Article

On a Generalization of a Lucas' Result and an Application to the 4-Pascal's Triangle ${ }^{\dagger}$

Atsushi Yamagami * and Kazuki Taniguchi
Department of Information Systems Science, Soka University, Tokyo 192-8577, Japan; e1658229@soka-u.jp
* Correspondence: yamagami@soka.ac.jp
\dagger This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Received: 29 January 2020; Accepted: 10 February 2020; Published: 16 February 2020

Abstract

The Pascal's triangle is generalized to "the k-Pascal's triangle" with any integer $k \geq 2$. Let p be any prime number. In this article, we prove that for any positive integers n and e, the n-th row in the p^{e}-Pascal's triangle consists of integers which are congruent to 1 modulo p if and only if n is of the form $\frac{p^{e m}-1}{p^{e}-1}$ with some integer $m \geq 1$. This is a generalization of a Lucas' result asserting that the n-th row in the (2-)Pascal's triangle consists of odd integers if and only if n is a Mersenne number. As an application, we then see that there exists no row in the 4-Pascal's triangle consisting of integers which are congruent to 1 modulo 4 except the first row. In this application, we use the congruence $(x+1)^{p^{e}} \equiv\left(x^{p}+1\right)^{p^{e-1}}\left(\bmod p^{e}\right)$ of binomial expansions which we could prove for any prime number p and any positive integer e. We think that this article is fit for the Special Issue "Number Theory and Symmetry," since we prove a symmetric property on the 4-Pascal's triangle by means of a number-theoretical property of binomial expansions.

Keywords: the p^{e}-Pascal's triangle; Lucas' result on the Pascal's triangle; congruences of binomial expansions

MSC: 11A99.

1. Introduction

As it is known, Pascal's triangle is constructed in the following way: Write the first row " 11 ". Then each member of each subsequent row is given by taking the sum of the just above two members, regarding any blank as 0 .

Example 1. Here is the Pascal's triangle from the first row to the 7-th row:

Remark 1. For any integers $n \geq 1$ and $r \geq 0$, we put

$$
{ }_{n} C_{r}:=\frac{n!}{r!(n-r)!}=\frac{n(n-1) \cdots(n-r+1)}{r \cdots 1}
$$

where we put $0!=1$. Then it is well-known that the n-th row in the Pascal's triangle is equal to the sequence

$$
{ }_{n} C_{0, n} C_{1}, \ldots,{ }_{n} C_{n-1},{ }_{n} C_{n}
$$

consisting of $n+1$ terms.
In ([1], Section 1.4), the construction above is generalized as follows:
Definition 1. Let $k \geq 2$ be any integer. The k-Pascal's triangle is constructed in the following way: Write the first row " $\overbrace{11 \cdots 1}^{k}$ ". Then each member of each subsequent row is given by taking the sum of the just above k members regarding the blank as 0 .

Example 2. In the case where $k=4$, the 4-Pascal's triangle from the first row to the 5-th row is the following:

$$
\begin{aligned}
& \begin{array}{llll}
1 & 1 & 1 & 1
\end{array} \\
& \begin{array}{lllllll}
1 & 2 & 3 & 4 & 3 & 2 & 1
\end{array} \\
& \begin{array}{llllllllll}
1 & 3 & 6 & 10 & 12 & 12 & 10 & 6 & 3 & 1
\end{array} \\
& \begin{array}{llllllllllll}
1 & 4 & 10 & 20 & 31 & 40 & 44 & 40 & 31 & 20 & 10 & 4
\end{array}
\end{aligned}
$$

