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Abstract: Conditions that are necessary for the relative annihilator in lower BCK-semilattices to be a
prime ideal are discussed. Given the minimal prime decomposition of an ideal A, a condition for
any prime ideal to be one of the minimal prime factors of A is provided. Homomorphic image and
pre-image of the minimal prime decomposition of an ideal are considered. Using a semi-prime closure
operation “cl”, we show that every minimal prime factor of a cl-closed ideal A is also cl-closed.
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1. Introduction

For the first time, Aslam et al. in [1] discussed the concept of annihilators for a subset in BCK-algebras,
and after that many researchers generalized it in different research articles (see [2–6]). Except these,
the notion related to annihilator in BCK-algebras is investigated in the papers [7–9]. In [4,6], Bordbar et al.
introduced the notion of the relative annihilator in a lower BCK-semilattice for a subset with respect
to another subset as a logical extension of annihilator, and they obtained some properties related to
this notion. They provide the conditions that the relative annihilator of an ideal with respect to an
ideal needs to be ideal, and discussed conditions for the relative annihilator ideal to be an implicative
(resp., positive implicative, commutative) ideal. Moreover, in some articles, different properties of
ideals in logical algebras and ordered algebraic structures were concerned (see [10–19]). In order to
investigate these kinds of properties for an arbitrary ideal in BCI/BCK-algebra, we need to know
about the decomposition of an ideal. With this motivation, this article is the first try, as far as we know,
to decompose an ideal in a BCI/BCK-algebra.

In this paper, we prove that the relative annihilator of a subset with respect to a prime ideal is
also a prime ideal. Given the minimal prime decomposition of an ideal A, we provide a condition for
any prime ideal to be one of minimal prime factors of A by using the relative annihilator. We consider
homomorphic image and preimage of the minimal prime decomposition of an ideal. Using a semi-prime
closure operation “cl”, we show that, if an ideal A is cl-closed, then every minimal prime factor of A is
also cl-closed.

2. Preliminaries

In this section, gather some results related to BCI/BCK-algebra and ideals, which will be used in
the next section. For more details, the readers are refereed to [20].

The study of BCI/BCK-algebras was initiated by Imai and Iseki in 1966 as a generalization of the
concept of set-theoretic difference and propositional calculi.

Suppose that X is a set and (X; ∗, 0) of type (2, 0) is an algebra. The set X is called a BCI-algebra if
it satisfies the following conditions:

Symmetry 2020, 12, 286; doi:10.3390/sym12020286 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/2073-8994/12/2/286?type=check_update&version=1
http://dx.doi.org/10.3390/sym12020286
http://www.mdpi.com/journal/symmetry


Symmetry 2020, 12, 286 2 of 11

(I) (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),
(II) (∀x, y ∈ X) ((x ∗ (x ∗ y)) ∗ y = 0),

(III) (∀x ∈ X) (x ∗ x = 0),
(IV) (∀x, y ∈ X) (x ∗ y = 0, y ∗ x = 0 ⇒ x = y).

Every BCI-algebra X with the following condition

(∀x ∈ X) (0 ∗ x = 0)

is called a BCK-algebra.

Proposition 1. Let X be a BCI/BCK-algebra. Then, the following statements are satisfied in every
BCI/BCK-algebra:

(1) (∀x ∈ X) (x ∗ 0 = x),
(2) (∀x, y, z ∈ X) (x ≤ y ⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x),
(3) (∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y),
(4) (∀x, y, z ∈ X) ((x ∗ z) ∗ (y ∗ z) ≤ x ∗ y)

where x ≤ y if and only if x ∗ y = 0.

Definition 1. A BCK-algebra X is called a lower BCK-semilattice (see [20]) if X is a lower semilattice with
respect to the BCK-order.

Definition 2 ([20]). Let X be a a BCI/BCK-algebra. An arbitrary subset A of X is called an ideal of X if
it satisfies

0 ∈ A, (1)

(∀x ∈ X) (∀y ∈ A) (x ∗ y ∈ A ⇒ x ∈ A) . (2)

Remark 1 ([20]). For every ideal A of a BCK-algebra X and for all x, y ∈ X, the following implication
is satisfied:

(x ≤ y, y ∈ A ⇒ x ∈ A) . (3)

Definition 3 ([20]). Let P be a proper ideal of a lower BCK-semilattice X. Then, P is a prime ideal if, for
a, b ∈ X such that a ∧ b ∈ P, we conclude that a ∈ P or b ∈ P, where a ∧ b is the greatest lower bound of a
and b.

