induction on  $m \ge 2$ . Firstly, in the case where m = 2, since

$$(x^2+1)^4 \equiv (x^4+1)^2 \pmod{4}$$

and

$$(x+1)^4 \equiv (x^2+1)^2 \equiv x^4 + 2x^2 + 1 \equiv x^4 - 2x^2 + 1$$
  
  $\equiv (x^2-1)^2 \pmod{4}$ 

by the congruence relation (\*), we see that

$$\begin{aligned} (x^3 + x^2 + x + 1)^5 &\equiv (x+1)(x^2+1)(x+1)^4(x^2+1)^4 \\ &\equiv (x+1)(x^2+1)(x^2-1)^2(x^4+1)^2 \\ &\equiv (x+1)(x^2-1)(x^4+1)(x^8-1) \pmod{4}. \end{aligned}$$

Therefore the congruence relation (\*\*) holds for m = 2 by Lemma 2.

Secondly, we assume that the congruence relation (\*\*) holds for some  $m \ge 2$ . By the congruence relation (\*), we see that

$$(x+1)^{4^m} \equiv (x+1)^{2^{2m}} \equiv ((x+1)^4)^{2^{2m-2}}$$
$$\equiv (x^2+1)^{2^{2m-1}} \equiv ((x^2+1)^4)^{2^{2m-3}}$$
$$\equiv (x^{2^2}+1)^{2^{2m-2}}$$
$$\equiv \cdots$$
$$\equiv (x^{2^{2m-1}}+1)^2$$
$$\equiv (x^{\frac{4^m}{2}}+1)^2 \pmod{4}.$$

By Lemma 2, we then see that

$$\begin{aligned} & (x^3 + x^2 + x + 1)^{\frac{4^m + 1 - 1}{3}} \\ &\equiv (x^3 + x^2 + x + 1)^{\frac{4^m - 1}{3} + 4^m} \\ &\equiv (x + 1)(x^2 - 1)(x^4 + 1)\cdots(x^{2^{2m-2}} + 1)(x^{2^{2m-1}} - 1)(x^2 + 1)^{4^m}(x + 1)^{4^m} \\ &\equiv (x + 1)(x^2 - 1)(x^4 + 1)\cdots(x^{2^{2m-2}} + 1)(x^{\frac{4^m}{2}} - 1)(x^{4^m} + 1)^2(x^{\frac{4^m}{2}} + 1)^2 \\ &\equiv (x + 1)(x^2 - 1)(x^4 + 1)\cdots(x^{2^{2m-2}} + 1)(x^{2^{2m-1}} + 1)(x^{2^{2m}} + 1)(x^{2\cdot 4^m} - 1) \\ &\equiv (x + 1)(x^2 - 1)(x^4 + 1)\cdots(x^{2^{2m}} + 1)(x^{2^{2m+1}} - 1) \pmod{4}, \end{aligned}$$

i.e., the congruence relation (\*\*) also holds for m + 1 as desired. This proves Theorem 3.

**Author Contributions:** Conceptualization, A.Y.; Investigation, A.Y. and K.T.; Writing—original draft, A.Y. All authors have read and agreed to the published version of the manuscript.

**Acknowledgments:** The first author is very grateful to the second author, who is one of his students at Soka University, for giving some interesting talks regarding his calculations of the *k*-Pascal's triangles with some specified composite numbers *k* in seminars held in 2019 at Soka University.

Conflicts of Interest: The authors declare no conflict of interest.

#### References

- Matsuda, O.; Tsuyama Math Club in National Institute of Technology, Tsuyama College. 11 kara Hajimaru sūgaku—k-Pasukaru Sankakkei, k-Fibonatchi Sūretsu, choo
  gons
  ü; [Mathematics that begins with 11—k-Pascal's Triangles, k-Fibonacci Sequences and the Super Golden Numbers]; Tokyo Tosho Co. Ltd.: Tokyo, Japan, 2008. (In Japanese)
- 2. Yamagami, A.; Harada, H. On a generalization of a Lucas' result on the Pascal triangle and Mersenne numbers. *JP J. Algebra Number Theory Appl.* **2019**, 42 159–169. [CrossRef]
- 3. Lucas, É. *Théorie des Nombres*; Gauthier-Villars et Fils; Libraires, du Bureau des Longitudes, de l'École Polytechnique, Quai des Grands-Augustins: Paris, France, 1891; Volume 55.



© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).