Remark 2. (1) In ([1], Section 1.4), for any integers $k \geq 2$ and $n \geq 1$, it is mentioned that the n-th row in the k-Pascal's triangle consists of $n(k-1)+1$ integers

$$
{ }_{n} C_{0}^{(k)},{ }_{n} C_{1}^{(k)}, \ldots,{ }_{n} C_{n(k-1)-1^{\prime}{ }_{n}}^{(k)} C_{n(k-1)}^{(k)}
$$

satisfying the equation

$$
\begin{aligned}
& \left(x^{k-1}+x^{k-2}+\cdots+x+1\right)^{n} \\
& ={ }_{n} C_{0}^{(k)} x^{n(k-1)}+{ }_{n} C_{1}^{(k)} x^{n(k-1)-1}+\cdots+{ }_{n} C_{n(k-1)-1}^{(k)} x+{ }_{n} C_{n(k-1)}^{(k)}
\end{aligned}
$$

of polynomials with indeterminate x and integral coefficients. A detailed proof of this fact is described in ([2], Lemma 1.1).
(2) In ([1], Section 9.10), the following formula for ${ }_{n} C_{i}^{(k)}$ is described:

$$
{ }_{n} C_{i}^{(k)}=\sum_{j=0}^{\left[\frac{i}{k}\right]}(-1)^{j}{ }_{n+i-j k-1} C_{n-1} \cdot{ }_{n} C_{j}
$$

where $\left[\frac{i}{k}\right]$ is the greatest integer that is less than or equal to $\frac{i}{k}$.

In Example 1, we can see that the n-th row consists of odd integers when n is equal to the Mersenne number 1, 3 or 7. Actually, Lucas showed the following

Theorem 1 ([3], Exemple I in Section 228). Let $n \geq 1$ be any integer. Then ${ }_{n} C_{r}$ is odd for any $0 \leq r \leq n$ if and only if n is a Mersenne number, i.e., n is of the form $2^{m}-1$ with some integer $m \geq 1$.

In Section 2 in this article, we generalize the Lucas' result above as the following
Theorem 2. Let p be any prime number and e any positive integer. For any integer $n \geq 1$, the n-th row in the p^{e}-Pascal's triangle consists of integers which are congruent to 1 modulo p if and only if n is of the form $\frac{p^{e m}-1}{p^{e}-1}$ with some integer $m \geq 1$.

Remark 3. (1) Theorem 2 is a generalization of ([2], Theorem 0.2) which is in the case where $e=1$.
(2) We can see that Example 2 gives a partial example of Theorem 2 in the case where $p=2, e=2$ and $m=1,2$.

As an application of Theorem 2, we can prove that ([2], Conjecture 0.3) holds for $k=4$, i.e., there exists no row in the 4-Pascal's triangle consisting of integers which are congruent to 1 modulo 4 except the first row as follows:

By Theorem 2, in the case where $k=4$, we see that for any integer $n \geq 1$, the n-th row in the 4-Pascal's triangle consists of odd integers if and only if n is of the form $\frac{4^{m}-1}{3}$ with some integer $m \geq 1$.

Moreover, we can see an essential property of the $\frac{4^{m}-1}{3}$-th row in the 4-Pascal's triangle for any integer $m \geq 2$ as in the following theorem proved in Section 3.2:

Theorem 3. For any integer $m \geq 2$, the $\frac{4^{m}-1}{3}$-th row in the 4 -Pascal's triangle is congruent to the sequence

$$
\overbrace{1133 \cdots 1133}^{2^{2 m-3}} \overbrace{3311 \cdots 3311}^{2^{2 m-3}}
$$

modulo 4 , which consists of the repeated 1133's and 3311's whose numbers are the same $2^{2 m-3}$.
Therefore we can obtain the following
Corollary 1. ([2], Conjecture 0.3) holds for $k=4$, i.e., there exists no row in the 4-Pascal's triangle consisting of integers which are congruent to 1 modulo 4 except the first row.

Remark 4. (1) By Example 2, in the case where $m=2$, we can see that the 5 -th row in the 4 -Pascal's triangle is congruent to the sequence

$$
1133113333113311
$$

modulo 4, which matches the assertion of Theorem 3.
(2) It seems that one could obtain the forms of the sequenece to which the $\left(\frac{4^{m}-1}{3} \pm \ell\right)$-th row in the 4-Pascal's triangle is congruent modulo 4 for some positive integers ℓ by means of Theorem 3. We would like to do these calculations in the future.