For an ideal A of a BCK-algebra X, the ideal B of X is called minimal prime associated with A if B
is minimal in the set of all prime ideals containing A.

Lemma 1 ([21]). If ϕ : X → Y is an epimorphism of lower BCK-semilattices, then

(∀x, y ∈ X) (ϕ(x ∧X y) = ϕ(x) ∧Y ϕ(y)) . (4)

Lemma 2 ([21]). 1. Let ϕ : X → Y be an epimorphism of BCK-algebras. If A is an ideal of X, then ϕ(A) is
an ideal of Y.

2. Let ϕ : X → Y be an homomorphism of BCK-algebras. If B is an ideal of Y, then ϕ−1(B) is an ideal of X.

Lemma 3 ([21]). Let ϕ : X → Y be a homomorphism of BCK-algebras X and Y and let A be an ideal of X such
that Ker(ϕ) ⊆ A. Then, ϕ−1(A′) = A where A′ = ϕ(A).
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3. Primeness of Relative Annihilators

In this section, we use the notations X as a lower BCK-semilattice, x ∧ y as the g.l.b.(greatest lower
bound) of x, y ∈ X and

A ∧ B := {a ∧ b | a ∈ A, b ∈ B}

for any two arbitrary subsets A, B of X, unless otherwise.
In a case that, A = {a}, then we use a ∧ B instead of {a} ∧ B.

Definition 4 ([4]). Let A and B be two arbitrary subsets of X. A set (A :∧ B) is defined as follows:

(A :∧ B) := {x ∈ X | x ∧ B ⊆ A} (5)

and it is called the relative annihilator of B with respect to A.

Remark 2. If A = {a}, then ({a} :∧ B) is denoted by (a :∧ B). Similarly, we use (A :∧ b) instead of (A :∧ {b}),
when B = {b}.

The next two Lemmas are from [4,6].

Lemma 4. For any ideal A and a nonempty subset B of X, the following implication

A ⊆ (A :∧ B)

is satisfied.

Lemma 5. Let B be an arbitrary nonempty subset of X in which the following statement is valid for all x, y ∈ X

(∀b ∈ B) ((x ∧ b) ∗ (y ∧ b) ≤ (x ∗ y) ∧ b) . (6)

Consider the relative annihilator (A :∧ B). If A is an ideal of X, then the the relative annihilator (A :∧ B) is an
ideal of X.

Theorem 1. Let B be an arbitrary subset of X such that the condition (6) is satisfied for B. If A is a prime ideal
of X, then the relative annihilator (A :∧ B) of B with respect to A is X itself or a prime ideal of X.

Proof. Suppose that (A :∧ B) 6= X. Then (A :∧ B) is a proper ideal of X by Lemma 5. Now, let
x ∧ y ∈ (A :∧ B) and x /∈ (A :∧ B) for elements x, y ∈ X. Then, (x ∧ y) ∧ B ⊆ A and x ∧ b /∈ A for
some b ∈ B. Thus,

(x ∧ b) ∧ y = (x ∧ y) ∧ b ∈ A.

Since A is a prime ideal of X, it follows from Definition 3 and Lemma 4 that y ∈ A ⊆ (A :∧ B).
Therefore, (A :∧ B) is a prime ideal of X.

Corollary 1. Suppose that X is a commutative BCK-algebra. If A is a prime ideal of X and B is a nonempty
subset of X, then the relative annihilator (A :∧ B) of B with respect to A is X itself or a prime ideal of X.

Lemma 6 ([22]). If A and B are ideals of X, then the relative annihilator (A :∧ B) of B with respect to A is an
ideal of X.

Theorem 2. If A is a prime ideal and B is an ideal of X, then the relative annihilator (A :∧ B) of B with respect
to A is X itself or a prime ideal of X.
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Proof. Suppose that (A :∧ B) 6= X. By using Lemma 6, (A :∧ B) is a proper ideal of X. The primeness
of (A :∧ B) can be proved by a similar way as in the proof of Theorem 1.

