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Abstract: A new mixed type nondifferentiable higher-order symmetric dual programs over
cones is formulated. As of now, in the literature, either Wolfe-type or Mond–Weir-type
nondifferentiable symmetric duals have been studied. However, we present a unified dual model
and discuss weak, strong, and converse duality theorems for such programs under higher-order F -
convexity/higher-order F - pseudoconvexity. Self-duality is also discussed. Our dual programs and
results generalize some dual formulations and results appeared in the literature. Two non-trivial
examples are given to show the uniqueness of higher-orderF - convex/higher-orderF - pseudoconvex
functions and existence of higher-order symmetric dual programs.
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1. Introduction

The study of higher-order duality has computational advantages over the first-order duality
when approximations are used, as it provides tighter bound for the value of the objective function.
Mangasarian [1] formulated a class of higher-order duality in nonlinear problems. Later on, Mond and
Zhang [2] obtained various higher-order duality results under higher-order invexity assumptions.
Chen [3] discussed Mond–Weir-type higher-order symmetric duality involving F-convex functions,
whereas Mishra [4] obtained Mond–Weir-type higher-order symmetric duality theorems under
generalized invexity. Khurana [5] presented symmetric duality results for a Mond–Weir-type dual
programs over arbitrary cones under cone-pseudoinvexity and strongly cone-pseudoinvexity. Later on,
a higher-order Mond–Weir-type nondifferentiable multiobjective dual problem is formulated and
established duality relations involving higher-order (F, α, ρ, d) type-I fuctions by Ahmad et al. [6].
In [7], Gupta and Jayswal obtained multiobjective higher-order symmetric duality results under
higher-order K-preinvexity/K-pseudoinvexity.

The theoretical and algorithmic concepts of mixed duality in nonlinear programming problems
are interesting and useful. Under K-preinvexity and K-pseudoinvexity assumptions, Ahmad and
Husain [8] formulated multiobjective mixed type symmetric dual programs over cones and proved
duality results. Chandra et al. [9] studied mixed type symmetric duality results. Xu [10] proved
duality theorems for two mixed type duals of a multiobjective programming problem. Yang et al. [11]
presented mixed type symmetric duality for nondifferentiable nonlinear programming problems.
By ignoring nonnegativity constraints of symmetric dual given in [12], Ahmad [13] presented
multiobjective mixed type symmetric duality results. Recently, Verma et al. [14] formulated a
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higher-order nondifferentiable mixed symmetric dual model and duality results are studied under
higher-order invexity/generalized invexity.

In the present paper, a new mixed type nondifferentiable higher-order symmetric dual programs
over cones are formulated. As of now, in the literature, either Wolfe-type or Mond–Weir-type
nondifferentiable symmetric dual programs have been discussed. However, our model unifies both
dual programs. Under higher-order F - convexity/higher-order F - pseudoconvexity, appropriate
duality theorems are proved. Self-duality is also discussed. Our study extends and generalizes the
existing results appeared in [15–21]. Two non-trivial examples are given to show the uniqueness
of higher-order F - convex/higher-order F - pseudoconvex functions and existence of higher-order
symmetric dual programs.

2. Preliminaries

We consider the following nonlinear programming problem.

(P) Minimize F(x)
x ∈ X,

where X ⊆ Rn and F : X → R.

2.1. Definitions

(a) The support function s(x|E) of E is given by

s(x|E) = max{xTy : y ∈ E}.

The subdifferential of s(x|E) is defined by

∂s(x|E) = {z ∈ E : zTx = s(x|E)}.

The normal cone for any convex set S ⊂ Rn at a point x ∈ S is defined by

NS(x) = {y ∈ Rn : yT(z− x) ≤ 0 for all z ∈ S}.

It is readily verified that for a compact convex set D, y is in ND(x) if and only if

s(y|D) = xTy.

(b) Let C be a closed convex cone in Rn with nonempty interior. The positive polar cone C∗ of C is
given by

C∗ = {q ∈ Rn : xTq ≥ 0 for all x ∈ C}.

(c) A function F : X × X × Rn 7→ R (where X ⊆ Rn) is sublinear in its third component, if for all
x, y ∈ X :

(i) F (x, y; b1 + b2) ≤ F (x, y : b1) +F (x, y : b2), for all b1, b2 ∈ Rn; and
(ii) F (x, y; αb) = αF (x, y; b), for all α ∈ R, for all b ∈ Rn.

(d) [3] A function φ : Rn 7→ R is called higher-order F− convex at u ∈ Rn with respect to
g : Rn ×Rn 7→ R, if for all (x, p) ∈ Rn ×Rn,

φ(x)− φ(u)− g(u, p) + pT∇pg(u, p) ≥ F (x, u;∇xφ(u) +∇pg(u, p)).

(e) [3] A function φ : Rn 7→ R is called higher-order F− pseudoconvex at u ∈ Rn with respect to
g : Rn ×Rn 7→ R, if for all (x, p) ∈ Rn ×Rn,
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F (x, u;∇xφ(u) +∇pg(u, p)) ≥ 0⇒ φ(x)− φ(u)− g(u, p) + pT∇pg(u, p) ≥ 0.

The above definitions (d) and (e) are validated by the following example.

2.2. Example

Consider φ(x) = e−x + x2, Fx,u(a) = |a|(x2 − u2), g(u, p) = p
u+1 and X = {x : x ≥ 1}.

Now, we show that the function φ(x) is a higher-orderF - pseudoconvex at u = 1 and for all x ≥ 1.

F(x, u;∇xφ(u) +∇pg(u, p)) = |∇xφ(u) +∇pg(u, p)|(x2 − u2)

= | − e−u + 2u +
1

u + 1
|(x2 − u2),

For u = 1, the above expression reduces to

F(x, 1;∇xφ(1) +∇pg(1, p)) = | − e−1 + 2 +
1
2
|(x2 − 1) ≥ 0, f or x ≥ 1, (1)

Now,

φ(x)− φ(u)− g(u, p) + pT∇pg(u, p) = e−x + x2 − e−u − u2 − p
u + 1

+
p

u + 1
.