In the proof of Theorem 3 in Section 3.2, we shall use the following lemma proved in Section 3.1:
Lemma 1. For any prime number p and any positive integer e, we have the following coefficient-wise congruence

$$
(x+1)^{p^{e}} \equiv\left(x^{p}+1\right)^{p^{e-1}}\left(\bmod p^{e}\right)
$$

of binomial expansions with indetermiate x.

2. A Proof of Theorem 2

Although Theorem 2 can be proved by the same argument as the proof of ([2], Theorem 0.2), we shall describe its detailed proof here to make this article self-contained.

Let n and e be any positive integers and p be any prime number.
Firstly, we assume that n is of the form $n=\frac{p^{e m}-1}{p^{e}-1}$ with some integer $m \geq 1$. In the algebra $\mathbb{F}_{p}[x]$ of polynomials of one varible x with coefficients in the finite field $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ of p elements, we see that for any positive integer ℓ,

$$
\begin{aligned}
(x-1)^{p^{\ell}-1} & =\frac{(x-1)^{p^{\ell}}}{x-1}=\frac{x^{p^{\ell}}-1}{x-1} \\
& =x^{p^{\ell}-1}+x^{p^{\ell}-2}+\cdots+x+1 .
\end{aligned}
$$

Therefore we see that

$$
\begin{aligned}
\left(x^{p^{e}-1}+x^{p^{e}-2}+\cdots+x+1\right)^{n} & =\left(x^{p^{e}-1}+x^{p^{e}-2}+\cdots+x+1\right)^{\frac{p^{e m}-1}{p^{e}-1}} \\
& =\left((x-1)^{p^{e}-1}\right)^{\frac{p^{e m}-1}{p^{e}-1}} \\
& =(x-1)^{p^{e m}-1} \\
& =x^{p^{e m}-1}+x^{p^{e m}-2}+\cdots+x+1 \\
& =x^{n\left(p^{e}-1\right)}+x^{n\left(p^{e}-1\right)-1}+\cdots+x+1
\end{aligned}
$$

in $\mathbb{F}_{p}[x]$. By Remark $2(1)$, this implies that the n-th row in the p^{e}-Pascal's triangle consists of integers which are congruent to 1 modulo p as desired.

Conversely, we now assume that n is of the form

$$
n=1+p^{e}+\cdots+p^{e(m-1)}+k
$$

with some integers $m \geq 1$ and $1 \leq k \leq p^{e m}-1$. Moreover, we assume that we have

$$
\left(x^{p^{e}-1}+x^{p^{e}-2}+\cdots+x+1\right)^{n}=x^{n\left(p^{e}-1\right)}+x^{n\left(p^{e}-1\right)-1}+\cdots+x+1
$$

in $\mathbb{F}_{p}[x]$ to obtain some contradiction. Since the left hand side is equal to $(x-1)^{n\left(p^{e}-1\right)}$ and the right hand side is equal to $\frac{x^{n\left(p^{e}-1\right)+1}-1}{x-1}$, we then have the equality

$$
(x-1)^{n\left(p^{e}-1\right)+1}=x^{n\left(p^{e}-1\right)+1}-1
$$

in $\mathbb{F}_{p}[x]$. Since $n=\frac{p^{e m}-1}{p^{e}-1}+k$, this implies that

$$
(x-1)^{p^{e m}+k\left(p^{e}-1\right)}=x^{p^{e m}+k\left(p^{e}-1\right)}-1 .
$$