By changing the role of A and B in Theorem 2, the (A :∧ B) may not be a prime ideal of X.
The following example shows that it is not true in general case.

Example 1. Let X = {0, 1, 2, 3, 4} with the following Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 1 1
2 2 2 0 2 2
3 3 3 3 0 3
4 4 4 4 4 0

Then, by routine calculation, X is a lower BCK-semilattice. Consider ideals A = {0, 1} and B = {0, 1, 2, 4} of
X. It is easy to show that B is a prime ideal. Then,

(A :∧ B) = {x ∈ X | x ∧ B ⊆ A} = {0, 1, 3},

and it is not a prime ideal of X because 2∧ 4 = 0 ∈ (A :∧ B) but 2 /∈ (A :∧ B) and 4 /∈ (A :∧ B).

For any ideal I of X and any x ∈ X, we know that

I ⊆ (I :∧ x) ⊆ X. (7)

Lemma 7. For any ideal P of X and any a ∈ X, the following statements are satisfied:

(a ∈ P ⇒ (P :∧ a) = X) . (8)

(a /∈ P and P is prime ⇒ (P :∧ a) = P) . (9)

Proof. Let a ∈ P. Then, for arbitrary element x ∈ X, x ∧ a ∈ P. Hence, x ∈ (P :∧ a). Therefore, (8) is
valid. Let a /∈ P and P be a prime ideal of X. Obviously, P ⊆ (P :∧ a). If x ∈ (P :∧ a), then x ∧ a ∈ P
and so x ∈ P. Consequently, (P :∧ a) = P.

Theorem 3. Let A1 and A2 be ideals of X. For any prime ideal P of X, the following assertions are equivalent:

(i) A1 ⊆ P or A2 ⊆ P.
(ii) A1 ∩ A2 ⊆ P.

(iii) A1 ∧ A2 ⊆ P.

Proof. The implications (i)⇒ (ii)⇒ (iii) are clear.
(iii)⇒ (i) Suppose A1 * P and A2 * P. Then, there exist a1 ∈ A1 and a2 ∈ A2 such that a1, a2 /∈ P.

Since P is a prime ideal, we have a1 ∧ a2 /∈ P. This is a contradiction, and so A1 ⊆ P or A2 ⊆ P.

By using induction on n, the following theorem can be considered as an extension of Theorem 3.

Theorem 4. Let A1, A2, · · · , An be ideals of X. For a prime ideal P of X, the following assertions are equivalent:

(i) Aj ⊆ P for some j ∈ {1, 2, · · · , n}.
(ii)

⋂n
i=1 Ai ⊆ P.

(iii)
∧n

i=1 Ai ⊆ P.

Theorem 5. Let A1 and A2 be ideals of X. For any prime ideal P of X, if P = A1 ∩ A2, then P = A1 or
P = A2.
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Proof. It is straightforward by Theorem 3.

Inductively, the following theorem can be proved as an extension of Theorem 5.

Theorem 6. Let A1, A2, · · · , An be ideals of X. For a prime ideal P of X, if P = ∩n
i=1 Ai, then P = Aj for

some j ∈ {1, 2, · · · , n}.

Definition 5. Letting A be an ideal of a lower BCK-semilattice X, we say that A has a minimal prime
decomposition if there exist prime ideals Q1, Q2, · · · , Qn of X such that

(1) A =
⋂

i∈{1,2,··· ,n}
Qi,

(2)
⋂

i∈{1,2,··· ,n}
i 6=j

Qi * Qj.

The class {Q1, Q2, · · · , Qn} is called a minimal prime decomposition of A, and each Qi is called a minimal
prime factor of A.

Lemma 8 ([23]). Let A, B, and C be non-empty subsets of X. Then, we have

(A ∩ B :∧ C) = (A :∧ C) ∩ (B :∧ C).

Given the minimal prime decomposition of an ideal A, we provide a condition for any prime
ideal to be one of minimal prime factors of A by using the relative annihilator.

Theorem 7. Let A be an ideal of X and {P1, P2} be a minimal prime decomposition of A. For a prime ideal P of
X, the following statements are equivalent:

(i) P = P1 or P = P2.
(ii) There exists a ∈ X such that (A :∧ a) = P.