At u = 1, the above equality becomes

φ(x)− φ(u)− g(u, p) + pT∇pg(u, p) = e−x + x2 − 1
e
− 1 ≥ 0, f or x ≥ 1, (2)

The Equations (1) and (2) show that function φ(x) is a higher-order F− pseudoconvex at u = 1
and for all x ≥ 1 (see Figures 1–3).

Now, we determine whether φ(x) is a higher-order F− convex function.

φ(x)− φ(u)− g(u, p) + pT∇pg(u, p)− F(x, u;∇xφ(u) +∇pg(u, p))

= e−x + x2 − e−u − u2 − p
u + 1

+
p

u + 1
− | − e−u + 2u +

1
u + 1

|(x2 − u2).

At u = 1
= e−x + x2 − 1

e
− 1− | − e−1 + 2 +

1
2
|(x2 − 1) ≡ χ, (see Figure 4)

� 0, ( f or x ≥ 2),

which shows that the function φ(x) is not a higher-order F− convex (see Figure 4) at u = 1 and x = 2.
This concludes that every higher-order F− convex function is a higher-order F− pseudoconvex
function, but the converse is not necessarily true. (See Appendix A for codes of Figures 1–4).
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Figure 1. Graph of Fx,u(.) against x and u.

Figure 2. Graph of Fx,u(.) against x.

Figure 3. Graph of φ against x.

Figure 4. Graph of χ against x.

3. Higher-Order Mixed Type Symmetric Duality over Cones

For N = {1, 2, 3, ..., n} and H = {1, 2, 3, ..., h}, let us assume A1 ⊂ N, B1 ⊂ H and A2 = N \ A1

and B2 = H \ B1, where |A1| denotes the number of elements in the set A1, also |A2|, |B1| and |B2| are
defined similarly.

Again if |A1| = 0, then |A2| = n and therefore R|A1| is a zero-dimensional Euclidean space and
R|A2| is n-dimensional Euclidean space.

Now x ∈ Rn if and only if x = {x1, x2}, i.e. x1 ∈ R|A1|, x2 ∈ R|A2|. Similarly, any y ∈ Rh if and
only if y = {y1, y2}, i.e. y1 ∈ R|B1|, y2 ∈ R|B2|. Let
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(i) f 1 : R|A1| ×R|B1| → R,

(ii) f 2 : R|A2| ×R|B2| → R,

(iii) h1 : R|A1| ×R|B1| ×R|A1| → R,

(iv) h2 : R|A2| ×R|B2| ×R|A2| → R,

(v) g1 : R|A1| ×R|B1| ×R|B1| → R and

(vi) g2 : R|A2| ×R|B2| ×R|B2| → R
be twice differentiable functions.

Now we formulate the following mixed type nondifferentiable higher-order symmetric dual
programs over cones.

Primal Problem (MHP):

Minimize G(x, y, z, p) = f 1(x1, y1) + s(x1|E1) + f 2(x2, y2) + s(x2|E2)− (y1)Tz1

+ g1(x1, y1, p1) + g2(x2, y2, p2)− (p1)T∇p1 g1(x1, y1, p1)

− (p2)T∇p2 g2(x2, y2, p2)− (y2)T [∇y2 f 2(x2, y2) +∇p2 g2(x2, y2, p2)]

subject to

−(∇y1 f 1(x1, y1)− z1 +∇p1 g1(x1, y1, p1)) ∈ C∗3 , (3)

−(∇y2 f 2(x2, y2)− z2 +∇p2 g2(x2, y2, p2)) ∈ C∗4 , (4)

(y1)T [∇y1 f 1(x1, y1)− z1 +∇p1 g1(x1, y1, p1)] ≥ 0, (5)

(p1)T [∇y1 f 1(x1, y1)− z1 +∇p1 g1(x1, y1, p1)] ≥ 0, (6)

(p2)T [∇y2 f 2(x2, y2)− z2 +∇p2 g2(x2, y2, p2)] ≥ 0, (7)

x1 ∈ C1, x2 ∈ C2, y2 ≥ 0, (8)

z1 ∈ D1, z2 ∈ D2. (9)

Dual Problem (MHD):

Maximize H(u, v, w, r) = f 1(u1, v1)− S(v1|D1) + f 2(u2, v2)− S(v2|D2) + (u1)Tw1

+ h1(u1, v1, r1) + h2(u2, v2, r2)− (r1)T∇r1 h1(u1, v1, r1)

− (r2)T∇r2 h2(u2, v2, r2)− (u2)T [∇u2 f 2(u2, v2) +∇r2 h2(u2, v2, r2)]

subject to
(∇u1 f 1(u1, v1) + w1 +∇r1 h1(u1, v1, r1)) ∈ C∗1 , (10)

(∇u2 f 2(u2, v2) + w2 +∇r2 h2(u2, v2, r2)) ∈ C∗2 , (11)

(u1)T [∇u1 f 1(u1, v1) + w1 +∇r1 h1(u1, v1, r1)] ≤ 0, (12)
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(r1)T [∇u1 f 1(u1, v1) + w1 +∇r1 h1(u1, v1, r1)] ≤ 0, (13)

(r2)T [∇u2 f 2(u2, v2) + w2 +∇r2 h2(u2, v2, r2)] ≤ 0, (14)

v1 ∈ C3, v2 ∈ C4, u2 ≥ 0, (15)

w1 ∈ E1, w2 ∈ E2, (16)

where, p1 ∈ R|B1|, p2 ∈ R|B2|, r1 ∈ R|A1|, r2 ∈ R|A2| and E1, E2, D1, and D2 are compact convex sets in
R|B1|, R|B2|, R|A1|, and R|A2|, respectively.

4. Remark

The above dual programs generalize several models that appeared in the literature can be
seen below.

(A) If |B1| = 0, |A1| = 0, C1 = Rn
+ and C2 = Rh

+, then the above programs reduce to
non-differentiable Wolfe-type dual programs (see [18]).

(B) Let |B2| = 0, |A2| = 0, C1 = Rn
+ and C2 = Rh

+. Then the above programs become
non-differentiable Mond–Weir-type dual programs (see [18]).

(C) Let C1 = Rn
+ and C2 = Rh

+ in (MHP) and (MHD), respectively. Then we get the programs
proposed by Verma et al. [14].