Let $v_{p}(a)$ be the p-adic valuation of any non-zero integer a, i.e., $p^{v_{p}(a)} \mid a$ and $p^{v_{p}(a)+1} \nmid a$. Since $1 \leq k \leq p^{e m}-1$, we see that $v_{p}(k)<e m$ and then

$$
v_{p}\left(p^{e m}+k\left(p^{e}-1\right)\right)=v_{p}(k)
$$

Therefore we can put

$$
p^{e m}+k\left(p^{e}-1\right)=p^{v_{p}(k)} t
$$

with some positive integer t which is prime to p. Then we have

$$
(x-1)^{p^{v p(k)} t}=x^{p^{v p(k)} t}-1=\left(x^{t}-1\right)^{p^{v p} p(k)}
$$

which implies that

$$
(x-1)^{p^{v_{p}(k)}(t-1)}=\left(x^{t-1}+x^{t-2}+\cdots+x+1\right)^{p^{v_{p}(k)}}
$$

since $\mathbb{F}_{p}[x]$ is an integral domain. Since $p^{v_{p}(k)}<p^{e m}$, we see that $t \geq 2$. Therefore substituting $x=1$ leads a contradiction $t=0$ in \mathbb{F}_{p} as desired, and Theorem 2 is proved.

3. An Application to the 4-Pascal's Triangle

By Theorem 2, in the case where $p=2$ and $e=2$, we see that for any integer $n \geq 1$, the n-th row in the 4-Pascal triangle consists of odd integers if and only if n is of the form $\frac{4^{m}-1}{3}$ with some integer $m \geq 1$.

In this section, we shall prove Theorem 3 asserting that for any integer $m \geq 2$, the $\frac{4^{m}-1}{3}$-th row in the 4-Pascal's triangle is congruent to the sequence

$$
\overbrace{1133 \cdots 1133}^{2^{2 m-3}} \overbrace{3311 \cdots 3311}^{2^{2 m-3}}
$$

modulo 4 . Here we should note that $2^{2 m-3}$ is the number of 1133's and 3311's, respectively.
Then Theorems 2 and 3 imply that ([2], Conjecture 0.3) holds in the case where $k=4$, i.e., there exists no row in the 4-Pascal's triangle consisting of integers which are congruent to 1 modulo 4 except the first row as we have seen in Corollary 1.

3.1. On a Congruence of Binomial Expansions

Before proving Theorem 3, we shall prove Lemma 1 on a congruence of binomial expansions in this subsection.

Let p be any prime number and e any positive integer. In order to prove the congruence

$$
(x+1)^{p^{e}} \equiv\left(x^{p}+1\right)^{p^{e-1}}\left(\bmod p^{e}\right)
$$

of binomial expansions with indeterminate x, it suffices to see the following two congruences hold:
(1) For any integer $1 \leq \ell \leq p^{\ell}-1$ which is prime to p,

$$
p^{e} C_{\ell} \equiv 0\left(\bmod p^{e}\right)
$$

(2) In the case where $e \geq 2$, for any integers $0 \leq f \leq e-2$ and i such that $1 \leq i p^{f} \leq p^{e-1}-1$ and $(i, p)=1$,

$$
p^{e} C_{i p f+1} \equiv{ }_{p^{e-1}} C_{i p f}\left(\bmod p^{e}\right)
$$

Firstly, we shall prove the part (1). In the case where $\ell=1$, we see that

$$
p^{e} C_{1}=p^{e} \equiv 0\left(\bmod p^{e}\right)
$$

Moreover, in the case where $2 \leq \ell \leq p^{e}-1$, we see that

$$
p^{e} C_{\ell}=\frac{p^{e}}{\ell} \prod_{j=1}^{\ell-1} \frac{p^{e}-j}{j}
$$

Since $v_{p}\left(p^{e}-j\right)=v_{p}(j)$ for any $1 \leq j \leq \ell-1<p^{e}$ and ℓ is prime to p, we then see that

$$
\begin{aligned}
v\left(p^{e} C_{\ell}\right) & =e-v_{p}(\ell)+\sum_{j=1}^{\ell-1} v_{p}\left(\frac{p^{e}-j}{j}\right) \\
& =e+\sum_{j=1}^{\ell-1}\left(v_{p}\left(p^{e}-j\right)-v_{p}(j)\right) \\
& =e
\end{aligned}
$$