Proof. (i)⇒ (ii). Since {P1, P2} is a minimal prime decomposition of A, there exist a1 ∈ P1 \ P2 and
a2 ∈ P2 \ P1. If P = P2, then Lemmas 7 and 8 imply that

(A :∧ a1) = (P1 ∩ P2 :∧ a1) = (P1 :∧ a1) ∩ (P2 :∧ a1) = X ∩ P2 = P2 = P.

Similarly, if P = P1, then (A :∧ a2) = P.
Conversely, suppose that, for an element a ∈ X, we have (A :∧ a) = P. Then, we have

(A :∧ a) = (P1 ∩ P2 :∧ a) = (P1 :∧ a) ∩ (P2 :∧ a).

If a ∈ P1, then (P1 :∧ a) = X, and if a /∈ P1, then (P1 :∧ a) = P1 by Lemma 7. Similarly, (P2 :∧ a) = X
or (P2 :∧ a) = P2. Thus,

P = (A :∧ a) = (P1 ∩ P2 :∧ a) = (P1 :∧ a) ∩ (P2 :∧ a)

is one of P1, P2, P1 ∩ P2 and X. We know that P 6= X since P is proper. If P = P1 ∩ P2, then P = P1 or
P = P2 by Theorem 5.

Using an inductive method, the following theorem is satisfied.

Theorem 8. Let {P1, P2, · · · , Pn} be a minimal prime decomposition of an ideal A in X. If P is a prime ideal of
X, then the following statements are equivalent:

(i) P = Pi for some i ∈ {1, 2, · · · , n}.
(ii) There exists a ∈ X such that (A :∧ a) = P.
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Theorem 9. Suppose that ϕ : X → Y is an epimorphism of lower BCK-semilattices. Then,

(i) If P is a prime ideal of X such that Kerϕ ⊆ P, then ϕ(P) is a prime ideal of Y.
(ii) For prime ideals P1, P2, · · · , Pn of X, the following equation is satisfied:

ϕ(P1 ∩ P2 ∩ · · · ∩ Pn) = ϕ(P1) ∩ ϕ(P2) ∩ · · · ∩ ϕ(Pn).

Proof. (i) Suppose that P is a prime ideal of X and Kerϕ ⊆ P. Then, ϕ(P) is an ideal of Y by using
Lemma 2. Now, let a ∧Y b ∈ ϕ(P) for any a, b ∈ Y. Then, there exist x and y in X such that ϕ(x) = a
and ϕ(y) = b. Using Lemma 1, we have the following:

ϕ(x ∧X y) = ϕ(x) ∧Y ϕ(y) = a ∧Y b ∈ ϕ(P).

Hence, there exists q ∈ P such that ϕ(x ∧X y) = ϕ(q). In addition, since ϕ is a homomorphism, it
follows that

ϕ((x ∧X y) ∗X q) = ϕ(x ∧X y) ∗Y ϕ(q) = 0.

Thus, (x ∧X y) ∗X q ∈ Kerϕ ⊆ P. Since q ∈ P, we conclude that x ∧X y ∈ P. It follows from the
primeness of P that

a = ϕ(x) ∈ ϕ(P) or b = ϕ(y) ∈ ϕ(P).

Therefore, ϕ(P) is a prime ideal of Y.
(ii) Let x ∈ ϕ(P1 ∩ P2 ∩ · · · ∩ Pn). Then, there exists a ∈ P1 ∩ P2 ∩ · · · ∩ Pn such that x = ϕ(a).

Since a ∈ P1 ∩ P2 ∩ · · · ∩ Pn, we have a ∈ Pi and so ϕ(a) ∈ ϕ(Pi) for all i ∈ {1, 2, · · · , n}. Hence,

x = ϕ(a) ∈ ϕ(P1) ∩ ϕ(P2) ∩ · · · ∩ ϕ(Pn).