(D) Let C1 = Rn
+, C2 = Rh

+, E = 0 and D = 0 in (MHP) and (MHD), respectively. Then we get the
programs discussed by Verma et al. [22].

5. Duality Theorems

In this section, we establish the relations between primal problem (MHP) and dual problem
(MHD).

Theorem 1. (Weak Duality) Let (x1, x2, y1, y2, z1, z2, p1, p2) be feasible for (MHP) and
(u1, u2, v1, v2, w1, w2, r1, r2) be feasible for (MHD). Suppose that

(i) f 1(., v1) + (.)Tw1 is higher-order F− pseudo-convex function at u1 with respect to h1(u1, v1, r1),

(ii) − f 1(x1, .) + (.)Tz1 is higher-order F− pseudo-convex function at y1 with respect to −g1(x1, y1, p1),

(iii) f 2(., v2) + (.)Tw2 is higher-order F− convex function at u2 with respect to h2(u2, v2, r2),

(iv) − f 2(x2, .) + (.)Tz2 is higher-order F− convex function at y2 with respect to −g2(x2, y2, p2),

(v) F (x1, u1; ψ1) + (u1)Tψ1 + (r1)Tψ1 ≥ 0, ∀ x1, u1 ∈ C1, ψ1 ∈ C∗1 ,

(vi) F (v1, y1; ψ2) + (y1)Tψ2 + (p1)Tψ2 ≥ 0, ∀ v1, y1 ∈ C3, ψ2 ∈ C∗3 ,

(vii) F (x2, u2; ψ3) + (u2)Tψ3 + (r2)Tψ3 ≥ 0, ∀ x2, u2 ∈ C2, ψ3 ∈ C∗2 and

(viii) F (v2, y2; ψ4) + (y2)Tψ4 + (p2)Tψ4 ≥ 0, ∀ v2, y1 ∈ C4, ψ4 ∈ C∗4 .

Then
G(x1, x2, y1, y2, z1, z2, p1, p2) ≥ H(u1, u2, v1, v2, w1, w2, r1, r2). (17)
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Proof. From hypotheses (iii) and (iv), we get

f 2(x2, v2) + (x2)Tw2 − f 2(u2, v2)− (u2)Tw2 − h2(u2, v2, p2) + (p2)T∇p2 h2(u2, v2, p2)

≥ F (x2, u2;∇x2 f 2(u2, v2) + w2 +∇r2 g2(u2, v2, r2)) (18)

and

f 2(x2, y2)− (y2)Tz2 − f 2(x2, v2) + (v2)Tz2 + g2(x2, y2, p2)− (p2)T∇p2 g2(x2, y2, p2)

≥ F (v2, y2;−(∇y2 f 2(x2, y2)− z2 +∇p2 h2(x2, y2, p2)). (19)

Let
ψ3 = (∇u2 f 2(u2, v2) + w2 +∇r2 h2(u2, v2, r2)) ∈ C∗2

and
ψ4 = −(∇y2 f 2(x2, y2)− z2 +∇p2 g2(x2, y2, p2)) ∈ C∗4 .

Now from hypotheses (vii) and (viii) , we get

F (x2, u2;∇x2 f 2(u2, v2) + w2 +∇r2 g2(u2, v2, r2)) + u2[∇x2 f 2(u2, v2) + w2 +∇r2 g2(u2, v2, r2)]

≥ −r2[∇x2 f 2(u2, v2) + w2 +∇r2 g2(u2, v2, r2)]

and

F (v2, y2;−(∇y2 f 2(x2, y2)− z2 +∇p2 h2(x2, y2, p2)))− y2[∇y2 f 2(x2, y2)− z2 +∇p2 h2(x2, y2, p2)]

≥ p2[∇y2 f 2(x2, y2)− z2 +∇p2 h2(x2, y2, p2)].

The above inequalities along with inequalities (7) and (14) imply that

F (x2, u2;∇x2 f 2(u2, v2) + w2 +∇r2 g2(u2, v2, r2)) ≥ −u2[∇x2 f 2(u2, v2) + w2 +∇r2 g2(u2, v2, r2)]

and

F (v2, y2;−(∇y2 f 2(x2, y2)− z2 +∇p2 h2(x2, y2, p2))) ≥ y2[∇y2 f 2(x2, y2)− z2 +∇p2 h2(x2, y2, p2)].

The above inequalities along with Equations (18) and (19) give

f 2(x2, v2) + (x2)Tw2 − f 2(u2, v2)− (u2)Tw2 − h2(u2, v2, p2) + (p2)T∇p2 h2(u2, v2, p2)

≥ −u2[∇x2 f 2(u2, v2) + w2 +∇r2 g2(u2, v2, r2)]

and

f 2(x2, y2)− (y2)Tz2 − f 2(x2, v2) + (v2)Tz2 + g2(x2, y2, p2)− (p2)T∇p2 g2(x2, y2, p2)

≥ y2[∇y2 f 2(x2, y2)− z2 +∇p2 h2(x2, y2, p2)].

Now adding the above two inequalities, we obtain
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f 2(x2, y2) + (x2)Tw2 − (y2)Tz2 + g2(x2, y2, p2)− (p2)T∇p2 g2(x2, y2, p2)− y2[∇y2 f 2(x2, y2)

−z2 +∇p2 h2(x2, y2, p2)]

≥ f 2(u2, v2) + (u2)Tw2 − (v2)Tz2 + h2(u2, v2, p2)− (p2)T∇p2 h2(u2, v2, p2)− u2[∇x2 f 2(u2, v2)

+w2 +∇r2 g2(u2, v2, r2)].

Noting that (x2)Tw2 ≤ s(x2|E2) and (v2)Tz2 ≤ s(v2|D2), we have

f 2(x2, y2) + s(x2|E2) + g2(x2, y2, p2)− y2[∇y2 f 2(x2, y2) +∇p2 h2(x2, y2, p2)]

≥ f 2(u2, v2)− s(v2|D2) + h2(u2, v2, p2) (20)

−(p2)T∇p2 h2(u2, v2, p2)− u2[∇x2 f 2(u2, v2) +∇r2 h2(u2, v2, r2)].