Therefore $p^{e} C_{\ell} \equiv 0\left(\bmod p^{e}\right)$, and part (1) is proved.
Secondly, we shall prove part (2). We see that

$$
\begin{aligned}
& p^{e} C_{i p^{f+1}}-p_{p^{e-1}} C_{i p^{f}} \\
&= \frac{p^{e}}{i p^{f+1}} \cdot \frac{\prod_{j=0}^{i-1}\left(\prod_{1 \leq k \leq p^{f+1}-1,(k, p)=1}\left(k+j p^{f+1}+\left(p^{e}-i p^{f+1}\right)\right)\right)}{\prod_{j=0}^{i-1}\left(\prod_{1 \leq k \leq p^{f+1}-1,(k, p)=1}\left(k+j p^{f+1}\right)\right)}{ }_{p^{e-1}-1} C_{i p^{f}-1} \\
&-\frac{p^{e-1}}{i p^{f}} \cdot{ }_{p^{e-1}-1} C_{i p^{f}-1} \\
&= \frac{p^{e-f-1}}{i} \cdot p^{e-1}-1 \\
& C_{i p^{f}-1}\left(\frac{\prod_{j=0}^{i-1}\left(\prod_{1 \leq k \leq p^{f+1}-1,(k, p)=1}^{i-1}\left(k+j p^{f+1}+\left(p^{e}-i p^{f+1}\right)\right)\right)}{\prod_{j=0}^{i-1}\left(\prod_{1 \leq k \leq p^{f+1}-1,(k, p)=1}\left(k+j p^{f+1}\right)\right)}-1\right)
\end{aligned}
$$

and that

$$
\begin{aligned}
& \prod_{j=0}^{i-1}\left(\prod_{1 \leq k \leq p^{f+1}-1,(k, p)=1}\left(k+j p^{f+1}+\left(p^{e}-i p^{f+1}\right)\right)\right) \\
\equiv & \prod_{j=0}^{i-1}\left(\prod_{1 \leq k \leq p^{f+1}-1,(k, p)=1}\left(k+j p^{f+1}\right)\right) \\
\equiv & \left(\prod_{1 \leq k \leq p^{f+1}-1,(k, p)=1} k\right)^{i}\left(\bmod p^{f+1}\right) .
\end{aligned}
$$

Since $(i, p)=1$, we then see that $p^{e} C_{i p} f+1-p_{p^{e-1}} C_{i p}$ is divisible by $p^{e-f-1} \cdot p^{f+1}=p^{e}$ as desired.

3.2. A Proof of Theorem 3

Now we shall prove Theorem 3 by means of Lemma 1 with $p=2$ and $e=2$, i.e., the congruence of binomial expansions

$$
\begin{equation*}
(x+1)^{4} \equiv\left(x^{2}+1\right)^{2}(\bmod 4) . \cdots \tag{*}
\end{equation*}
$$

By Remark 2 (1), proving Theorem 3 is equivalent to proving that for any integer $m \geq 2$, the coefficient-wise congruence

$$
\begin{aligned}
&\left(x^{3}+x^{2}+x+1\right)^{\frac{4^{m}-1}{3}} \\
& \equiv x^{4^{m}-1}+x^{4^{m}-2}-x^{4^{m}-3}-x^{4^{m}-4}+\cdots+x^{\frac{4^{m}}{2}+3}+x^{\frac{4^{m}}{2}+2}-x^{\frac{4^{m}}{2}+1}-x^{\frac{4^{m}}{2}} \\
&- x^{\frac{4^{m}}{2}}-1 \\
& \frac{4}{}^{\frac{4^{m}}{2}}-2 \\
& x^{\frac{4^{m}}{2}-3}+x^{\frac{4^{m}}{2}-4}-\cdots-x^{3}-x^{2}+x+1(\bmod 4) \cdots(* *)
\end{aligned}
$$

holds with indeterminate x by the induction on m.
Before doing this, we see the following
Lemma 2. The polynomial in the right hand side of the congruence relation $(* *)$ can be decomposed as

$$
(x+1)\left(x^{2}-1\right)\left(x^{4}+1\right) \cdots\left(x^{2^{2 m-2}}+1\right)\left(x^{2^{2 m-1}}-1\right)
$$