Therefore, ϕ(P1 ∩ P2 ∩ · · · ∩ Pn) ⊆ ϕ(P1) ∩ ϕ(P2) ∩ · · · ∩ ϕ(Pn).
Assume that x ∈ ϕ(P1) ∩ ϕ(P2) ∩ · · · ∩ ϕ(Pn). Then, x ∈ ϕ(Pi), and thus there exists ai ∈ Pi such

that x = ϕ(ai) for all i ∈ {1, 2, · · · , n}. Note that a1 ∧X a2 ∧X · · · ∧X an ≤ ai for all i ∈ {1, 2, · · · , n}. Since
ai ∈ Pi and Pi is an ideal, we conclude that a1 ∧X a2 ∧X · · · ∧X an ∈ Pi for all i ∈ {1, 2, · · · , n}. Therefore,

a1 ∧X a2 ∧X · · · ∧X an ∈ P1 ∩ P2 ∩ ...∩ Pn

and so

x = x ∧Y x ∧Y · · · ∧Y x

= ϕ(a1) ∧Y ϕ(a2) ∧Y · · · ∧Y ϕ(an)

= ϕ(a1 ∧X a2 ∧X · · · ∧X an) ∈ ϕ(P1 ∩ P2 ∩ · · · ∩ Pn).

Hence, ϕ(P1) ∩ ϕ(P2) ∩ · · · ∩ ϕ(Pn) ⊆ ϕ(P1 ∩ P2 ∩ · · · ∩ Pn), and therefore the proof is completed.

Lemma 9. Let {P1, P2, · · · , Pn} be a minimal prime decomposition of an ideal A in X. If P is a prime ideal of
X, then A ⊆ P if and only if there exists i ∈ {1, 2, · · · , n} such that Pi ⊆ P.

Proof. Straightforward.

Theorem 10. Let ϕ : X → Y be an epimorphism of lower BCK-semilattices. Let A be an ideal of X such that
Ker(ϕ) ⊆ A. If {P1, P2, · · · , Pn} is a minimal prime decomposition of A in X, then {ϕ(P1), ϕ(P2), · · · , ϕ(Pn)}
is a minimal prime decomposition of ϕ(A) in Y.
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Proof. Note that ϕ(A) is an ideal of Y (Lemma 1). If {P1, P2, · · · , Pn} is a minimal prime decomposition
of A in X, then

A =
⋂

i∈{1,2,··· ,n}
Pi

and so ϕ(A) = ϕ

( ⋂
i∈{1,2,··· ,n}

Pi

)
=

⋂
i∈{1,2,··· ,n}

ϕ(Pi). Suppose that

⋂
i∈{1,2,··· ,n}

i 6=j

ϕ(Pi) ⊆ ϕ(Pj).

Since Ker(ϕ) ⊆ Pi, we conclude that ϕ−1(ϕ(Pi)) = Pi for all i ∈ {1, 2, · · · , n} by using Lemma 3. Hence,⋂
i∈{1,2,··· ,n}

i 6=j

Pi =
⋂

i∈{1,2,··· ,n}
i 6=j

ϕ−1(ϕ(Pi))

= ϕ−1

 ⋂
i∈{1,2,··· ,n}

i 6=j

ϕ(Pi)


⊆ ϕ−1(ϕ(Pj)) = Pj.

This is a contradiction, so {ϕ(P1), ϕ(P2), · · · , ϕ(Pn)} is a minimal prime decomposition of ϕ(A)

in Y.

Corollary 2. Suppose that ϕ : X → Y is an isomorphism of lower BCK-semilattices. Let A be an ideal of X.
If {P1, P2, · · · , Pn} is a minimal prime decomposition of A in X, then {ϕ(P1), ϕ(P2), · · · , ϕ(Pn)} is a minimal
prime decomposition of ϕ(A) in Y.

Theorem 11. Suppose that ϕ : X → Y is an epimorphism of lower BCK-semilattices. Let B be an ideal of Y.
If {Q1, Q2, · · · , Qn} is a minimal prime decomposition of B in Y, then {ϕ−1(Q1), ϕ−1(Q2), · · · , ϕ−1(Qn)}
is a minimal prime decomposition of ϕ−1(B) in X.

Proof. Obviously, ϕ−1(B) is an ideal of X. If {Q1, Q2, · · · , Qn} is a minimal prime decomposition of B
in Y, then

B =
⋂

i∈{1,2,··· ,n}
Qi.