By taking
ψ1 = (∇u1 f 1(u1, v1) + w1 +∇r1 h1(u1, v1, r1)) ∈ C∗1

and
ψ2 = −(∇y1 f 1(x1, y1)− z1 +∇p1 g1(x1, y1, p1)) ∈ C∗3 ,

we have

F (x1, u1;∇u1 f 1(u1, v1) +w1 +∇r1 g1(u1, v1, r1)) ≥ −(u1 + r1)[∇u1 f 1(u1, v1) +w1 +∇r1 g1(u1, v1, r1)]

(by the hypothesis (v))
and

F (v1, y1;−(∇y1 f 1(x1, y1)− z1 +∇p1 h1(x1, y1, p1))) ≥ (y1 + p1)[∇y1 f 1(x1, y1)− z1 +∇p1 h1(x1, y1, p1)]

(by the hypothesis (vi)).

The above two inequalities along with inequalities (5), (6), (12), and (13) give

F (x1, u1;∇u1 f 1(u1, v1) + w1 +∇r1 g1(u1, v1, r1)) ≥ 0

and

F (v1, y1;−(∇y1 f 1(x1, y1)− z1 +∇p1 h1(x1, y1, p1))) ≥ 0,

which by hypotheses (i) and (ii) imply

f 1(x1, v1) + (x1)Tw1 − f 1(u1, v1)− (v1)Tw1 − h1(u1, v1, p1) + (p1)T∇p1 h1(u1, v1, p1) ≥ 0

and

f 1(x1, y1) + (v1)Tz1 − f 1(x1, v1)− (y1)Tz1 + g1(x1, y1, p1)− (p1)T∇p1 g1(x1, y1, p1) ≥ 0.

Adding the above two inequalities, we obtain

f 1(x1, y1)− (y1)Tz1 + (x1)Tw1 + g1(x1, y1, p1)− (p1)T∇p1 g1(x1, y1, p1)

≥ f 1(u1, v1) + (v1)Tw1 − (v1)Tz1 + h1(u1, v1, p1)− (p1)T∇p1 h1(u1, v1, p1).
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Using (x1)Tw1 ≤ s(x1|E1) and (v1)Tz1 ≤ s(v1|D1), we have

f 1(x1, y1)− (y1)Tz1 + s(x1|E1) + g1(x1, y1, p1)− (p1)T∇p1 g1(x1, y1, p1)

≥ f 1(u1, v1) + (v1)Tw− s(v1|D1) + h1(u1, v1, p1)− (p1)T∇p1 h1(u1, v1, p1). (21)

Combining inequalities (20) and (21), we get

G(x1, x2, y1, y2, z1, z2, p1, p2) ≥ H(u1, u2, v1, v2, w1, w2, r1, r2).

Theorem 2. (Strong Duality)
Let (x̄1, x̄2, ȳ1, ȳ2, z̄1, z̄2, p̄1, p̄2) be an optimal solution of (MHP). Suppose that

(i) ∇p1 p1 g1(x̄1, ȳ1, p̄1) is positive or negative definite matrix and ∇p2 p2 g2(x̄2, ȳ2, p̄2) is negative definite
matrix,

(ii) ∇y1 f 1(x̄1, ȳ1)− z̄1 +∇p1 g1(x̄1, ȳ1, p̄1) 6= 0 and ∇y2 f 2(x̄2, ȳ2)− z̄2 +∇p2 g2(x̄2, ȳ2, p̄2) 6= 0,

(iii) ( p̄1)T [∇y1 f 1(x̄1, ȳ1)− z̄1 +∇p1 g1(x̄1, ȳ1, p̄1)] = 0 ⇒ p̄1 = 0
and
ȳ2[∇y2 g2(x̄2, ȳ2, p̄2)−∇p2 g2(x̄2, ȳ2, p̄2) +∇y2y2 f 2(x̄2, ȳ2) p̄2] = 0 ⇒ p̄2 = 0,

(iv) g1(x̄1, ȳ1, 0) = h1(x̄1, ȳ1, 0), ∇x1 g1(x̄1, ȳ1, 0) = ∇r1 h1(x̄1, ȳ1, 0),
∇y1 g1(x̄1, ȳ1, 0) = ∇p1 g1(x̄1, ȳ1, 0), g2(x̄2, ȳ2, 0) = h2(x̄2, ȳ2, 0) and

∇x2 g2(x̄2, ȳ2, 0) = ∇r2 h2(x̄2, ȳ2, 0).

Then,

(I) (x̄1, x̄2, ȳ1, ȳ2, w̄1, w̄2, r̄1 = 0, r̄2 = 0) is feasible for (MHD), and

(II) G(x̄1, x̄2, ȳ1, ȳ2, z̄1, z̄2, p̄1, p̄2) = H(x̄1, x̄2, ȳ1, ȳ2, w̄1, w̄2, r̄1, r̄2).

Furthermore, if the hypotheses of Theorem 1 are satisfied for all feasible solutions of (MHP) and (MHD),
then (x̄1, x̄2, ȳ1, ȳ2, w̄1, w̄2, r̄1 = 0, r̄2 = 0) is an optimal solution for (MHD).

Proof. As (x̄1, x̄2, ȳ1, ȳ2, z̄1, z̄2, p̄1, p̄2) is an optimal solution of (MHP), by the Fritz John necessary
optimality conditions [23,24], there exist α, γ, δ1, δ2 ∈ R, β1 ∈ R|B1|, β2, η ∈ R|B2|, ξ1 ∈ R|A1|, ξ2 ∈ R|A2|

such that the following conditions are satisfied at (x̄1, x̄2, ȳ1, ȳ2, z̄1, z̄2, p̄1, p̄2) :

{α[∇x1 f 1(x̄1, ȳ1) + ξ1 +∇x1 g1(x̄1, ȳ1, p̄1)−∇p1x1 g1(x̄1, ȳ1, p̄1) p̄1] + [∇y1x1 f 1(x̄1, ȳ1)

+∇p1x1 g1(x̄1, ȳ1, p̄1)](β1 − γȳ1 − δ1 p̄1)}(x1 − x̄1) ≥ 0, for all x1 ∈ C1, (22)

{α[∇x2 f 2(x̄2, ȳ2) + ξ2 +∇x2 g2(x̄2, ȳ2, p̄2)] + {∇p2x2 g2(x̄2, ȳ2, p̄2)}(β2 − αȳ2 − α p̄2