Proof. By a direct calculation, we can see that there exists some positive integer ℓ such that the polynomial in the right hand side of the congruence relation $(* *)$ can be decomposed as

$$
\begin{aligned}
& (x+1)\left(x^{4^{m}-2}-x^{4^{m}-4}+x^{4^{m}-6}-x^{4^{m}-8}+\cdots+x^{\frac{4^{m}}{2}+6}-x^{4^{\frac{4^{m}}{2}}+4}+x^{\frac{4^{m}}{2}+2}-x^{\frac{4^{m}}{2}}\right. \\
& \left.-x^{\frac{4^{m}}{2}-2}+x^{\frac{4^{m}}{2}-4}-x^{4^{\frac{4^{m}}{2}}-6}+x^{\frac{4^{m}}{2}-8}-\cdots-x^{6}+x^{4}-x^{2}+1\right) \\
& =(x+1)\left(x^{2}-1\right)\left(x^{4^{m}-4}+x^{4^{m}-8}+\cdots+x^{\frac{4}{m}_{2}^{2}}+4+x^{\frac{4^{m}}{2}}\right. \\
& \left.-x^{\frac{4^{m}}{2}-4}-x^{\frac{4^{m}}{2}-8}-\cdots-x^{4}-1\right) \\
& =\ldots \\
& =(x+1)\left(x^{2}-1\right)\left(x^{4}+1\right) \cdots\left(x^{2^{\ell}}+1\right)\left(x^{3 \cdot 2^{\ell+1}}+x^{2 \cdot 2^{\ell+1}}-x^{2^{\ell+1}}-1\right) \\
& =(x+1)\left(x^{2}-1\right)\left(x^{4}+1\right) \cdots\left(x^{2^{\ell}}+1\right)\left(x^{2^{\ell+1}}+1\right)\left(x^{2^{\ell+2}}-1\right) \text {. }
\end{aligned}
$$

Since the degree of the polynomial in the right hand side of the congruence relation $(* *)$ is equal to $4^{m}-1$, we then see that

$$
\begin{aligned}
4^{m}-1 & =1+2+2^{2}+\cdots+2^{\ell}+2^{\ell+1}+2^{\ell+2} \\
& =2^{\ell+3}-1
\end{aligned}
$$

which implies that $\ell=2 m-3$ as desired.
Let us start to prove Theorem 3 by the induction on $m \geq 2$. Firstly, in the case where $m=2$, since

$$
\left(x^{2}+1\right)^{4} \equiv\left(x^{4}+1\right)^{2}(\bmod 4)
$$

and

$$
\begin{aligned}
(x+1)^{4} & \equiv\left(x^{2}+1\right)^{2} \equiv x^{4}+2 x^{2}+1 \equiv x^{4}-2 x^{2}+1 \\
& \equiv\left(x^{2}-1\right)^{2}(\bmod 4)
\end{aligned}
$$

by the congruence relation $(*)$, we see that

$$
\begin{aligned}
\left(x^{3}+x^{2}+x+1\right)^{5} & \equiv(x+1)\left(x^{2}+1\right)(x+1)^{4}\left(x^{2}+1\right)^{4} \\
& \equiv(x+1)\left(x^{2}+1\right)\left(x^{2}-1\right)^{2}\left(x^{4}+1\right)^{2} \\
& \equiv(x+1)\left(x^{2}-1\right)\left(x^{4}+1\right)\left(x^{8}-1\right)(\bmod 4)
\end{aligned}
$$