Thus,

ϕ−1(B) = ϕ−1

 ⋂
i∈{1,2,··· ,n}

Qi

 =
⋂

i∈{1,2,··· ,n}
ϕ−1(Qi).

Suppose that ⋂
i∈{1,2,··· ,n}

i 6=j

ϕ−1(Qi) ⊆ ϕ−1(Qj).

Since ϕ is onto, ϕ
(

ϕ−1(Qi)
)
= Qi for all i ∈ {1, 2, · · · , n}. Hence,
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⋂
i∈{1,2,··· ,n}

i 6=j

Qi =
⋂

i∈{1,2,··· ,n}
i 6=j

ϕ
(

ϕ−1(Qi)
)

= ϕ

 ⋂
i∈{1,2,··· ,n}

i 6=j

ϕ−1(Qi)


⊆ ϕ

(
ϕ−1(Qj)

)
= Qj.

This is a contradiction, and so ⋂
i∈{1,2,··· ,n}

i 6=j

ϕ−1(Qi) * ϕ−1(Qj).

Therefore, {ϕ−1(Q1), ϕ−1(Q2), · · · , ϕ−1(Qn)} is a minimal prime decomposition of ϕ−1(B) in X.

Lemma 10 ([20]). If X is Noetherian BCK-algebra, then each ideal of X has a unique minimal prime decomposition.

Lemma 11 ([20]). Every proper ideal of X is equal to the intersection of all minimal prime ideals associated
with it.

For an ideal A of X, consider the set X \ A. This set is not closed subset under the ∧ operation in
X in general. The following example shows it.

Example 2. Let X = {0, 1, 2, 3, 4} with the following Cayley table:

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 0
2 2 1 0 1 1
3 3 3 3 0 3
4 4 4 4 4 0

Then, X is a lower BCK-semilattice. For an ideal A = {0, 1, 2} of X, we have X \ A = {3, 4}, which is not a
∧-closed subset of X because 3, 4 ∈ X \ A, but 3∧ 4 = 1 /∈ X \ A.

For a subset A of X with 0 /∈ A, we can check that the set X \ A may not be an ideal of X. In the
following example, we check it.

Example 3. Suppose that X = {0, 1, 2, 3, 4} with the following Cayley table:

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 2 0
3 3 1 3 0 3
4 4 4 4 4 0

Then, X is a lower BCK-semilattice. For a subset A = {3, 4} of X, we have X \ A = {0, 1, 2}. By routine
verification, we can investigate that X \ A is not an ideal of X.

The following theorem provided a characterization of a prime ideal.

Theorem 12. For an arbitrary ideal P of X, the following assertions are equivalent:

(i) P is a prime ideal of X.
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(ii) X \ P is a closed subset under the ∧ operation in X, that is, x ∧ y ∈ X \ P for all x, y ∈ X \ P.

Proof. (i) → (ii): Suppose that P is a prime ideal of X and x, y ∈ X \ P are arbitrary elements.
If x ∧ y /∈ X \ P, then clearly x ∧ y ∈ P. Since P is a prime ideal, x ∈ P or y ∈ P, which is contradictory
because x and y were chosen from the set X \ P. Thus, x ∧ y ∈ X \ P and X \ P is the closed subset
under the ∧ operation.

(ii)→ (i): Suppose that x ∧ y ∈ P. If x /∈ P and y /∈ P, then clearly x ∈ X \ P and also y ∈ X \ P.
Using condition (ii), we conclude that x ∧ y ∈ X \ P, which is a contradiction from the first assumption
x ∧ y ∈ P. Thus, x ∈ P or y ∈ P and P is a prime ideal of X.

Definition 6. Let X be a BCK-algebra. We defined in [2] the closure operation on IX , as the following function

cl : I(X)→ I(X), A 7→ Acl

such that

(∀A ∈ I(X))
(

A ⊆ Acl
)

, (10)

(∀A ∈ I(X))
(

Acl = (Acl)cl
)

, (11)

(∀A, B ∈ I(X))
(

A ⊆ B ⇒ Acl ⊆ Bcl
)

, (12)

where I(X) is the set of all ideals of X.

An ideal A in a BCK-algebra X is said to be cl-closed (see [2]) if A = Acl .