−δ2 p̄2) + {∇y2x2 f 2(x̄2, ȳ2)}(β2 − αȳ2 − δ2 p̄2)}(x2 − x̄2) ≥ 0, for all x2 ∈ C2, (23)
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α[∇y1 f 1(x̄1, ȳ1)− z̄1 +∇y1 g1(x̄1, ȳ1, p̄1)−∇p1y1 g1(x̄1, ȳ1, p̄1) p̄1] + (∇y1y1 f 1(x̄1, ȳ1)

+∇p1y1 g1(x̄1, ȳ1, p̄1))(β1 − γȳ1 − δ1 p̄1)− γ[∇y1 f 1(x̄1, ȳ1)− z̄1 +∇p1 g1(x̄1, ȳ1, p̄1)] = 0,

for all, y1 ∈ R|B1|, (24)

{∇p2y2 g2(x̄2, ȳ2, p̄2)}(β2 − αȳ2 − α p̄2 − δ2 p̄2) + α[∇y2 g2(x̄2, ȳ2, p̄2)−∇p2 g2(x̄2, ȳ2, p̄2)]

+{∇y2y2 f 2(x̄2, ȳ2)}(β2 − αȳ2 − δ2 p̄2)− η = 0 for all, y2 ∈ R|B2|, (25)

{∇p1 p1 g1(x̄1, ȳ1, p̄1)}(β1 − α p̄1 − γȳ1 − δ1 p̄1)

−δ1[∇y1 f 1(x̄1, ȳ1)− z̄1 +∇p1 g1(x̄1, ȳ1, p̄1)] = 0, (26)

{∇p2 p2 g2(x̄2, ȳ2, p̄2)}(β2 − αȳ2 − α p̄2 − δ2 p̄2)

−δ2[∇y2 f 2(x̄2, ȳ2)− z̄2 +∇p2 g2(x̄2, ȳ2, p̄2)] = 0, (27)

β1[∇y1 f 1(x̄1, ȳ1)− z̄1 +∇p1 g1(x̄1, ȳ1, p̄1)] = 0, (28)

β2[∇y2 f 2(x̄2, ȳ2)− z̄2 +∇p2 g2(x̄2, ȳ2, p̄2)] = 0, (29)

γȳ1[∇y1 f 1(x̄1, ȳ1)− z̄1 +∇p1 g1(x̄1, ȳ1, p̄1)] = 0, (30)

δ1 p̄1[∇y1 f 1(x̄1, ȳ1)− z̄1 +∇p1 g1(x̄1, ȳ1, p̄1)] = 0, (31)

δ2 p̄2[∇y2 f 2(x̄2, ȳ2)− z̄2 +∇p2 g2(x̄2, ȳ2, p̄2)] = 0, (32)

(α− γ)y1 + β1 − δ1 p1 ∈ ND1(z̄
1), (33)

β2 − δ2 p2 ∈ ND2(z̄
2), (34)

(ξ1)T x̄1 = S(x1|E1), ξ1 ∈ C1, (35)

(ξ2)T x̄2 = S(x2|E2), ξ2 ∈ C2, (36)

ηȳ2 = 0, (37)

(α, β1, β2, γ, δ1, δ2, η) 6= 0, (38)

(α, β1, β2, γ, δ1, δ2, η) ≥ 0. (39)

Premultiplying Equations (26) and (27) by (β1 − α p̄1 − γȳ1 − δ1 p̄1) and (β2 − α p̄2 − αȳ2 − δ2 p̄2),
respectively, and then using Equations (28)–(32), we get

(β1 − α p̄1 − γȳ1 − δ1 p̄1)T∇p1 p1 g1(x̄1, ȳ1, p̄1)(β1 − α p̄1 − γȳ1 − δ1 p̄1) = 0, (40)

and

(β2 − α p̄2 − αȳ2 − δ2 p̄2)∇p2 p2 g2(x̄2, ȳ2, p̄2)(β2 − α p̄2 − αȳ2 − δ2 p̄2)

= −αδ2ȳ2[∇y2 f 2(x̄2, ȳ2)− z̄2 +∇p2 g2(x̄2, ȳ2, p̄2)]. (41)

Using hypothesis (i) in (40), we get

β1 = α p̄1 + γȳ1 + δ1 p̄1. (42)
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Further, using inequalities (4), (8), and (39) in (41), we obtain

(β2 − α p̄2 − αȳ2 − δ2 p̄2)∇p2 p2 g2(x̄2, ȳ2, p̄2)(β2 − α p̄2 − αȳ2 − δ2 p̄2) ≥ 0,

which on using hypothesis (i), we obtain

β2 = α p̄2 + αȳ2 + δ2 p̄2. (43)

From Equations (26), (27), along with hypothesis (ii), we obtain

δ1 = 0 (44)

and
δ2 = 0. (45)

Now suppose, α = 0. Then, Equations (43) and (45) give β2 = 0. The Equation (24) with hypothesis
(ii) implies γ = 0, and Equation (42) yields β1 = 0. Therefore, Equation (25) implies η = 0. Thus
(α, β1, β2, γ, δ1, δ2, η) = 0, which contradicts the Equation (38). Therefore,

α > 0. (46)

From Equations (28), (30) and (31), we have

(β1 − γȳ1 − δ1 p̄1)T [∇y1 f 1(x̄1, ȳ1)− z̄1 +∇p1 g1(x̄1, ȳ1, p̄1)] = 0,

which along with (42), gives

α( p̄1)T [∇y1 f 1(x̄1, ȳ1)− z̄1 +∇p1 g1(x̄1, ȳ1, p̄1)] = 0. (47)

Using hypothesis (iii), we get
p̄1 = 0. (48)

Further, from Equations (25), (37), and (43), we obtain

αȳ2[∇y2 g2(x̄2, ȳ2, p̄2)−∇p2 g2(x̄2, ȳ2, p̄2) +∇y2y2 f 2(x̄2, ȳ2) p̄2] = 0, (49)

which by hypothesis (iii) and Equation (46) implies

p̄2 = 0. (50)

Therefore, (42) and (43) reduce to
β1 = γȳ1 (51)

and
β2 = αȳ2. (52)