Therefore the congruence relation $(* *)$ holds for $m=2$ by Lemma 2 .
Secondly, we assume that the congruence relation $(* *)$ holds for some $m \geq 2$. By the congruence relation $(*)$, we see that

$$
\begin{aligned}
(x+1)^{4^{m}} & \equiv(x+1)^{2^{2 m}} \equiv\left((x+1)^{4}\right)^{2^{2 m-2}} \\
& \equiv\left(x^{2}+1\right)^{2^{2 m-1}} \equiv\left(\left(x^{2}+1\right)^{4}\right)^{2^{2 m-3}} \\
& \equiv\left(x^{2^{2}}+1\right)^{2^{2 m-2}} \\
& \equiv \cdots \\
& \equiv\left(x^{2^{2 m-1}}+1\right)^{2} \\
& \equiv\left(x^{\frac{4^{m}}{2}}+1\right)^{2}(\bmod 4) .
\end{aligned}
$$

By Lemma 2, we then see that

$$
\begin{aligned}
& \left(x^{3}+x^{2}+x+1\right)^{\frac{4^{m+1}-1}{3}} \\
\equiv & \left(x^{3}+x^{2}+x+1\right)^{\frac{4^{m}-1}{3}}+4^{m} \\
\equiv & (x+1)\left(x^{2}-1\right)\left(x^{4}+1\right) \cdots\left(x^{2^{2 m-2}}+1\right)\left(x^{2^{2 m-1}}-1\right)\left(x^{2}+1\right)^{4^{m}}(x+1)^{4^{m}} \\
\equiv & (x+1)\left(x^{2}-1\right)\left(x^{4}+1\right) \cdots\left(x^{2^{2 m-2}}+1\right)\left(x^{\frac{4^{m}}{2}}-1\right)\left(x^{4^{m}}+1\right)^{2}\left(x^{\frac{4^{m}}{2}}+1\right)^{2} \\
\equiv & (x+1)\left(x^{2}-1\right)\left(x^{4}+1\right) \cdots\left(x^{2^{2 m-2}}+1\right)\left(x^{2^{2 m-1}}+1\right)\left(x^{2^{2 m}}+1\right)\left(x^{2 \cdot 4^{m}}-1\right) \\
\equiv & (x+1)\left(x^{2}-1\right)\left(x^{4}+1\right) \cdots\left(x^{2^{2 m}}+1\right)\left(x^{2^{2 m+1}}-1\right)(\bmod 4),
\end{aligned}
$$

i.e., the congruence relation $(* *)$ also holds for $m+1$ as desired. This proves Theorem 3.

Author Contributions: Conceptualization, A.Y.; Investigation, A.Y. and K.T.; Writing-original draft, A.Y. All authors have read and agreed to the published version of the manuscript.

Acknowledgments: The first author is very grateful to the second author, who is one of his students at Soka University, for giving some interesting talks regarding his calculations of the k-Pascal's triangles with some specified composite numbers k in seminars held in 2019 at Soka University.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Matsuda, O.; Tsuyama Math Club in National Institute of Technology, Tsuyama College. 11 kara Hajimaru sūgaku- k-Pasukaru Sankakkei, k-Fibonatchi Sūretsu, chōōgonsū; [Mathematics that begins with $11 — k$-Pascal's Triangles, k-Fibonacci Sequences and the Super Golden Numbers]; Tokyo Tosho Co. Ltd.: Tokyo, Japan, 2008. (In Japanese)
2. Yamagami, A.; Harada, H. On a generalization of a Lucas' result on the Pascal triangle and Mersenne numbers. JP J. Algebra Number Theory Appl. 2019, 42 159-169. [CrossRef]
3. Lucas, É. Théorie des Nombres; Gauthier-Villars et Fils; Libraires, du Bureau des Longitudes, de l'École Polytechnique, Quai des Grands-Augustins: Paris, France, 1891; Volume 55.