Definition 7 ([3]). For a closure operation “cl” on X, we have the following definitions:

(i) “cl” is a semi-prime closure operation if we have

A ∧ Bcl ⊆ (A ∧ B)cl and Acl ∧ B ⊆ (A ∧ B)cl

for every A, B ∈ I(X).
(ii) “cl” is a good semi-prime closure operation, if we have

A ∧ Bcl = Acl ∧ B = (A ∧ B)cl

for every A, B ∈ I(X).

Theorem 13 ([3]). Suppose that “cl” is a semi-prime closure operation on X and S is a closed subset of X under
the ∧ operation. If X is Noetherian and A is a cl-closed ideal of X, then the set

B := 〈{x ∈ X | x ∧ s ∈ A for some s ∈ S}〉

is a cl-closed ideal of X.

Lemma 12. If {P1, P2, · · · , Pn} is a minimal prime decomposition of an ideal A of X, then

(∀i, j ∈ {1, 2, · · · , n})
(
i 6= j ⇒ Pi ∩ (X \ Pj) 6= ∅

)
. (13)

Proof. Suppose that for i, j ∈ {1, 2, · · · , n} such that i 6= j, Pi ∩ (X \ Pj) = ∅. Then, it follows that
Pi ⊆ Pj and this is a contradiction because {P1, P2, · · · , Pn} is a minimal prime decomposition of an
ideal A of X.

Theorem 14. Suppose that A is an ideal of X with a minimal prime decomposition
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{P1, P2, · · · , Pn}.

Assume that X is Noetherian and “cl” is a semi-prime closure operation on I(X). If A is cl-closed, then so is Pj
for all j ∈ {1, 2, · · · , n}.

Proof. For any j ∈ {1, 2, · · · , n}, let

Ωj := {x ∈ X | x ∧ s ∈ A for some s ∈ X \ Pj}. (14)

Then, we will prove that Ωj = Pj. If x ∈ Ωj, then there exists s ∈ X \ Pj such that x ∧ s ∈ A. It follows
that x ∧ s ∈ Pj and so x ∈ Pj. Thus, Ωj ⊆ Pj for all j ∈ {1, 2, · · · , n}. Now, assume that y ∈ Pj.
Using Lemma 12, we can take an element a ∈ Pi ∩ (X \ Pj), and so a ∈ Pi and a ∈ X \ Pj for all
i ∈ {1, 2, · · · , n} with i 6= j. Then, y ∧ a ∈ Pj and y ∧ a ∈ Pi for all i ∈ {1, 2, · · · , n} with i 6= j. Thus,

y ∧ a ∈
⋂

i∈{1,2,··· ,n}
Pi = A,

and so y ∈ Ωj. Therefore, Ωj = Pj, which implies that 〈Ωj〉 = 〈Pj〉 = Pj for all j ∈ {1, 2, · · · , n}. Since
X \ Pj is a ∧-closed subset of X for all j ∈ {1, 2, · · · , n} by Theorem 12, we conclude from Theorem 13
that Pj is a cl-closed ideal of X for all j ∈ {1, 2, · · · , n}.

4. Conclusions

Necessary conditions for the relative annihilator in lower BCK-semilattices to be a prime ideal are
discussed. In addition, we provided conditions for any prime ideal in the minimal prime decomposition
of an ideal A, to be one of the minimal prime factors of A. Homomorphic image and pre-image of the
minimal prime decomposition of an ideal are considered. Using a semi-prime closure operation “cl”,
we showed that every minimal prime factor of a cl-closed ideal A is also cl-closed.
These results can be applied to characterize the composable ideals in a BCK-algebra with their
associated prime ideals. In our future research, we will focus on some properties of decomposable
ideal such as intersections, unions, maximality, and height, and try to find the relations between
these properties of ideals and the associated prime ideals. For instance, is the height of the arbitrary
decomposable ideal, equal to the sum of the height of associated prime ideals? For information about
the height of ideals, please refer to [24–26].

In addition, other kinds of closure operations such as meet, tender, nave, finite, prime, etc. can
be checked for prime ideals in prime decompositions. For further information about other kinds of
(weak) closure operation, please refer to [2,3,22,23].

In addition, for future research, we invite the researchers to join us and apply the results of this
paper to new concepts in [27–29].
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