Now from Equations (24), (42), and (48) with hypotheses (ii) and (iv), we get

α = γ > 0. (53)

Therefore, Equation (52) implies

ȳ2 =
β2

α
≥ 0. (54)
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Now, Equations (22) and (23) along with (42), (43), (50) and hypothesis (iv), we obtain

α[∇x1 f 1(x̄1, ȳ1) + ξ̄1 +∇r1 g1(x̄1, ȳ1, p̄1)](x1 − x̄1) ≥ 0, for all x1 ∈ C1 (55)

and
α[∇x2 f 2(x̄2, ȳ2) + ξ̄2 +∇r2 g2(x̄2, ȳ2, p̄2)](x2 − x̄2) ≥ 0, for all x2 ∈ C2. (56)

Let x1 ∈ C1, then x̄1 + x1 ∈ C1. Then above inequality (55) implies

(x̄1)T [∇x1 f 1(x̄1, ȳ1)− ξ̄1 +∇r1 g1(x̄1, ȳ1, p̄1)] ≥ 0, for all x1 ∈ C1. (57)

Similarly,
(x̄2)T [∇x2 f 2(x̄2, ȳ2) + ξ̄2 +∇r2 g2(x̄2, ȳ2, p̄2)] ≥ 0, for all x2 ∈ C2. (58)

Therefore,

∇x1 f 1(x̄1, ȳ1) + ξ̄1 +∇r1 g1(x̄1, ȳ1, p̄1) ∈ C1
∗ (59)

∇x2 f 2(x̄2, ȳ2) + ξ̄2 +∇r2 g2(x̄2, ȳ2, p̄2) ∈ C2
∗. (60)

If we take ξ̄1 = w̄1 and ξ̄2 = w̄2, then (x̄1, x̄2, ȳ1, ȳ2, w̄1, w̄2, r̄1 = 0, r̄2 = 0) satisfies the dual
constraints (10)–(15). Therefore, it is feasible solution for (MHD).

Now from Equations (34), (46), (50), and (52), we get ȳ2 ∈ ND2(z̄
2). As D2 is a compact convex set

in R|A2|,
(ȳ2)T z̄2 = S(ȳ2|D2). (61)

Moreover, since β1 = γȳ1 and γ > 0 then from Equations (33), (48), and (53), we obtain ȳ1 ∈
ND1(z̄

1). As D1 is a compact convex set in R|A1|,

(ȳ1)T z̄1 = S(ȳ1|D1). (62)

Therefore by Equations (35), (36), (48), (50), (61), (62), and hypothesis (iv), we get the equal
objective functions value of (MHP) and (MHD) at (x̄1, x̄2, ȳ1, ȳ2, z̄1, z̄2, p̄1 = 0, p̄2 = 0) and
(x̄1, x̄2, ȳ1, ȳ2, w̄1, w̄2, r̄1 = 0, r̄2 = 0). From Theorem 1, we get that (x̄1, x̄2, ȳ1, ȳ2, w̄1, w̄2, r̄1 = 0, r̄2 = 0)
is an optimal solution for (MHD).

Theorem 3. (Converse Duality) Let (ū1, ū2, v̄1, v̄2, w̄1, w̄2, r̄1, r̄2) be an optimal solution of (MHD).
Suppose that

(i) ∇r1r1 h1(ū1, v̄1, r̄1) is positive or negative definite matrix and ∇r2r2 h2(ū2, v̄2, r̄2) is negative definite
matrix,

(ii) ∇v1 f 1(ū1, v̄1) + w̄1 +∇r1 h1(ū1, v̄1, r̄1) 6= 0 and ∇v2 f 2(ū2, v̄2) + w̄2 +∇r2 g2(ū2, v̄2, r̄2) 6= 0,

(iii) (r̄1)T [∇u1 f 1(ū1, v̄1) + w̄1 +∇r1 h1(ū1, v̄1, r̄1)] = 0⇒ r̄1 = 0
and
ū2[∇u2 h2(ū2, v̄2, r̄2)−∇r2 h2(ū2, v̄2, r̄2) +∇u2u2 f 2(ū2, v̄2)r̄2] = 0⇒ r̄2 = 0,

(iv) h1(ū1, v̄1, 0) = g1(ū1, v̄1, 0), ∇u1 h1(ū1, v̄1, 0) = ∇p1 g1(ū1, v̄1, 0),
∇v1 h1(ū1, v̄1, 0) = ∇r1 h1(ū1, v̄1, 0), h2(ū2, v̄2, 0) = g2(ū2, v̄2, 0) and

∇u2 h2(ū2, v̄2, 0) = ∇p2 g2(ū2, v̄2, 0).
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Then,

(I) (ū1, ū2, v̄1, v̄2, z̄1, z̄2, p̄1 = 0, p̄2 = 0) is feasible for (MHP), and

(II) G(ū1, ū2, v̄1, v̄2, z̄1, z̄2, p̄1, p̄2) = H(ū1, ū2, v̄1, v̄2, w̄1, w̄2, r̄1, r̄2).

Furthermore, if the hypotheses of Theorem 1 are satisfied for all feasible solutions of (MHP) and (MHD), then
(ū1, ū2, v̄1, v̄2, z̄1, z̄2, p̄1 = 0, p̄2 = 0) is an optimal solution for (MHP).

Proof. The proof follows on the line of Theorem 2.

5.1. Self Duality

In general, primal problem (MHP) and dual problem (MHD) are not self-duals without including
restrictions on f , h and g. If we assume D1 = D2, E1 = E2, f 1 : R|A1| ×R|B1| → R, f 2 : R|A2| ×R|B2| →
R, h1 : R|A1| × R|B1| × R|A1| → R, h2 : R|A2| × R|B2| × R|A2| → R, g1 : R|A1| × R|B1| × R|B1| → R,
g2 : R|A2| ×R|B2| ×R|B2| → R are skew symmetric, that is,

f i(u1, v1) = − f i(v1, u1), i = 1, 2,

hi(u1, v1, r1) = −hi(v1, u1, r1), i = 1, 2,

C1 = C3

and
C2 = C4.

By rewriting the dual problem (MHD) as a minimization problem, we get

Minimize H(u, v, w, r) = −{ f 1(u1, v1)− S(v1|D1) + f2(u2, v2)− S(v2|D2) + (u1)Tw1

+ h1(u1, v1, r1) + h2(u2, v2, r2)− (r1)T∇r1 h1(u1, v1, r1)− (r2)T∇r2 h2(u2, v2, r2)

−(u2)T [∇u2 f 2(u2, v2) +∇r2 h2(u2, v2, r2)]}

subject to
∇u1 f 1(u1, v1) + w1 +∇r1 h1(u1, v1, r1) ∈ C∗1 ,

∇u2 f 2(u2, v2) + w2 +∇r2 h2(u2, v2, r2) ∈ C∗2 ,

(u1)T [∇u1 f 1(u1, v1) + w1 +∇r1 h1(u1, v1, r1)] ≤ 0,

(r1)T [∇u1 f 1(u1, v1) + w1 +∇r1 h1(u1, v1, r1)] ≤ 0,

(r2)T [∇u2 f 2(u2, v2) + w2 +∇r2 h2(u2, v2, r2)] ≤ 0,

v1 ∈ C3, v2 ∈ C4, u2 ≥ 0,

As f , h and g are skew symmetric, therefore

∇u1 f 1(u1, v1) = −∇u1 f 1(v1, u1), ∇u1 f 2(u2, v2) = −∇u1 f 2(v2, u2),

∇u1 h1(u1, v1, r1) = −∇u1 h1(v1, u1, r1), and ∇u1 h2(u2, v2, r2) = −∇u1 h2(v2, u2, r2).

Now the above problem becomes:
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Minimize H(u, v, w, r) = f 1(v1, u1) + S(v1|D1) + f 2(v2, u2) + S(v2|D2)− (u1)Tw1

+h1(v1, u1, r1) + h2(v2, u2, r2 − (r1)T∇r1 h1(v1, u1, r1)

−(r2)T∇r2 h2(v2, u2, r2)− (u2)T [∇u2 f 2(v2, u2) +∇r2 g2(v2, u2, r2)]

subject to

−(∇u1 f 1(v1, u1) + w1 +∇r1 h1(v1, u1, r1)) ∈ C∗3 ,

−(∇u2 f 2(v2, u2) + w2 +∇r2 h2(v2, u2, r2)) ∈ C∗4 ,

(u1)T [∇u1 f 1(v1, u1) + w1 +∇r1 h1(v1, u1, r1)] ≥ 0,

(r1)T [∇u1 f 1(v1, u1) + w1 +∇r1 h1(v1, u1, r1)] ≥ 0,

(r2)T [∇u2 f 2(v2, u2) + w2 +∇r2 h2(v2, u2, r2)] ≥ 0,

v1 ∈ C1, v2 ∈ C2, u2 ≥ 0,

which is identical to (MHP), that is, the objective function and the constraint functions of (MHP) and
(MHD) are identical. Thus, (MHP) is a self-dual.

Thus, if (x1, x2, y1, y2, w1, w2, p1, p2) is feasible for (MHP), then (y1, y2, x1, x2, w1, w2, p1, p2) is
feasible for (MHD) and vice versa.

The weak and strong duality theorems are verified by the following example.

5.2. Example

Let f (x, y) = (x2
1 + y2

1 + x1 + y1 + x2
2 + y2

2 + x2 + y2), s(x|E) = x+|x|
2 , g(x, y, p) =

1
2 pT(∇yy f (x, y)p), h(x, y, r) = 1

2 rT(∇yy f (x, y)r) and C1 = C2 = C3 = C4 = R2
+. Then, the

problems (MHP) and (MHD) are as follows.

Primal Problem (MHP):

Minimize G(x, y, z, p) =

x2
1 + x2

2 + x1 + x2 + y2
1 + y2

2 + y1 + y2 +
x1+|x1|

2 + x2+|x2|
2 − y1z1 − p2

1 − p2
2 − y2(2y2 + 1 + 2p2)

subject to

(2y1 + 1− z1 + 2p1) ≤ 0,
(2y2 + 1− z2 + 2p2) ≤ 0,
(2y2

1 + y1 − y1z1 + 2p1y1) ≥ 0,
(2p1y1 + p1 − p1z1 + 2p2

1) ≥ 0,
(2p2y2 + p2 − p2z2 + 2p2

2) ≥ 0,
x, z, y2 ≥ 0.

Dual Problem (MHD):

Maximize H(u, v, w, r) =

u2
1 + u2

2 + u1 + u2 + v2
1 + v2

2 + v1 + v2 − v1+|v1|
2 − v2+|v2|

2 + u1w1 − r2
1 − r2

2 − u2(2u2 + 1 + 2r2)
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subject to

(2u1 + 1 + w1 + 2r1) ≥ 0,
(2u2 + 1 + w2 + 2r2) ≥ 0,
(2u2

1 + u1 + u1w1 + 2r1u1) ≤ 0,
(2r1u1 + r1 + r1w1 + 2r2

1) ≤ 0,
(2r2u2 + r2 + r2w2 + 2r2

2) ≤ 0,
v, w, u2 ≥ 0,

where

(i) f (x, y) : R2 ×R2 −→ R,

(ii) g(x, y, p) : R2 ×R2 ×R2 −→ R and

(iii) h(x, y, r) : R2 ×R2 ×R2 −→ R.

Let x̄ = ȳ = ū = v̄ = w̄ = z̄ = p̄ = r̄ =

(
0
0

)
.

Then, (x, y, z, p) is feasible for (MHP) and (u, v, w, r) is feasible for (MHD).

Now, f 1(., v) + (.)Tw1 = (u2
1 + u1 + u1w1) is a higher-order F - pseudo-convex function at ū1 = 0

with respect to h1 and − f 1(x, .) + (.)Tz1 = (−y2
1 − y1 + y1z1) is a higher-order F -pseudo-convex

function at ȳ1 = 0 with respect to −g1. Now, f 2(., v) + (.)Tw2 = (u2
2 + u2 + u2w2) is a higher-order

F -convex function at ū2 = 0 with respect to h2. Similarly, − f 2(x, .) + (.)Tz2 = (−y2
2 − y2 + y2z2) is a

higher-order F -convex function at ȳ2 = 0 with respect to −g2.

Also conditions (v) to (viii) of weak duality theorem (Theorem 1) are satisfied for

x̄ = ȳ = ū = v̄ = w̄ = z̄ = p̄ = r̄ =

(
0
0

)
. Therefore, weak duality theorem is satisfied.

Furthermore,

(i) ∇p1 p1 g1(x̄, ȳ, p̄) =

(
2 0
0 2

)
is positive definite matrix

and

∇p2 p2 g2(x̄, ȳ, p̄) =

(
−2 0

0 −2

)
is negative definite matrix,

(ii) {∇y1 f 1(x̄, ȳ)− z̄1 +∇p1 g1(x̄, ȳ, p̄),∇y2 f 2(x̄, ȳ)− z̄2 +∇p2 g2(x̄, ȳ, p̄)} =
(

1
1

)
,

(iii) ( p̄1)T{∇y1 f 1(x̄, ȳ)− z̄1 +∇p1 g1(x̄, ȳ, p̄)} = 0 =⇒ p̄1 = 0 and
ȳ2[∇y2 g2(x̄2, ȳ2, p̄2)−∇p2 g2(x̄2, ȳ2, p̄2) +∇y2y2 f 2(x̄2, ȳ2) p̄2] = 0 =⇒ p̄2 = 0.

(As p̄ initially taken as zero).

(iv) hi(x̄, ȳ, 0) = gi(x̄, ȳ, 0), ∇xhi(x̄, ȳ, 0) = ∇rgi(x̄, ȳ, 0), ∇y1 g1(x̄1, ȳ1, 0) = ∇p1 g1(x̄1, ȳ1, 0), for i =
1, 2.
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Therefore, all the assumptions of strong duality theorem (Theorem 2) are also satisfied. Now objective
function value is equal to 0.

6. Special Cases

(i) Let C1 = Rn
+, C2 = Rh

+, |B1| = 0, |A1| = 0 , E1 = 0 and D1 = 0 in (MHP) and (MHD). Then,
we get the programs proposed by Verma and Gulati [21].

(ii) If C1 = Rn
+, C3 = Rh

+, removed the higher-order and non-differentiable terms and omission
of inequalities (6), (7), (13), and (14), then we get the model presented by Chandra et al. [9].

(iii) Let C1 = Rn
+ and C3 = Rh

+, |A2| = 0, |B2| = 0, p = 0 and r = 0. Then, our programs are
reduced to the programs presented in [25].

(iv) If C1 = −C1, C3 = −C3, |B2| = 0, |A2| = 0, E1 = 0, D1 = 0 and omission of inequalities (7) and
(14), then we get the dual programs discussed in [26].

(v) If C2 = −C2, C4 = −C4, |B1| = 0, |A1| = 0, E2 = 0, D2 = 0 and omission of inequalities (6) and
(13), then we get the dual programs studied in [26].

(vi) If C2 = −C2, C4 = −C4, |B1| = 0, |A1| = 0, E2 = 0, D2 = 0, g(x, y, p) = (1/2)pT∇yy f (x, y)p
and h(u, v, r) = (1/2)rT∇xx f (u, v)r, and omission of inequalities (6) and (13), then we get the
dual programs is equal to obtained in [27].

For C2 = Rn
+, C4 = Rh

+, and omission of inequalities (6) and (13), we get the following special
cases (vii) to (viii):

(vii) If |B1| = 0 and |A1| = 0 , then we get the programs considered in [17].

(viii) Let |B1| = 0, |A1| = 0, g(x, y, p) = (1/2)pT∇yy f (x, y)p and h(u, v, r) = (1/2)rT∇xx f (u, v)r.
Then, our programs become the programs presented in [16].

For C1 = Rn
+, C3 = Rh

+, and omission of inequalities (7) and (14), we get the following special
cases (ix) to (xiii):

(ix) If g(x, y, p) = (1/2)pT∇yy f (x, y)p and h(u, v, r) = (1/2)rT∇xx f (u, v)r, then we get the
programs obtained in [15].

(x) If |B2| = 0, |A2| = 0, g(x, y, p) = (1/2)pT∇yy f (x, y)p and h(u, v, r) = (1/2)rT∇xx f (u, v)r ,
then we get the dual programs derived in [19].

(xi) If |B2| = 0, |A2| = 0, E1 = 0, D1 = 0, g(x, y, p) = (1/2)pT∇yy f (x, y)p and
h(u, v, r) = (1/2)rT∇xx f (u, v)r, then we get the dual programs studied in [4].

(xii) If |B2| = 0, |A2| = 0, g(x, y, p) = (1/2)pT∇yy f (x, y)p, h(u, v, r) = (1/2)rT∇xx f (u, v)r, E1 = 0
and D1 = 0, then we get the dual programs presented in [28].

(xiii) Let C1 = −C1, C3 = −C3, |A2| = 0, |B2| = 0, p = 0, r = 0, E1 = 0 and D1 = 0. Then, we obtain
symmetric dual programs [29,30].



Symmetry 2020, 12, 274 17 of 18

7. Conclusions

A new mixed type nondifferentiable higher-order symmetric dual programs over cones has
been formulated. It is also shown the uniqueness of higher-order F -convexity/higher-order
F -pseudoconvexity by a non-trivial example. Under these assumptions, the weak, strong, and
converse duality theorems have been derived, and verified by an example. Self-duality has been also
discussed. The presented programs and results generalize some existing duals and their corresponding
theorems appeared in the literature. The symmetric duality between (MHP) and (MHD) can be
extended for fractional and multiobjective programming problems over cones.
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Appendix A

The Figures 1–4 are plotted in Wolfram Mathematica. The codes are given below:
Figure 1: Plot3D[(−u2 + x2)(−e( − u) + 2u + 1/(1 + u)), x, 0, 5, u, 0, 5]
Figure 2: Plot[(−1 + x2)(−e( − 1) + 2 + 1/2), x, 0, 5, Frame→ True, FrameLabel → x]
Figure 3: Plot[(e( − x) + x2 − 1/e− 1), x, 0, 5, Frame→ True, FrameLabel → x]
Figure 4: Plot[e( − x) + x2 − 1/e− 1− 2.1321205588(x2 − 1), x, 0, 4, Frame→ True, FrameLabel → x].
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